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Abstract Meshchersky’s equation is a basic differential equation in the mechanics of variable-mass particles.
This note particularly considers the case in which a one-dimensional and position-dependent mass particle is
under the action of a potential force. The absolute velocity of mass ejection (or accretion) is supposed to be a
linear function of the particle velocity.Within the formulation of the inverse problem of Lagrangianmechanics,
an analytical solution of Meshchersky’s equation is here derived. The solution method follows from applying
the concept of constant of motion of an extremum problem, which is a fundamental ground in the theory of
invariant variational principles.

1 Introduction

It is well known that the fundamental principles of classical mechanics were originally conceived for constant
mass systems (see, e.g., the review article [1]). Therefore, an appropriate mathematical formalism is required
to the treatment and analysis of the so-called (non-relativistic) variable-mass systems. Investigations in this
sense have been ongoing since the eighteenth century and date back to Euler and Bernoulli. Other remarkable
names, as Poisson [2] and Cayley [3], have also fundamentally contributed to the field (see, e.g., the historical
review [4]). Nowadays, themechanics of variable-mass systems is recognized as a particular branch of research
in theoretical and applied mechanics, being also focus of investigations in the domain of applied mathematics
and physics (see, e.g., [5,6]). The unfamiliar reader can find an interesting overview in the context of mechanics
in the recently published book [7].

The study of variable-mass systems has been connected to the famous inverse problem of Lagrangian
mechanics (see [8,9]), which is a very traditional topic of mathematical physics. Such a problem essentially
means the inverse construction of a Lagrangian function that, when inserted into the principle of least action,
properly yields the differential equation at hand. Thefirst investigations on the subject are due toHelmholtz [10].
For other important contributions, see for instance [11] and [12].

Casetta and Pesce [8] have discussed that the fundamental differential equation of a variable-mass particle,
namely Meshchersky’s equation, is such that it results from a principle of least action. The present note
thus aims at demonstrating that, seen from the perspective of the inverse problem of Lagrangian mechanics,
Meshchersky’s equation can be analytically solved, at least for some particular cases. To the authors’ best
knowledge, this particular issue has not yet been addressed.

L. Casetta (B) · C. P. Pesce
Offshore Mechanics Laboratory, Department of Mechanical Engineering, Escola Politécnica,
University of São Paulo, São Paulo, Brazil
E-mail: lecasetta@gmail.com

C. P. Pesce
E-mail: ceppesce@usp.br

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-015-1315-5&domain=pdf


2436 L. Casetta, C. P. Pesce

2 Theoretical background

Written for the case of a one-dimensional problem regarding a single particle, the famous Meshchersky’s
equation is usually presented as the following second-order differential equation (see, e.g., [13]):

mq̈ − Q − (w − q̇)
dm

dt
= 0 (1)

where m, q̇ and q̈ are, respectively, mass, velocity and acceleration of the particle; Q is the acting force, and
w is the absolute velocity at which mass is expelled (or accreted). As discussed by Pesce [13], in the realm of
analytical mechanics, the mass of a particle can be assumed to be a function of position, velocity and time.

Our analysis will be restricted to the following assumptions:

m = m(q), (2)

Q = −dV (q)/dq (3)

where V is the potential energy, and

w = kq̇ (4)

where k = const.
Note, for example, that the particular value of k = 0 recovers Levi-Civita’s case, and that the particular

value of k = 1 refers to the isotropic loss of mass (see the discussion in [1]).
Under the mentioned assumptions, Eq. (1) becomes

m(q)q̈ + dV (q)

dq
− αq̇2

dm(q)

dq
= 0 (5)

where

α = k − 1 = const. (6)

According to [8], the principle of least action which yields Eq. (5) is

δ

t2∫

t1

L̃dt = 0 (7)

for

L̃ = 1

2
m(q)−2αq̇2 −

∫
m(q)−2α−1 dV (q)

dq
dq. (8)

The symbol ‘∼’ is being used to avoid confusion with respect to the traditional Lagrangian L , which is given
as the difference between kinetic energy and potential energy.

In fact, note that, evoking the identity

δ L̃ = d

dt

(
∂ L̃

∂q̇
δq

)
+

(
− d

dt

∂ L̃

∂q̇
+ ∂ L̃

∂q

)
δq, (9)

where δq is an arbitrary virtual change required to vanish at the limiting instants t1 and t2, Eq. (7) is able to
recover (5) via the fully equivalent expression:

d

dt

∂ L̃

∂q̇
− ∂ L̃

∂q
= m(q)−2α

⎛
⎝q̈ +

dV (q)

dq − αq̇2 dm(q)

dq
m(q)

⎞
⎠ = 0. (10)

By virtue of that ∂ L̃/∂t = 0 [see Eq. (8)], the identity (d/dt)((∂ L̃/∂q̇)q̇ − L̃) = −∂ L̃/∂t , which is found
to be derived, for instance, in [14, p. 61], implies that

∂ L̃

∂q̇
q̇ − L̃ = const., (11)
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that is, using Eq. (8) in (11):

1

2
m(q)−2α q̇2 +

∫
m(q)−2α−1 dV (q)

dq
dq = Ẽ (12)

where Ẽ = const.
Equation (12) defines a conservation law of the extremum problem (7) and, in the sense discussed by

Whittaker [15, p. 62], corresponds to an energy theorem within analytical mechanics.

3 Analytical solution of Meshchersky’s equation for the position-dependent case

Now we address the problem of deriving an analytical solution of Meshchersky’s differential equation (5),
which is our intended contribution. For that, we consider the theory of invariant variational principles, which
is a noticeable chapter of mathematical physics.

Following the classical textbook of Logan [16, Chap. 1], Eq. (12) is seen as defining a ‘constant on a
extremal,’ namely the left-hand side of Eq. (12) means a mathematical function that, along the path of the
motion of the extremum problem (7), is such that it remains constant. This concept properly comes out, for
example, when one attempts to demonstrate Noether’s theorem using the so-called Rund–Trautman’s identities
(see, e.g., [17, Chap. 5], [18]).

The point in question is that, in fact, the left-hand side of Eq. (12) does not equal a constant everywhere,
but along the solution of Eq. (5). This offers us the possibility of considering Eq. (12) to solve (5).

Thus, calling upon the identity

q̇ = dq

dt
, (13)

Equation (12) can be algebraically manipulated to the following expression:

dt =
√
2

2

√√√√√
⎛
⎝ m(q)−2α

Ẽ − ∫
m(q)−2α−1 dV (q)

dq dq

⎞
⎠dq. (14)

Equation (14) is then integrated to furnish

t =
√
2

2

q∫

q(t0)

√√√√√
⎛
⎝ m(q)−2α

Ẽ − ∫
m(q)−2α−1 dV (q)

dq dq

⎞
⎠dq + t0. (15)

For simplicity, and with no loss of generality, we take t0 = 0 and q(t0) = 0, which leads to

t =
√
2

2

∫ √√√√√
⎛
⎝ m(q)−2α

Ẽ − ∫
m(q)−2α−1 dV (q)

dq dq

⎞
⎠dq. (16)

According to the theory of invariant variational principles of mathematical physics, Eq. (16) is such that it
rules the curve q → t (q) which describes the path of the motion of the extremum problem (7). Consequently,
the function t = t (q) as in Eq. (16) is a general analytical solution of the differential equation (5).

The usage of the energy theorem to provide an analytical solution of the equation ofmotion is a fundamental
procedure of classical mechanics. This is found to be discussed, for example, in [14, Chap. 3.2] and [15, Chap.
III]. In the present note, considering the formulation of the inverse problem of Lagrangian mechanics, we have
generalized this method to the context of variable-mass systems.

3.1 An illustrative example: the famous Cayley’s falling-chain problem

In order to demonstrate the practical applicability of Eq. (16), we address the classical Cayley’s falling-chain
problem (see [3]). This is a very traditional problem in the context of variable-mass systems. Within the
inverse problem of Lagrangian mechanics for Meshchersky’s equation, the formulation of Cayley’s falling-
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chain problem can be found to be discussed in our previous article [8, Sect. 5.1]. In the words of Cayley [3, p.
506], the statement of his falling-chain problem is: ‘(…) a portion of a heavy chain hangs over the edge of a
table, the remainder of the chain being coiled or heaped up close to the edge of the table; the part hanging over
constitutes the moving system (…).’ Considering that such particles to be accreted by the moving system are
originally at rest, one has that w = 0. Thus, seeing Eqs. (4) and (6), it renders

α = −1. (17)

The coordinate z of the lower extremity of the chain,which is supposed to bemeasured vertically downward,
can be conveniently used as the generalized coordinate z = q of the problem. In accordance, themassm = m(q)
of this moving part of the chain can be written as

m(z) = ρz, (18)

where ρ is the linear mass density. Therefore, the associated potential energy is defined as V = − ∫
m(z)gdz,

that is,

V (z) = −1

2
gρz2. (19)

Note that, inserting Eqs. (17), (18) and (19) into (5), we obtain the equation of motion of the problem:

z̈ − g + ż2

z
= 0. (20)

To derive the Lagrangian L̃ which is in correspondence with Eq. (20), we substitute Eqs. (17), (18) and
(19) into (8):

L̃ = 1

2
(ρz)2 ż2 + 1

3
gρ2z3. (21)

Using Eqs. (21) in (11) [or, equivalently, Eqs. (17), (18) and (19) in (12)], we so obtain the following
conservation law:

Ẽ = 1

2
(ρz)2 ż2 − 1

3
gρ2z3 = const. (22)

Now we are ready to test the practical applicability of our result, that is, Eq. (16) [or (15)]. In Cayley’s
falling-chain problem, one has that, at t = 0, z = 0+ and ż = 0. This means that we are able to use Eq. (16).

Let us notice that such initial conditions imply that

Ẽ = 0 (23)

[see Eq. (22)]. Finally, substituting Eqs. (17), (18), (19) and (23) into (16), and then developing the integral in
q = z in the right-hand side, we find:

t =
(√

6

g

)
z
1
2 . (24)

To verify that t = t (z) as in Eq. (24) is the solution of Eq. (20), we simply invert it, that is,

z = g

6
t2. (25)

In fact, z = z(t) as in Eq. (25) solves Eq. (20) and therefore confirms the original and intriguing result of
Cayley [3, p. 511] which asserts that the moving part of the chain falls with constant acceleration g/3.

4 Conclusions

This note has addressed the problem of analytically solvingMeshchersky’s differential equation. The particular
and important case of a position-dependent mass particle under the action of a potential force was considered.
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We have also assumed that the absolute velocity of ejection (or accretion) of mass is a linear function of the
particle velocity. This has brought out a second-order ordinary differential equation, here interpreted as the
famous Meshchersky’s equation of variable-mass mechanics.

Aiming at solving the issue, we have used the formulation of the inverse problem of Lagrangian mechanics
for Meshchersky’s equation, as previously discussed by Casetta and Pesce [8]. The energy theorem, which
naturally appears when treating such a position-dependent case in this formulation, was integrated to furnish
the required analytical solution. As a simple example, the traditional Cayley’s falling-chain problem was
considered to test the practical applicability of this result. It was verified that the formulation presented in this
note was then able to recover the analytical solution of Cayley’s falling-chain problem.

Seeing Eq. (15) and following Whittaker’s [15, Chap. III] terminology, we have demonstrated a principle
available for the integration in the context of the analytical mechanics of variable-mass systems.

Acknowledgements The authors acknowledge FAPESP, the State of São Paulo Research Foundation, for the Postdoctoral
ResearchGrantNo. 2012/10848-4. The second author acknowledgesCNPq, TheNational Council for Scientific andTechnological
Development, for the Research Grant No. 303838/2008-6. The authors thank the reviewer of this article for their important
suggestion on the consideration of a practical example to demonstrate the applicability of the aimed result. The authors thank
Prof. Hans Irschik and Prof. Helmut Holl (Institute of Technical Mechanics, Johannes Kepler University of Linz, Austria) for
fruitful and valuable discussions on mechanics of variable-mass systems. The first author particularly thanks his friend, Maria
Regina Castro, who has been providing an essential assistance for the progress of his research activities. The first author dedicates
this paper to his grandmother, Maria R. C. Rossi, who passed away on October 13, 2014.

References

1. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech.
Rev. 57, 145–160 (2004)

2. Poisson, S.D.: Sur le mouvement d’un système de corps, en supposant les masses variables. Bull. Sci. Soc. Philomat. Paris
60–62 (1819)

3. Cayley, A.: On a class of dynamical problems. Proc. R. Soc. Lond. 8, 506–511 (1857)
4. Mikhailov, G.K.: On the history of variable-mass system dynamics. Mech. Solids 10, 32–40 (1975)
5. Leach, P.G.L.: Harmonic oscillator with variable mass. J. Phys. A Math. Gen. 16, 3261–3269 (1983)
6. Cveticanin, L.: Approximate solution of a time-dependent differential equation. Meccanica 30, 665–671 (1995)
7. Irschik, H., Belyaev, A.K. (eds.): Dynamics of mechanical systems with variable mass. In: Series: CISM International Centre

for Mechanical Sciences, vol. 557, 266 p. Springer, Berlin (2014)
8. Casetta, L., Pesce, C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 225, 1607–

1623 (2014)
9. Casetta, L.: The inverse problem of Lagrangian mechanics for a non-material volume. Acta Mech. 226, 1–15 (2015)

10. Helmholtz, H.: Über die physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 100, 137–
166 (1887)

11. Havas, P.: The range of application of the Lagrange formalism—I. Suppl. Nuovo Cim. V(X), 363–388 (1957)
12. Santilli, R.M.: Foundations of Theoretical Mechanics I. The Inverse Problem in Newtonian Mechanics. Springer, New

York (1978)
13. Pesce, C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. J.

Appl. Mech. 70, 751–756 (2003)
14. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Addison-Wesley, San Francisco (2002)
15. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cam-

bridge (1988)
16. Logan, J.D.: Invariant Variational Principles. Academic Press, New York (1977)
17. Neuenschwander, D.E.: Emmy Noether’s Wonderful Theorem. The Johns Hopkins University Press, Baltimore (2011)
18. Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23, 467–494 (1981)


	A brief note on the analytical solution of Meshchersky's equation within the inverse problem of Lagrangian mechanics
	Abstract
	1 Introduction
	2 Theoretical background
	3 Analytical solution of Meshchersky's equation for the position-dependent case
	3.1 An illustrative example: the famous Cayley's falling-chain problem

	4 Conclusions
	Acknowledgements
	References




