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Abstract We consider the general problem of motion of a rigid body about a fixed point under the action
of an axisymmetric combination of potential and gyroscopic forces. We will construct two new conditional
integrable problems. These cases are combined generalizations of several previously known ones, namely
those of Chaplygin and Yehia by the introduction of additional parameters to the structure of each.

1 Preliminaries

The models of a rigid body and its generalization, the gyrostat, have found a wide range of applications in
various fields of physics, in addition to their classical applications in mechanics and astronomy. For example,
the gyrostat was used as a model of the Earth that takes account of some stationary transport processes on it [1],
as a model of the atmosphere and of rotating fluid (e.g., [2]) and as a controlling device in satellite dynamics
(e.g., [3]).

The study of the dynamics of a rigid body is one of the most interesting problems in mechanics, even in the
simplest case of motion under the action of a uniform gravity field. It has been studied by Euler and Lagrange
who indicated the first integrable cases (see, e.g., [4]). The interest intensified after Kovalevskaya introduced
the case known under her own name [5]. It was probably the first known case of a mechanical system having
an integral quartic in velocities in addition to the energy integral [5]. It was followed shortly by the case due
to Chaplygin of motion of a body in liquid [6] (see also [7]). All efforts led only to few numbers of integrable
cases of this dynamics under very restricted types of forces. A little fraction of those is composed of the general
case, valid for all admissible initial conditions, and the rest are cases valid only on a single level of the cyclic
integral, usually the zero level. Up-to-date tables of known integrable cases are available in the literature [7,8].
As there is no criterion at present to single out the forms that make the dynamics integrable, it is thus of great
importance to construct, classify and tabulate new integrable problems as possible.

Consider a rigid body in motion about its fixed point O . Let OXY Z and Oxyz be the two Cartesian
coordinate systems, fixed in space and in the body, respectively. Let also ω = (p, q, r) be the angular velocity
of the body and γ = (γ1, γ2, γ3) be the unit vector in the direction of the Z -axis. All vectors are referred to
the body system which we take as the system of principal axes of inertia.

Those variables can be expressed in terms of Euler’s angles: the angle of precession ψ about the Z -axis,
the angle of nutation θ (between the z- and Z -axes) and the angle of proper rotation ϕ about the z-axis. They
have the form
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γ = (sin θ sin ϕ, sin θ cosϕ, cos θ) (1)

and

ω = (
ψ̇ sin θ sin ϕ + θ̇ cosϕ, ψ̇ sin θ cosϕ − θ̇ sin ϕ, ψ̇ cos θ + ϕ̇

)
. (2)

In this article, we consider the general problem of motion of a rigid body about a fixed point under the action of
a combination of conservative axisymmetric around the Z -axis potential and gyroscopic forces. This problem
is described by a Lagrangian, e.g., [9],

L = 1

2
ωI · ω + l · ω − V, (3)

where I = diag(A, B,C) is the inertia matrix of the body. The first term represents the kinetic energy of the
rigid body. The potential V and the vector l rely only on the Eulerian angles through γ1, γ2, γ3. As shown
in [9,10], potential terms can be interpreted in most cases of physical interest in terms of three classical
interactions: gravitational, electric and magnetic. Gyroscopic terms appear naturally after reduction in higher
dimensional systems by applying Routh’s procedure for ignoring cyclic coordinates. They can be accounted
for also by attaching rotors to the body and adding Lorentz forces. Explicit cases of interpretation of this type
are given in [8].

Equations of motion for the Lagrangian system (3) with arbitrary l(γ ) in Euler–Poisson variables can be
written in the form [9]

ω̇I + ω × (ωI + μ) = γ × ∂V

∂γ′ γ̇ + ω × γ = 0, (4)

where

μ = ∂

∂γ
(l · γ) −

(
∂

∂γ
· l

)
γ. (5)

Equations (4) and (5) are Lagrangian equations in non-Lagrangian variables. They admit three general first
integrals:

(i) Jacobi’s integral

I1 = 1

2
ωI · ω + V = h, (6)

where h is an arbitrary constant which represents the numerical value of the Jacobi integral.

(ii) An integral linear in the components of angular velocity corresponding to the cyclic angle of precession
around the axis of the field:

I2 = (ωI + l) · γ = f, (7)

where f is the value of cyclic integral.

(iii) The geometric integral

I3 = γ · γ = 1. (8)

According to Jacobi’s theorem on the last integrating multiplier [11], four integrals are sufficient for the
integration of (4). This means that one additional integral to the known three (6)–(8) is required.

For such problems, the angle of precession ψ around the Z -axis is a cyclic variable. Moreover, we restrict
our consideration to the case when the body exhibits axial dynamical symmetry A = B and the vector l lies
along the axis of dynamical symmetry, i.e., l = (0, 0, l3). Therefore, this problem reduces after ignoring the
cyclic angle ψ to the Routhian

R = 1

2

[
θ̇2 + C sin2 θ

A − (A − C) cos2 θ
ϕ̇2

]
+ f C cos θ + Al3 sin2 θ

A[A − (A − C) cos2 θ ] ϕ̇ − 1

A

[

V + ( f − l3 cos θ)2

2 [A − (A − C) cosθ]

]

.

(9)
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In [8], a method which generalizes all known integrable systems was introduced. This method is based on the
invariance of equations of motion (4) under the transformation

ω = ω′ + ρ (γ ) γ. (10)

Applying this transformation, we get the Lagrangian

L ′ = 1

2
ω′I · ω′ + I′ · ω′ − V ′. (11)

The equations of motion derived from the new Lagrangian (11) are

ω̇′I + ω′ × (ω′I + μ′) = γ × ∂V ′

∂γ
, γ̇ + ω′ × γ = 0. (12)

The cyclic integral (7) becomes
(
ω′I + l′

) · γ = f, (13)

where

V ′ = V + ( f − l · γ) ρ − ρ2

2
γ I · γ, l′ = l + ργ l,

μ′ = μ − 2ργĪ + γI × (∇ρ × γ) , Ī = 1

2
tr (I) δ − I, (14)

where δ is a unit matrix. The system described by (12), (13) and (14) is mathematically equivalent to that
described by (4) and (7) but physically different (for more details see [8]). This method has been applied in
many articles such as [4,9].

In this article, we aim to construct new integrable problems in rigid body dynamics. Each of these cases
is identified by two scalar and vector functions V and μ. The reason is that those functions are unique for
mechanical problem, while the Lagrangian is not. An expression ∂F

∂γ
× γ , where F is an arbitrary function of

γ , can be added to the vector l without changing the equations of motion or the integral (7). In other words,
the two functions V and μ are invariant under gauge transformation.

2 Yehia’s method for constructing quartic integrals

Up to now, only a very limited number of integrable cases of a particle in the Euclidean plane with quartic
integral were found, mostly in the past thirty years or so (e.g., [12–26]). Most of those cases are listed in
Hietarinta’s review [27]. In [28], Yehia has introduced a method for constructing integrable conservative two-
dimensional mechanical systems whose second integral of motion is polynomial in velocities. This method
appeared to be successful in constructing a great number of irreversible systems (involving gyroscopic forces)
with a second integral quadratic (see, e.g., [29,30]), cubic [31] and quartic (see, e.g., [23] and [32–36]). In this
method, the configuration space is not assumed to be the Euclidean plane. This expands the applicability of the
results to various mechanical systems to include such problems as rigid body dynamics. Many new irreversible
systems were obtained by using this method. Some of these systems generalize previously known ones by
introducing additional parameters, and so any of the configuration manifolds and the potential of the forces
acting on the system, or both, may be changed. Other systems are completely new. This method is applicable
to two-dimensional mechanical systems only. To this type belongs, for example, the problem of motion of a
natural mechanical system with n degrees of freedom, having n − 2 cyclic coordinates. Another example is
the problem of motion of a particle on a smooth (fixed or rotating) surface under a variety of forces. Further
examples are given by the problem of motion about a fixed point of a rigid body acted upon by potential and
gyroscopic forces that allow a cyclic variable [37,38]. These systems can be characterized or reduced to a
mechanical system with Lagrangian

L = 1

2

(
a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2

) + a1q̇1 + a2q̇
2
2 − V, (15)
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where the six coefficients ai j , ai , V are functions of q1, q2 and dots denote differentiation with respect to time
t . According to a theorem of Birkhoff [39], there always exists a coordinate transformation that reduces (15)
to a system of the type

L = 	

2

(
ẋ2 + ẏ2

) + l1 ẋ + l2 ẏ − V, (16)

where 	, V, l1, l2 are certain functions of x, y. The Lagrangian system (16) admits the Jacobi integral:

I1 = 	

2

(
ẋ2 + ẏ2

) + V = h. (17)

If this system admits an additional first integral, independent of Eq. (17), then this system is integrable, i.e.,
the solution of the mechanical problem reduces to a number of quadratures and to the inversion of certain
integrals. This is always guaranteed by the Liouville theorem for the equivalent Hamiltonian system (see, e.g.,
[40]). Performing the following time transformation

dt = 	dτ, (18)

the Lagrangian (16) can be expressed as

L = 1

2

(
x ′2 + y′2) + l1x

′ + l2y
′ +U, (19)

where U = 	(h − V ) and dashes denote derivatives with respect to τ . The equations of motion take the form

x ′′ + �y′ = ∂U

∂x
, y′′ + �x = ∂U

∂y
, (20)

where � = ∂l1
∂y − ∂l2

∂x . This system admits the Jacobi integral:

I1 = 1

2

(
x ′2 + y′2) −U = 0. (21)

The Jacobi constant h for the original system (16) enters as parameters in the new potential−U . It is known
from the results of [28] that the integral can be written in the form

I2 = x ′4 + P3x
′3 + Q3x

′2 y′ + P2x
′2 + Q2x

′y′ + P1x
′ + Q1y

′ + R = c0, (22)

where Pj , Q j , R are functions in both variables x, y, and c0 is an arbitrary constant. Differentiating (22) with
respect to τ and using Jacobi’s integral again as in [28], we obtain nonlinear system of partial differential
equations:

∂P3
∂x

− ∂Q3

∂y
= 0,

∂P3
∂y

+ ∂Q3

∂x
− 4� = 0,

∂P2
∂y

+ ∂Q2

∂x
− 3�P3 = 0, (23)

∂P2
∂x

− ∂Q2

∂y
+ 3�Q3 + 4U = 0, P1

∂U

∂x
+ Q1

∂U

∂y
+ 2U

∂Q1

∂y
− 2�Q2U = 0, (24)

∂P1
∂x

− ∂Q1

∂y
+ 2�Q2 + 3P3

∂U

∂x
+ Q3

∂U

∂y
+ 2U

∂Q3

∂y
= 0, (25)

∂P1
∂y

+ ∂Q1

∂x
+ 2Q3

∂U

∂x
− 2�P2 = 0, (26)

∂R

∂x
+ 2P2

∂U

∂x
+ Q2

∂U

∂y
+ 2U

∂Q2

∂y
+ �Q1 − 4�UQ3 = 0,

∂R

∂y
+ Q2

∂U

∂x
− �P1 = 0. (27)
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This is a system of nine equations in nine unknown functions. It is not known, however, whether this system
is solvable, in the sense that its complete set of solutions can be found. Regarding the second equation of Eqs.
(23) and the definition of �, one can now construct a Lagrangian (19) compatible with the integral (22) as

L = 1

2

(
x ′2 + y′2) + 1

4

(
P3x

′ − Q3y
′) +U. (28)

It is evident that any solution of the system (23)–(27) can be interpreted as determining a mechanical system
that admits a quartic integral on its zero level of the Jacobi integral. If it happens that in the solution the function
U has the structureU + cU1, where c is an arbitrary constant, thenU1 can be identified as the coefficient 	 in
(18) and c as Jacobi’s constant. It may even happen, as will be seen later, the constant c andU can be chosen in
more than one way. In some cases, the same constant enters in one or more of the coefficients of the integral.
To obtain an unrestricted integral of the motion, this constant should be eliminated in virtue of Jacobi integral.
This situation is frequently utilized below.
Setting Q3 (x, y) = 0, Eq. (23) leads to

P3 = κ f (y) , � = 1

4

d f

dy
, Q2 = −Fxy, P2 = Fxx + 3

8
κ2 f 2, (29)

where F is an arbitrary function in both variables x, y, f (y) is an arbitrary function of y, and κ is an arbitrary
constant. Taking into account all results obtained, Eq. (24) gives

U = 1

4
∇2F, Q1 = κ

[
Gy + 1

2

d f

dy
Fx

]
, P1 = κ

[
−Gx + κ2

16
f 3

]
, (30)

where G is an arbitrary function in two variables x, y. From Eq. (27), one can express the function R—up to
an additive constant—in the form

R (x, y) = −
∫ (

Q2
∂U

∂x
− �P1

)
dy −

∫ [
2P2

∂U

∂x
+ Q2

∂U

∂y
+ 2U

∂Q2

∂y
+ �Q1 − 4�UQ3

]

0
dx, (31)

where []0 means that the expression in the bracket is computed for y taking an arbitrary constant value y0
(say). It must be noted that R(x, y) satisfies the compatibility condition

∂

∂x

(
∂R

∂y

)
= ∂

∂y

(
∂R

∂x

)
. (32)

Taking all obtained results into account, Eqs. (25), (26) and (32) become

κ

(
4∇2G + 3 f

∂

∂x
∇2F + 2

d2 f

dy2
Fx + 4

d f0
dy

Fxy

)
= 0, (33)

κ

{[
κ2 f + 8

(
2Gy + d f

dy
Fx

)]
∇2Fx + 8

[
d f

dy
+ 2Gx + 4Gyy − d f

dy
Fxy

]
∇2F

}
= 0, (34)

κ2

[
d2 f

dy2

(
Gy + d f

dy
Fx

)
+ 1

2

(
d f

dy

)2

Fxy − d f

dy

(
Gxx − Gyy

) − 3

2
f
d f

dy
∇2Fx − 3

4
f 2∇2Fxy

]

−Fxy Fxxxx − 2Fxx Fyxxx + 2Fyyyx Fyy + Fxy Fyyyy − 3Fxxy Fxxx + 3Fxyy Fyyy = 0. (35)

Note that when the parameter κ vanishes, the present problem becomes reversible and Eqs. (33)–(35) reduce
to a single equation

− Fxy Fxxxx − 2Fxx Fyxxx + 2Fyyyx Fyy + Fxy Fyyyy − 3Fxxy Fxxx + 3Fxyy Fyyy = 0. (36)

This equation appeared for the first time in [35], and it is called resolving equation. Its solution was constructed
with certain assumption. It is also used in [41] to construct new two-dimensional integrable problems with
quartic integral. Following [35], we can set

x =
∫

dζ
4
√
a4ζ 4 + a3ζ 3 + a2ζ 2 + a1ζ + a0

, y =
∫

dξ
4
√
a4ξ4 + b3ξ3 + b2ξ2 + b1ξ + b0

, (37)

where a4, a3, a2, a1, a0, b3, b2, b1, b0 are arbitrary constants. Thus the problem is formulated for the general
case, but it is solved only for the case when the configuration space characterizes a rigid body dynamics.
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3 Applications to rigid body dynamics

In the irreversible case, the solution of (33)–(35) is expressed as the solution in the reversible case plus some
additional terms under conditions leading to a metric of the Kovalevskaya type of rigid body dynamics. These
conditions are

a4 = 16, a3 = b3 = 0, a2 = −32β2, a1 = 0, a0 = 16β4, b2 = 2b0 = −96, b1 = 128,

ζ = cos4 θ

1 − cos2 θ
+ 1 and ξ = β sin 2(ϕ − ϕ0), (38)

where β, ϕ0 are arbitrary constants. After some calculations which are not presentable in a suitable size, we
will obtain two new cases. These cases are expressed in terms of Eulerian angles as generalized coordinates.

3.1 First new integrable case

This case is characterized by the following Lagrangian:

L = 1

2

[

ϕ′2 + 2 − γ 2
3(

1 − γ 2
3

)2 γ ′2
3

]

+ 1 − γ 2
3

2 − γ 2
3

(

k + a(1 + (1 − γ 2
3 ) cos2 ϕ)

(1 − γ 2
3 ) sin2 ϕ

)

ϕ′ − 1 − γ 2
3

2
(
2 − γ 2

3

)

⎧
⎨

⎩
λ

2γ 2
3

+ (
1 − γ 2

3

)
(b1 cos 2ϕ − b2 sin 2ϕ) − akγ 2

3

γ 2
1

+ a2γ 2
3

(
2(1 − γ 2

3 ) cos2 ϕ − γ 2
3

)

2
(
1 − γ 2

3

)2
cos4 ϕ

− 2p0 + γ 2
3

2
(
2 − γ 2

3

)

((
k + a(1 + (1 − γ 2

3 ) cos2 ϕ
)
)

(
1 − γ 2

3

)
sin2 ϕ

)2
⎫
⎬

⎭
. (39)

Its conditional Jacobi’s integral becomes

I1 = 1

2

[

ϕ′2 + 2 − γ 2
3(

1 − γ 2
3

)2 γ ′2
3

]

+ 1 − γ 2
3

2
(
2 − γ 2

3

)

⎧
⎨

⎩
λ

2γ 2
3

− akγ 2
3

γ 2
1

+ (
1 − γ 2

3

)
(b1 cos 2ϕ − b2 sin 2ϕ)

− akγ 2
3

γ 2
1

+ a2γ 2
3

(
2

(
1 − γ 2

3

)
cos2 ϕ − γ 2

3

)

2
(
1 − γ 2

3

)2
cos4 ϕ

− 2p0 + γ 2
3

2
(
2 − γ 2

3

)

×
((

k + a(1 + (
1 − γ 2

3

)
cos2 ϕ)

)

(1 − γ 2
3 ) sin2 ϕ

)2
⎫
⎬

⎭
= 0. (40)

The conditional quartic integral is

I2 = ϕ′4 − 4k

γ 2
3 − 2

ϕ′3 +
{

−p0 + γ 4
3 − γ 2

3 − 1

γ 2
3 − 1

[b1 cos 2ϕ − b2 sin 2ϕ] − k2
(
γ 4
3 − 4γ 2

3 + 1
)

2
(
2 − γ 2

3

)2

}

×ϕ′3 +
{

γ 3
3

(
γ 2
3 − 2

)

(
1 − γ 2

3

)2 [b2 cos 2ϕ + b1 sin 2ϕ]
}

γ ′
3ϕ

′ +
{

2p0k

γ 2
3 − 2

+ k3γ 2
3

(
γ 2
3 − 4

)

(
γ 2
3 − 2

)3

+ 2k
(
2γ 2

3 − 1
)

γ 2
3 − 2

(b1 cos 2ϕ − b2 sin 2ϕ)

}

ϕ′ − 2kγ3
γ 2
3 − 1

[b2 cos 2ϕ + b1 sin 2ϕ] γ
′
3

− 1

8

(
γ 4
3 − 1

) [(
b21 − b22

)
cos 4ϕ − 2b1b2 sin 4ϕ

] + 1

4
[b1 cos 2ϕ − b2 sin 2ϕ]

× ((
3k2 + 2h − λ

)
γ 4
3 + (

2k2 − 4p0 + 2λ
)
γ 2
3 − 4k2 + 4p0 − 2λ

)
, (41)
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where k, a, b1, b2, λ, p0 are arbitrary constants. This problem is a conditional problem since it is valid only
on the zero level of Jacobi integral (40). Setting p0 = h and preforming a time transformation

dτ = 2 − γ 2
3

1 − γ 2
3

dt, (42)

the Lagrangian (39) becomes

L = 1

2

[
1 − γ 2

3

2 − γ 2
3

ϕ̇2 + γ̇ 2
3

1 − γ 2
3

]

+ 1 − γ 2
3

2 − γ 2
3

(

k + α(1 + (1 − γ 2
3 ) cos2 ϕ)

(1 − γ 2
3 ) sin2 ϕ

)

ϕ̇

−1

2

{
γ

2γ 2
3

+ (
1 − γ 2

3

)
(b1 cos 2ϕ − b2 sin 2ϕ) − akγ 2

3

γ 2
1

+ a2γ 2
3

(
2(1 − γ 2

3 ) cos2 ϕ − γ 2
3

)

2
(
1 − γ 2

3

)2
cos4 ϕ

+ γ 2
3

2
(
2 − γ 2

3

)

((
k + a(1 + (1 − γ 2

3 ) cos2 ϕ
)

(1 − γ 2
3 ) sin2 ϕ

)2
⎫
⎬

⎭
+ h. (43)

Note that the presence of the arbitrary parameter h in the last Lagrangian is insignificant and can be ignored.
The same arbitrary constant h is now interpreted as the value of the Jacobi integral I1:

I1 = 1

2

[
1 − γ 2

3

2 − γ 2
3

ϕ̇2 + γ̇ 2
3

1 − γ 2
3

]

+ 1

2

⎧
⎨

⎩
λ

2γ 2
3

+ (1 − γ 2
3 )(b1 cos 2ϕ − b2 sin 2ϕ) − akγ 2

3

γ 2
1

+ a2γ 2
3

(
2(1 − γ 2

3 ) cos2 ϕ − γ 2
3

)

2
(
1 − γ 2

3

)2
cos4 ϕ

+ γ 2
3

2
(
2 − γ 2

3

)

((
k + a(1 + (1 − γ 2

3 ) cos2 ϕ
)

(1 − γ 2
3 ) sin2 ϕ

)2
⎫
⎬

⎭
= h. (44)

The unconditional quartic integral becomes

I2 = I2 (γ3, ϕ,	γ̇3, 	ϕ̇) . (45)

It is more suitable that the constant h in Eq. (45) should be replaced by its expression (44) in terms of state
variables. Comparing (9), (43) and using (1) to express the results in terms of Euler–Poisson variables, we
obtain

l3 = K + ν
(
1 + γ 2

2

)

γ 2
1

,

V = C

{

dγ1γ2 + c
(
γ 2
1 − γ 2

2

) + λ

2γ 2
3

− νKγ 2
3

γ 2
1

− ν2γ 2
3

2γ 4
1

(
γ 2
3 + 2γ 2

2

)
}

, (46)

where K , ν, d, c are arbitrary parameters, introduced instead of the original parameters for convenience. This
case is a new integrable problem in rigid body dynamics. It generalizes the case obtained by Goriachev by two
free parameters (K = ν = 0) [42].When K = ν = λ = 0, the remaining potential characterizes the Chaplygin
case of a rigid body in a liquid [6]. It also involves one constant ν more than the case found by Yehia [43].
Taking into account (1) and (2), the complementary integral (45) can be written in terms of Euler–Poisson
variables as:

I4 =
{

p2 − q2 + cγ 2
3 − λ

(
γ 2
1 − γ 2

2

)

2γ 2
3

}2

+
{

2pq + d

2
γ 2
3 − λγ1γ2

γ 2
3

}2

− 2
(
p2 + q2

)
{

ν2γ 2
3

γ 4
1

+
[

νγ 2
3

γ 2
1

+ ν − K

]

[r + (K − ν)2} + r

{

λ

(

1 + 1

γ 2
3

)

(K − ν) + 2νγ 2
3

γ 2
1

[
ν2

(
γ 2
1 + γ 2

3

)

γ 4
1

− Kν

γ 2
1

− 1

γ 2
1 + γ 2

2

× [
c
(
2γ 4

1 + γ 4
3

(
2 − γ 2

1

) − γ 6
3 − γ 2

1 − γ 2
3

) − dγ1γ2
(
γ 2
1 − γ 2

3

)] + λ
(
γ 2
1 + γ 2

2

)

2γ 2
3

]}

− λ (K − ν)2
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×
(

1 + 1

γ 2
3

)

− 4p

γ 2
1

(
γ 2
1 + γ 2

2

)
{
d

2

(
2νγ2γ

4
1 + γ2γ

2
1

[
(K − ν)

(
γ 4
3 + 1

) − 2Kγ 2
3

] − (
γ 2
1 + γ 2

2

)2

×νγ2γ
2
3

]
)

+ c
(
2νγ 5

1 + [(K − 2ν)
(
γ 4
3 + 1

) − 2γ 2
3 (K − ν)]γ 3

1 − 2νγ1γ
2
3

(
γ 2
1 + γ 2

2

)2)
}

+ 4γ3q

γ1
(
γ 2
1 + γ 2

2

)

{

cγ1γ2
[
K − 2 (K − ν) γ 2

3 + Kγ 2
3 − 2νγ 2

1

] + d

[

νγ 4
1 − γ 2

1

2

[
(K − ν) γ 2

3

(
γ 2
3 − 2

)

+K + ν

]

− νγ 2
3

2

(
γ 2
1 + γ 2

2

) (
γ 2
3 − 3

)
]}

− 2νγ 2
3 r

2

γ 2
1

{

K + ν

γ 2
1

(γ 2
3 − 2 + 2γ 2

2 )

}

+ ν4
(
1 − γ 2

2

)

γ 8
1

× ν4
(
1 − γ 2

2

) (
2γ 4

1 + γ 2
1 γ 2

3 + γ 2
3

)

γ 8
1

+ 2Kν3γ 2
3

(
3γ 2

1 + γ 2
3 − 2

)

γ 4
1

+ ν2γ 2
3

γ 4
1

{(
6γ 2

2 + 5γ 2
3 − 4

)
K 2

− 2c
(
γ 2
1 + γ 2

2

)2
[−γ 8

3 + (
5 − 4γ 2

2

)
γ 6
3 − 3

(
γ 4
2 − 6γ 2

2 + 2
)
γ 4
3 + γ 2

3

(
12γ 4

2 − 16γ 2
2 + 3

) + 2γ 6
2

−5γ 4
2 + 4γ 2

2 − 1
] − 2dγ1γ2

(
γ 2
1 + γ 2

2

)2
[
γ 6
3 + 2

(
γ 2
2 − 4

)
γ 4
3 − 3

(
1 − 2γ 2

2

)
γ 2
3

] + λ

γ 2
3

(
2γ 2

1 + γ 2
3 − 1

)
}

− 1)} + 2νKγ 2
3

γ 2
1

{

K 2 + λ

γ 2
3

− 1
(
γ 2
1 + γ 2

2

)2
[
cγ 6

3 + γ 4
3

[
c
(
3γ 2

1 − 4
) + 2dγ1γ2

] + γ 2
3

[
c
(
5 − 8γ 2

1

)

− 5dγ1γ2
] + (

2 + γ 2
1

) [
dγ1γ2 + c

(
2γ 2

1 − 1
)]

}

. (47)

Further generalization can be obtained by applying the transformation (10) with

ρ (γ ) = n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2, (48)

where n, n1 and n2 are arbitrary constants. Then one can formulate the following theorem:

Theorem 1 Let the moments of inertia satisfy the Kovalevskaya condition A = B = 2C and let the scalar
and vector functions V and μ be given by

V = C

{

dγ1γ2 + c
(
γ 2
1 − γ 2

2

) + λ

2γ 2
3

− νKγ 2
3

γ 2
1

− ν2γ 2
3

2γ 4
1

(
γ 2
3 + 2γ 2

2

) − 1

2

(
2γ 2

1 + 2γ 2
2 + γ 2

3

)

× (
n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2
)2 − [

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
]
γ3

(

K + ν
1 + γ 2

2

γ 2
1

)}

(49)

and

μ = C

(

γ1
(
9n1 + n − 7γ 2

3 − 10γ 2
1

) − n2γ2
(
5γ 2

1 + γ 2
3 − 2

) + 2νγ3

γ 3
1

(
γ 2
1 + γ 2

3 − 2
)
,

γ2(n1 − n − 3γ 2
3 + 10γ 2

1 ) + n2γ1
(
5γ1 + 4γ 2

3 − 3
) + 2νγ2γ3

γ 2
1

,

K − ν

γ 2
1

(
γ 2
1 + γ 2

3 − 2
) − γ3

(
7n2γ1γ2 + 3n + 7n1 + 2γ 2

1 + γ 2
3

)
)

, (50)

or, equivalently,

l = C

(
2

[
n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2
]
γ1, 2

[
n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2
]
γ2,

K + ν
(
1 + γ 2

2

)

γ 2
1

+ [
n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2
]
γ3

)
,
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where c, d, λ, ν, K , n, n1 and n2 are free parameters. Then Euler–Poisson equations (4) with (49) and (50)
are integrable on the zero level of the cyclic integral

I2 = 2pγ1 + 2qγ2 +
(

r + K + ν
(
1 + γ 2

2

)

γ 2
1

)

γ3 + [
n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2
]

× [
2γ 2

1 + 2γ 2
2 + γ 2

3

] = 0,

and the complementary integral is

I4 =
{

[
p + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ1

]2 − [
q + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ2

]2 + cγ 2
3

− λ
(
γ 2
1 − γ 2

2

)

2γ 2
3

}2

+
{

2
[
p + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ1

] [
q + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)

× γ2] + d

2
γ 2
3 − λγ1γ2

γ 2
3

}2

− 2

{
[
p + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ1

]2 + [
q + (

n + n1
(
γ 2
1

− γ 2
2

) + n2γ1γ2
)
γ2}

{
ν2γ 2

3

γ 4
1

+
[

νγ 2
3

γ 2
1

+ ν − K

]
[
r + (n + n1

(
γ 2
1 − γ 2

2

) + n2γ1γ2)γ3
] + (K − ν)2

}

+ [
r + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ3

]
{

λ

(

1 + 1

γ 2
3

)

(K − ν) + 2νγ 2
3

γ 2
1

[
ν2

(
γ 2
1 + γ 2

3

)

γ 4
1

− Kν

γ 2
1

− 1

γ 2
1 + γ 2

2

[
c
(
2γ 4

1 + γ 4
3

(
2 − γ 2

1

) − γ 6
3 − γ 2

1 − γ 2
3

) − dγ1γ2
(
γ 2
1 − γ 2

3

)] + λ
(
γ 2
1 + γ 2

2

)

2γ 2
3

]}

− λ (K − ν)2

(

1 + 1

γ 2
3

)

− 4

γ 2
1

(
γ 2
1 + γ 2

2

)
[
p + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ1

]
{
d

2

(
2νγ2γ

4
1

+ γ2γ
2
1

[
(K − ν)

(
γ 4
3 + 1

) − 2Kγ 2
3

] − νγ2γ
2
3

(
γ 2
1 + γ 2

2

)2]) + c
(
2νγ 5

1 + [(K − 2ν)
(
γ 4
3 + 1

)

− 2γ 2
3 (K − ν)]γ 3

1 − 2νγ1γ
2
3

(
γ 2
1 + γ 2

2

)2)
}

+ 4γ3
γ1

(
γ 2
1 + γ 2

2

)
[
q + (n + n1

(
γ 2
1 − γ 2

2

) + n2γ2γ1)γ2
]

×
{

cγ1γ2
[
K − 2 (K − ν) γ 2

3 + Kγ 2
3 − 2νγ 2

1

] + d

[

νγ 4
1 − γ 2

1

2

(
(K − ν) γ 2

3

(
γ 2
3 − 2

) + K + ν
)

−νγ 2
3

2

(
γ 2
1 + γ 2

2

) (
γ 2
3 − 3

)
]}

− 2νγ 2
3

γ 2
1

[
r + (

n + n1
(
γ 2
1 − γ 2

2

) + n2γ1γ2
)
γ3

]2
{

K + ν

γ 2
1

(
γ 2
3 − 2

+ 2γ 2
2

)
}

+ ν4
(
1 − γ 2

2

) (
2γ 4

1 + γ 2
1 γ 2

3 + γ 2
3

)

γ 8
1

+ 2Kν3γ 2
3

(
3γ 2

1 + γ 2
3 − 2

)

γ 4
1

+ ν2γ 2
3

γ 4
1

{
(
6γ 2

2 + 5γ 2
3

− 4)K 2 − 2c
(
γ 2
1 + γ 2

2

)2
[−γ 8

3 + (
5 − 4γ 2

2

)
γ 6
3 − 3

(
γ 4
2 − 6γ 2

2 + 2
)
γ 4
3 + γ 2

3

(
12γ 4

2 − 16γ 2
2 + 3

)

+ 2γ 6
2 − 5γ 4

2 + 4γ 2
2 − 1

] − 2dγ1γ2
(
γ 2
1 + γ 2

2

)2
[
γ 6
3 + 2

(
γ 2
2 − 4

)
γ 4
3 − 3

(
1 − 2γ 2

2

)
γ 2
3

] + λ

γ 2
3

(
2γ 2

1 + γ 2
3

− 1)} + 2νKγ 2
3

γ 2
1

{

K 2 + λ

γ 2
3

− 1
(
γ 2
1 + γ 2

2

)2
[
cγ 6

3 + γ 4
3

[
c
(
3γ 2

1 − 4
) + 2dγ1γ2

] + γ 2
3

[
c
(
5 − 8γ 2

1

)

− 5dγ1γ2
] + (

2 + γ 2
1

) [
dγ1γ2 + c

(
2γ 2

1 − 1
)]

}

.
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This is a new integrable problem in rigid body dynamics. It contains eight free parameters. It also generalizes
some problems in this field. Let us clarify that in the following table:

References Conditions on parameters

Yehia [43] ν = n = n1 = n2 = 0
Goriachev [42] K = ν = n = n1 = n2 = 0
Chaplygin [6] K = ν = n = n1 = n2 = λ = 0

3.2 Second new case

In a similar way, one can formulate the following theorem:

Theorem 2 For a rigid body with moments of inertia satisfying the Kovalevsky condition A = B = 2C and
let the scalar and vector functions V and μ be given by

V = C

{

c
(
γ 2
1 − γ 2

2

) + 2dγ1γ2 + λ

γ 2
3

+ ρ

(
1

γ 4
3

− 1

γ 6
3

)

+ γ 2
3

(
γ 2
3 − 2

)

2γ 4
1 γ 2

2

(ν1γ1 + ν2γ2)
2

+ γ3
(
γ 2
3 − 2

)
(ν1γ1 + ν2γ2)

γ 2
1 γ2

[
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]

−1

2
(2γ 2

1 + 2γ 2
2 + γ 2

3 )(n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2)
2

}

(51)

and

μ = C

(

γ1
[
9n + n1

(
3 − 7γ 2

3

)] + n2γ2
(
15γ 2

1 + 2γ 2
2 + γ 2

3

) − ν1γ3

γ 2
1 γ 2

2

(
4γ 2

1 + 2γ 2
2 + γ 2

3

)

− 2ν2γ3
γ 3
1

(
3γ 2

1 + 2γ 2
2 + γ 2

3

)
, γ2

[
9n + n1

(
11γ 2

1 − 4γ 2
3 − 13γ 2

2

) + n2γ1(2γ
2
1 + 15γ 2

2

− γ 2
3

) + ν1γ3

γ1γ
2
2

(
2γ 2

1 + 3γ 2
3 − 4

) − 2ν2γ2γ3
γ 2
1

, γ3
[
7n + n1

(
γ 2
1 − 7γ 2

2 − 2γ 2
3

)

+ 11n2γ1γ2] − 5γ 2
3 − 2

γ 2
1 γ2

(ν1γ1 + ν2γ2)

)

, (52)

or, equivalently,

l = C

(

2γ1
[
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
, 2γ2

[
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
,

γ3[n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2] +
(
2 − γ 2

3

)

γ 2
1 γ2

(ν1γ1 + ν2γ2)

)

,

where c, d, λ, ν1, ν2, n, n1 and n2 are free parameters. Then Euler–Poisson equations (4) with (51) and (52)
are integrable on the zero level of the cyclic integral

I2 = 2pγ1 + 2qγ2 +
(

r +
(
2 − γ 2

3

)

γ 2
1 γ2

(ν1γ1 + ν2γ2)

)

γ3 + [
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]

× (
2γ 2

1 + 2γ 2
2 + γ 2

3

) = 0.
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The complementary integral can be written in the form

I4 =
[

(
p + [

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
γ1

)2 − (q + [
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
γ2)

2 + cγ 2
3

− λ
(
γ 2
1 − γ 2

2

)

γ 2
3

]2

+
[

2
(
p + (

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
)
γ1

) (
q + (

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1

× γ2)γ2) + dγ 2
3 − 2λγ1γ2

γ 2
3

]2

+
[(
p + [

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
γ1

)2 + (
q + (

n − n1
(
γ 2
2

− γ 2
1 ) + n2γ1γ2

)
γ2

)2]
{

2ρ

(
1

γ 4
3

− 1

γ 6
3

)

− 2γ 2
3 (ν1γ1 + ν2γ2)

γ 4
1 γ 2

2

(
ν1γ1 + ν2γ2 + γ2γ

2
1 (r + (n

− n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2)γ3
))

}

+ γ 4
3 (ν1γ1 + ν2γ2)

4

γ 8
1 γ 4

2

+ ρ

γ 4
3

{(
γ 2
2 + γ 2

1

)2

γ 8
3

(
ρ − 2λγ 4

3

)

+ 2[c (
γ 2
1 − γ 2

2

) + 2dγ1γ2
]
}

+ 2
(ν1γ1 + ν2γ2)

2

γ 4
1 γ 2

2

{
(
γ 2
1 + γ 2

2

)
(

λ + ρ

γ 4
3

)

+ γ 4
3

2
(r + (n

+ n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
)
γ3

)2 + γ 4
3

[
c
(
γ 2
1 − γ 2

2

) + 2dγ1γ2
]

(
γ 2
2 + γ 2

1

)2
(
γ 4
3 − 3γ 2

3 + 3
)
}

+ 2
ν1γ1 + ν2γ2

γ 2
1 γ2

{[
γ 4
3

(
c
(
γ 2
1 − γ 2

2

) + 2dγ1γ2
)

(
γ 2
2 + γ 2

1

)2 + γ 4
3 (ν1γ1 + ν2γ2)

2

γ 4
1 γ 2

2

+ ρ
γ 2
2 + γ 2

1

γ 4
3

− λ
(
γ 2
1

+ γ 2
2

)
]

(
r + (

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
)
γ3

) − 2
γ 3
3(

γ 2
2 + γ 2

1

)2
[(
cγ1

(
2γ 2

2 + 3γ 2
3 − γ 4

3 − 2
)

+ dγ2
(
2γ 2

2 − γ 4
3 + 4γ 2

3 − 3
)) (

p + (
n − n1

(
γ 2
2 − γ 2

1

) + n2γ1γ2
]
γ1

) − (dγ1(γ
4
3 + 2γ 2

2

− 2γ 2
3 + 1) − cγ2

(
γ 4
3 + 2γ 2

2 − γ 2
3

)) (
q + (

n − n1
(
γ 2
2 − γ 2

1

) + n2γ1γ2
)
γ2

))
}

.

This is a new integrable problem in rigid body dynamics. It contains nine free parameters. It generalizes some
problems as shown in the following table:

Reference Conditions on parameters

Yehia [43] ν1 = ν2 = n = n1 = n2 = 0
Goriachev [42] ν1 = ν2 = n = n1 = n2 = ρ = 0
Chaplygin [6] ν1 = ν2 = n = n1 = n2 = ρ = λ = 0
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