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Abstract This paper investigates the static thermoelastic instability between a functionally graded material
(FGM) half-plane and a homogeneous half-plane under the plane strain state using the perturbation method.
Two frictionless half-planes are pressed together by a uniform pressure and transmit a uniform heat flux at their
interface where a pressure-dependent thermal contact resistance is taken into account. The material properties
of the FGMs are assumed to be of an exponential form. The characteristic equation is derived to determine the
thermoelastic instability behavior of two half-planes. The instabilities are categorized into three types based on
the ratio of the material properties. The effects of the gradient index, thermal contact resistance and material
combination on the critical heat flux are discussed by the parametric studies. It is indicated that the use of
FGMs can improve the thermoelastic instability behavior of systems.

1 Introduction

Functionally gradedmaterials (FGMs) are materials that comprise a spatial gradient in structure and/or compo-
sition, tailored for a specific performance or function. They can reduce the magnitude of residual and thermal
stresses, mitigate stress concentration and increase fracture toughness [1]. In the past few years, many exper-
imental and numerical results have shown that controlling a material property gradient in FGMs could lead
to a significant improvement in the resistance to the contact deformation and damage [2–12]. This potential
application motivates the study of the contact mechanics of FGMs.

FGMs are often required to service in thermal environmentswhere the heat conductionwill inevitably affect
the contact behavior of FGMs.Generally, there are two important topics of thermoelastic contact problems.One
is the thermoelastic contact stress analysis of FGMs subjected to thermomechanical loads. Choi and Paulino
[13] analyzed the thermoelastic contact problem between a rigid flat punch and an FGM coating/substrate
system. Barik et al. [14] concerned a functionally graded heat-conducting punch sliding over a rigid insulated
half-plane. Shahzamanian et al. [15,16] presented the contact analysis of an FGM brake disk and found that
the gradient of the metal–ceramic FGMs has significant effects on the thermomechanical response of the FGM
brake disk. Liu et al. [17,18] analyzed the thermoelastic contact of FGMs with exponentially or arbitrarily
varying properties. Their results showed that the distribution of the contact stress and surface temperature can
be altered by adjusting the gradient index, Peclet number and friction coefficient. Recently, Chen and Chen
[19] presented the thermoelastic contact of a finite graded layer under a sliding rigid punch with frictional heat
generation. They discussed the distributions of the contact pressure and the in-plane stress under the prescribed
thermoelastic environment with different parameter combinations, including ratio of shear modulus, relative
sliding speed, friction coefficient and thermal parameters in detail.
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The other topic is the thermoelastic contact instability problem of FGMs. Generally, this problem can
be considered as two major categories, namely the frictionally excited thermoelastic instability in a sliding
contact system involving the frictional heat and the static thermoelastic instability due to the pressure-dependent
thermal contact resistance when the heat flux transfers across the contact interface. For these two categories of
thermoelastic instability problems, “instability” means that if the conducting heat flux or sliding speed between
two bodies is sufficiently high, both steady-state and transient solutions can be unstable in the sense that an
arbitrarily small perturbation in the initial condition can cause large changes in the subsequent behavior and
finally result in the thermoelastic contact. As pointed out by Li [20], the system tends to a steady oscillatory
state in which the contact pressure varies periodically with time, leading possibly to periodic separation if
the instability occurs. Jang and his co-authors presented comprehensive studies on the frictionally excited
thermoelastic instability of FGMs, such as a stationary FGM layer between two sliding homogeneous layers
[21], an FGM half-plane sliding against a homogeneous half-plane [22], and an FGM layer sliding against two
homogeneous half-planes [23]. Their studies revealed that an optimal gradient index of FGMs can lead to a
maximum critical speed and enhance the performance of the frictional sliding system. Hernik [24] considered
the application of functionally gradedA356R-based composite to the brake disk structure in order to prevent the
thermoelastic instability of the braking system. However, the works on the static thermoelastic instability are
quite limited despite their importance in the design of FGM structures. So far, only Mao et al. [25] investigated
the static thermoelastic instability of anFGMlayer and ahomogeneous half-plane. It is not enough to understand
the static thermoelastic stability behaviors of FGMs used in different structural systems. Therefore, we should
make further studies on some fundamental problems of the static thermoelastic instability of FGMs, such as the
contact between two frictionless half-planes, two frictionless layers, two bonded half-planes, and two bonded
layers, because these systems will show different stability behaviors from each other.

For homogeneous materials, two categories of thermoelastic contact instability problems have been exten-
sively studied by many investigators, especially by Barber and his co-authors. By using the perturbation
method, Lee and Barber [26] investigated the frictionally excited thermoelastic instability for a layer with
finite thickness sliding between two half-planes pressed by a uniform pressure. Yi et al. [27] proposed the
Fourier reduction method to obtain an efficient solution of the frictional thermoelastic stability problem for
systems with two sliding bodies. Lee [28] studied the frictionally excited thermoelastic instability in auto-
motive drum brake systems with one side frictional heating model. The effect of the friction coefficient and
brake material properties on the critical speed was examined. Afferrante et al. [29] analyzed the transient
thermoelastic stability behavior in a thin layer sliding between two half-planes. Ahn and Jang [30] discussed
the thermoelastic–plastic instability in the frictional sliding system by using the transient finite element sim-
ulation. For the static thermoelastic instability problems, Barber [31] first studied the stability of nominally
uniform contact between two elastic half-planes by assuming the pressure-dependent thermal contact resis-
tance. Zhang and Barber [32] examined the influence of material properties on the stability criterion for the
contact between two half-planes. They classified the material combinations into five categories on the basis of
the ratios of material properties. Yeo and Barber [33] focused on the effect of finite geometry on the stability
of the thermoelastic contact between a layer and a half-plane. Li and Barber [34] discussed the thermoelastic
stability of a system consisting of two layers in contact by using the perturbation method. Specially, Ciavarella
and his co-authors considered the simultaneous frictionally excited and static thermoelastic instabilities, such
as an elastic conducting half-plane sliding against a rigid perfect conductor wall [35], two half-planes sliding
out-of-plane [36], and a rectangular elastic block sliding against a rigid wall [37].

In this paper, the static thermoelastic contact instability between an FGM half-plane and a homogeneous
half-plane under the plane strain state is studied by using the perturbation method. Two frictionless half-
planes are pressed together by a uniform pressure and transmit a uniform heat flux at the interface where a
pressure-dependent thermal contact resistance is considered because of the imperfect contact between two
half-planes. The material properties of FGMs are assumed to be of an exponential form. The characteristic
equation is obtained to determine the stability boundary for three types of material combinations. The effects of
the gradient index, thermal contact resistance and material combination on the critical heat flux are examined.

2 Formulation of the thermoelastic instability problem

Figure 1 shows the thermoelastic frictionless contact problem between an FGM half-plane (y > 0) and a
homogeneous half-plane (y < 0) pressed together by a uniform pressure p0. A uniform heat flux qy = q0 in
the positive y-direction is transmitted over their interface y = 0. It is assumed that the thermoelastic properties
of the FGM half-plane change continuously along the y-direction according to the exponential function
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Fig. 1 An FGM half-plane on a homogeneous half-plane pressed by a uniform pressure and transmitting a uniform heat flux

μ(y) = μbe
βy, k(y) = kbe

δy, α(y) = αbe
γ y, c(y) = cbe

εy, ρ(y) = ρbe
ςy (1)

where μ(y), k(y), α(y), c(y) and ρ(y) are the shear modulus, thermal conductivity coefficient, thermal
expansion coefficient, specific heat and mass density, respectively; β, δ, γ , ε and ς are the gradient indexes;
the Poisson’s ratio v is assumed as constant for simplicity;μb, kb, αb, cb and ρb are the thermoelastic properties
at the surface (y = 0) of the FGM half-plane.

2.1 Temperature perturbation

Refer to [26], the temperature perturbation in each half-plane can be written in the form as

Tj (x, y, t) = f j (y) e
bt+imx , j = 1, 2 (2)

where i = √−1; subscripts “1” and “2” refer to the FGM half-plane and the homogeneous half-plane,
respectively; f j (y) are complex functions of the real variable y that are determined by satisfying the transient
heat conduction equation;m is the wave number; and b is the exponential growth rate. The exponential growth
rate b can be either real or complex. Instability may occur if solutions exist with a positive real b or a complex
b with a positive real part [32].

The temperature perturbation must satisfy the transient heat conduction equation

∂2T1
∂x2

+ ∂2T1
∂y2

+ δ
∂T1
∂y

= 1

λ1

∂T1
∂t

(3)

for the FGM half-plane, and

∂2T2
∂x2

+ ∂2T2
∂y2

= 1

λ2

∂T2
∂t

(4)

for the homogenous half-plane, where λ j = k j/ρ j c j ( j = 1, 2) are the thermal diffusivity coefficients of the
FGM half-plane and the homogeneous half-plane, respectively. Although the thermal diffusivity coefficient
changes with the location in the FGM half-plane, we assume that the gradient indexes of thermal conductivity,
density and specific heat have the relation of δ = ε + ς in order to obtain a constant thermal diffusivity
coefficient. Hence, it is possible to solve Eq. (3) analytically. Note that Liu et al. [17] analyzed the effect of
the thermal diffusivity coefficient on the thermoelastic contact stress of FGMs. Their results indicated that the
graded variation of the thermal diffusivity coefficient has a slight effect on the thermoelastic fields. Therefore,
it is reasonable to assume a constant thermal diffusivity coefficient in the present paper.

Substituting Eq. (2) into Eq. (3), we obtain the temperature perturbation for the FGM half-plane, which
must decay away from the interface, i.e., T1 → 0 as y → +∞. Thus, we have

T1(x, y, t) = C11e
η11yebt+imx (5)
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where C11 is an unknown constant to be determined; and

η11 = 1

2

[
−δ −

√
δ2 + 4

(
m2 + b

λ1

)]
. (6)

Similarly, substituting Eq. (2) into Eq. (4) yields the temperature perturbation for the homogenous half-
plane,

T2 (x, y, t) = C21e
η21yebt+imx , (7)

where C21 is an unknown constant; and

η21 =
√
m2 + b

λ2
. (8)

2.2 Thermoelastic stress and displacement fields

For both half-planes, the governing equations for the linear isotropic elastic solid in the plane strain state can
be written as

∇2ux j + 2

Θ j − 1

(
∂2ux j
∂x2

+ ∂2uyj

∂x∂y

)
+ β

(
∂ux j
∂y

+ ∂uyj

∂x

)
= 4ᾱ jeγ y

Θ j − 1

∂Tj

∂x
, (9)

∇2uyj + 2

Θ j − 1

(
∂2uyj

∂y2
+ ∂2ux j

∂x∂y

)
+ β

Θ j − 1

[(
1 + Θ j

) ∂uyj

∂y
+ (3 − Θ j

) ∂ux j
∂x

]

= 4ᾱ jeγ y

Θ j − 1

[
(β + γ ) Tj + ∂Tj

∂y

]
(10)

where j = 1, 2; ux j = ux j (x, y, t) and uyj = uyj (x, y, t) are the displacements in the x- and y-directions,
respectively; and

ᾱ1 = αb(1 + ν1), ᾱ2 = α2(1 + ν2), Θ j = 3 − 4ν j , (11)

with ν1 and ν2 corresponding to the Poisson’s ratios of the FGM half-plane and the homogeneous half-plane,
respectively. Note that the governing equations for the homogeneous half-plane can be obtained from Eqs. (9)
and (10) by setting δ = 0, β = 0, γ = 0 and j = 2.

Similarly, we can write the displacement fields in the perturbation form as

ux j (x, y, t) = Ux j (y) e
bt+imx , (12)

uyj (x, y, t) = Uyj (y) e
bt+imx (13)

where Ux j (y) and Uyj (y) are complex functions of the real variable y.

2.2.1 The FGM half-plane

For the FGM half-plane, the constitutive relations are written as

σy1 = (Θ1 + 1) μbeβy

Θ1 − 1

(
∂uy1

∂y
− Θ1 − 3

Θ1 + 1

∂ux1
∂x

)
− 4μbᾱ1e(β+γ )y

Θ1 − 1
T1, (14)

σxy1 = μbe
βy
(

∂uy1

∂x
+ ∂ux1

∂y

)
. (15)
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Substituting Eqs. (5), (12) and (13) into Eqs. (9) and (10), we obtain

U ′′
x1(y) + βU ′

x1(y) − Θ1 + 1

Θ1 − 1
m2Ux1(y) + im

[
βUy1(y) + 2

Θ1 − 1
U ′

y1(y)

]

= im
4ᾱ1C11e(γ+η11)y

Θ1 − 1
, (16)

Θ1 + 1

Θ1 − 1
U ′′

y1(y) + β
Θ1 + 1

Θ1 − 1
U ′

y1(y) − m2Uy1(y) + im

Θ1 − 1

[
β(3 − Θ1)Ux1(y) + 2U ′

x1(y)
]

= 4ᾱ1e(γ+η11)y

Θ1 − 1
(β + γ + η11)C11. (17)

The solutions of the ordinary differential equations (16) and (17), which are composed of the homogeneous
solution and the particular solution, can be expressed as

Ux1(y) = A11e
f11y + A12e

f12y + A13e
(γ+η11)y, (18)

Uy1(y) = B11e
f11y + B12e

f12y + B13e
(γ+η11)y (19)

where A11, A12, A13, B11, B12 and B13 are the unknowns to be determined from the boundary conditions; and

f11 = 1

2

⎡
⎢⎣−β −

√√√√4m2 + β2 − 4imβ

√
3 − Θ1

Θ1 + 1

⎤
⎥⎦ , f12 = 1

2

⎡
⎢⎣−β −

√√√√4m2 + β2 + 4imβ

√
3 − Θ1

Θ1 + 1

⎤
⎥⎦ ,

(20)

B1 j = is j A1 j , s j =
(
f 21 j + β f1 j

)
(Θ1 − 1) − m2 (Θ1 + 1)[

2 f1 j + β (Θ1 − 1)
]
m

, j = 1, 2, (21)

B13 = M2A13

imM1
, C11 = (Θ1 − 1)A13

4imᾱ1M1
, (22)

M1 =
P −

[
Q + 2(Θ1−2)

(Θ1−1) β
]
(β + γ + η11)

P

[
Θ1−1
Θ1+1 P − 4Θ1m2

Θ2
1−1

]
+ m2Q

[
Q + 2(Θ1−2)

Θ1−1 β
] , (23)

M2 =
(β + γ + η11)

[
Θ1−1
Θ1+1 P − 4Θ1m2

Θ2
1−1

]
+ m2Q

P

[
Θ1−1
Θ1+1 P − 4Θ1m2

Θ2
1−1

]
+ m2Q

[
Q + 2(Θ1−2)

Θ1−1 β
] , (24)

P = Θ1 + 1

Θ1 − 1
(γ + η11)

2 + β
Θ1 + 1

Θ1 − 1
(γ + η11) − m2, Q = β

3 − Θ1

Θ1 − 1
+ 2

Θ1 − 1
(γ + η11). (25)

Then, the displacements of the FGM half-plane can be further expressed as

ux1(x, y, t) =
[
A11e

f11y + A12e
f12y + A13e(γ+η11)y

]
ebt+imx , (26)

uy1(x, y, t) =
[
is1A11e

f11y + is2A12e
f12y + M2

imM1
A13e(γ+η11)y

]
ebt+imx . (27)
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By substituting Eqs. (26) and (27) into Eqs. (14) and (15), we obtain the stress fields of the FGM half-plane as

σy1(x, y, t) =
⎧⎨
⎩ μbeβy

Θ1 − 1

2∑
j=1

[
is j f1 j (Θ1 + 1) + im (3 − Θ1)

]
A1 je

f1 j y

+
[
iμb

mM1
− i (Θ1 + 1) μbM2 (γ + η11)

(Θ1 − 1)mM1
− im (Θ1 − 3) μb

Θ1 − 1

]
A13e(β+γ+η11)y

}
ebt+imx ,

(28)

σxy1(x, y, t) = μbe
βy

⎡
⎣ 2∑

j=1

(
f1 j − ms j

)
e f1 j y A1 j +

(
γ + η11 + M2

M1

)
e(γ+η11)y A13

⎤
⎦ ebt+imx . (29)

2.2.2 The homogeneous half-plane

For the homogeneous half-plane, the constitutive relations are given by

σy2 = (Θ2 + 1) μ2

Θ2 − 1

(
∂uy2

∂y
− Θ2 − 3

Θ2 + 1

∂ux2
∂x

)
− 4μ2ᾱ2

Θ2 − 1
T2, (30)

σxy2 = μ2

(
∂uy2

∂x
+ ∂ux2

∂y

)
. (31)

Substituting Eqs. (7), (12) and (13) into Eqs. (9) and (10) and setting δ = β = γ = 0 yield

U ′′
x2(y) − Θ2 + 1

Θ2 − 1
m2Ux2(y) + 2im

Θ2 − 1
U ′

y2(y) = 4imᾱ2

Θ2 − 1
C21e

η21y, (32)

Θ2 + 1

Θ2 − 1
U ′′

y2(y) − m2Uy2(y) + 2im

Θ2 − 1
U ′
x2(y) = 4η21ᾱ2

Θ2 − 1
C21e

η21y . (33)

The solutions of Eqs. (32) and (33) are expressed as

Ux2 (y) = (A21 + A22y) e
my + A23e

η21y, Uy2 (y) = (B21 + B22y) e
my + B23e

η21y (34)

where

B21 = −iA21 + iΘ2

m
A22, B22 = −iA22, (35)

B23 = − iη21
m

A23, C21 =
(
η221 − m2

)
(Θ2 + 1)

4imᾱ2
A23 (36)

with A21, A22, and A23 being unknowns to be determined by the boundary conditions.
The displacement fields, which satisfy the regularity conditions ux2 (x,−∞, t) = 0 and uy2 (x,−∞, t) =

0 are obtained as

ux2(x, y, t) = [(A21 + A22y) e
my + A23e

η21y
]
ebt+imx , (37)

uy2(x, y, t) =
{
−i

[
A21 +

(
y − Θ2

m

)
A22

]
emy − iη21

m
A23e

η21y
}
ebt+imx . (38)

Then, the stress fields of the homogeneous half-plane are

σy2(x, y, t) =
{
2iμ2

[
−mA21 +

(
1 + Θ2

2
− my

)
A22

]
emy − 2iμ2mA23e

η21y
}
ebt+imx , (39)

σxy2(x, y, t) =
{
2μ2

[
mA21 +

(
1 − Θ2

2
+ my

)
A22

]
emy + 2μ2η21e

η21y A23

}
ebt+imx . (40)
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2.3 Boundary conditions

It is assumed that the contact is frictionless and the heat flux, stress and displacement are continuous at the
interface y = 0. Then, we have

σxy1 (x, 0, t) = σxy2 (x, 0, t) = 0, σy1 (x, 0, t) = σy2 (x, 0, t) , (41)

uy1 (x, 0, t) = uy2 (x, 0, t) , q1 (x, 0, t) = q2 (x, 0, t) (42)

where

q1(x, y, t) = −kbe
δy ∂T1(x, y, t)

∂y
= ikbη11

Θ1 − 1

4mᾱ1M1
A13e

(δ+η11)yebt+imx , (43)

q2 (x, y, t) = −k2
∂T2 (x, y, t)

∂y
= ik2η21

(
η221 − m2

)
(Θ2 + 1)

4mᾱ2
A23e

η21yebt+imx . (44)

Note that the above boundary conditions (41) and (42) can lead to a system of five equations, which is
not sufficient to be solved for six unknowns—A11, A12, A13, A21, A22 and A23. We must add an additional
equation to determine these unknowns. In the present problem, the sixth equation can be acquired according
to the perturbation of the thermal contact resistance relation.

2.4 Perturbation of the thermal contact resistance relation

Due to the imperfect contact between two half-planes, a pressure-dependent contact thermal resistance R at
the interface is defined as [31]

qy = T ∗

R (p)
(45)

where T ∗ is the temperature drop across the interface. Hence, for small perturbations under the steady state
[31], we have

R0�q + q0�R = �T (46)

where

�R = R′�p, R0 = R (p0) , (47)

with R′ = dR (p) /dp; and �p, �T and �q are the perturbations in the contact pressure, temperature
difference and heat flux at the interface y = 0, respectively. Their expressions can be formulated as

�p = −σy2(x, 0, t) = −
[
2iμ2

(
−mA21 + 1 + Θ2

2
A22

)
− 2iμ2mA23

]
ebt+imx , (48)

�T = T2(x, 0, t) − T1(x, 0, t) =
[(

η221 − m2
)
(Θ2 + 1)

4imᾱ2
A23 − Θ1 − 1

4imᾱ1M1
A13

]
ebt+imx , (49)

�q = q2 (x, 0, t) = ik2η21

(
η221 − m2

)
(Θ2 + 1)

4mᾱ2
A23e

bt+imx . (50)

Substitution of Eqs. (48)–(50) into Eq. (46) yields

− Θ1−1
4mᾱ1M1

A13 + 2mq0μ2R′A21 − q0μ2 (Θ2 + 1) R′A22

+
[(

η221−m2)(Θ2+1)(1+k2η21R0)

4mᾱ2
+ 2mq0μ2R′

]
A23 = 0

. (51)

Equation (51) together with the boundary conditions (41) and (42) can lead to a system of six linear homo-
geneous equations for six unknowns—A11, A12, A13, A21, A22 and A23. For the non-trivial solution, the
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determinant of the coefficient matrix of these six equations must be zero. Thus, we can obtain the characteris-
tic equation for the exponential growth rate b as

det [{g1i } , {g2i } , {g3i } , {g4i } , {g5i } , {g6i }]T = 0, (52)

where i = 1, 2, · · · , 6; the superscript “T” denotes the transposition of a matrix, and {g1i } , · · · , {g6i } are
given in Appendix A.

Introduce the following dimensionless parameters:

β∗ = β

m
, δ∗ = δ

m
, γ ∗ = γ

m
, r1 = λ2

λ1
, r2 = ᾱ2

ᾱ1
, r3 = k2

kb
, r4 = μ2

μb
, r5 = θ2

θ1
, (53)

f ∗
1 j = f1 j

m
, ( j = 1, 2), η∗

11 = η11

m
, η∗

21 = η21

m
=
√
1 + z

r1
, (54)

P∗ = P

m2 , Q∗ = Q

m
, M∗

1 = m2M1, M∗
2 = mM2, (55)

z = b

m2λb
, H = mh, R∗ = mR0kb, Q∗ = −4ᾱ1q0R

′Γ (56)

where

Γ = 2μbμ2

μ2 (1 + Θ1) + μb (1 + Θ2)
, θ1 = ᾱ1/kb, θ2 = ᾱ2/k2 (57)

Note that θ j ( j = 1, 2) are generally defined as the distortivity because they relate the thermoelastic distortion to
the local heat flux in the steady-state thermal conduction problems [38].Utilizing the dimensionless parameters,
we can write the characteristic equation (52) in dimensionless form as

R∗ + D2(H, z)Q∗ + D1(H, z) = 0, (58)

with

D1(H, z) = − 1

η∗
11

+ 1

η∗
21r3

, (59)

D2(H, z) = C1(H, z)

C2(H, z)
(60)

where C1(H, z) and C2(H, z) are given in Appendix B. If we set the gradient index to zero in the FGM
half-plane, Eq. (58) can be reduced to the characteristic equation in Ref. [32]. From the characteristic equation
(52), we will solve the threshold value of the conducting heat flux which is defined as the critical heat flux.

3 Stability criterion

Instability will occur if the characteristic equation (58) has a solution, either positive or complex with a positive
real part, for the dimensionless exponential growth rate z

(
z = b/m2λ1

)
. This instability will be evident when

the first root of the characteristic equation passes into the right half complex plane, either through the origin
or by crossing the imaginary axis [33]. For the case of a real growth rate, the stability criterion is determined
by setting z = 0. Then, Eq. (58) can be expressed as a linear relation between R∗ and Q∗,

Q∗ = − R∗ + D1(H, 0)

D2(H, 0)
. (61)

For the case of a complex growth rate, the stability criterion is determined by setting z = iw, where w is real.
Since both R∗ and Q∗ must be real, we can solve them by separating real and imaginary parts of Eq. (58) to
obtain the following two real equations:

R∗ + Re{D2}Q∗ + Re{D1} = 0, (62)

Im{D2}Q∗ + Im{D1} = 0 (63)

where

Q∗ = − Im{D1}
Im{D2} , (64)

R∗ = −Re{D2}Q∗ − Re{D1}. (65)
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Table 1 Thermoelastic properties of selected materials

Properties Aluminum alloy Stainless steel Nodular cast iron SiC sintered Brass Magnesium alloy

μ (GPa) 27.273 76.923 64.122 172.414 38.372 16.667
α (◦C−1) 22.0 14.0 13.7 4.4 19.0 26.0
k (W/m ◦C) 173.0 21.0 48.9 110.0 78.0 95.0
λ (mm2/s) 67.16 5.93 16.05 35.48 21.35 45.11
ν 0.32 0.30 0.31 0.16 0.33 0.35

4 Results and discussion

In this section, we will discuss the thermoelastic contact instability between an FGM half-plane and a homo-
geneous half-plane. The effects of the gradient index, thermal contact resistance and classification of material
properties on the critical heat flux are demonstrated in Figs. 3, 4, 5, 6, 7, 8 and 9. In order to analyze the effect
of various material combinations, the same classification system of Zhang and Barber [31] is also utilized in
the present paper, and the first three types of material combinations, i.e., Types 1, 2 and 3 are discussed in
detail. We assume that if the dimensionless ratios of material properties satisfy r1 > 1 and 0 < r5 < 1/r1,
the system is classified to Type 1; if r1 > 1 and 1/r1 < r5 < 1, the system is Type 2; and if r1 > 1 and
1 < r5 < r1, the system is Type 3.

For the FGM half-plane, the material at the surface is chosen as the nodular cast iron. The FGM half-plane
with positive/negative gradients indicates that the material properties exponentially increase/decrease from the
surface. For the sake of convenience, the gradient indexes are assumed to be identical, i.e., β∗ = γ ∗ = δ∗ = n,
in the following analysis. The materials of the homogenous half-plane are chosen as the SiC sintered for Type
1 (θ1 > θ2), the brass for Type 2 (θ1 > θ2) and the magnesium alloy for Type 3 (θ1 < θ2). Note that the
materials with large values of θ generally correspond to materials with great distortivity. The thermoelastic
properties of the selected materials, nodular cast iron, SiC, brass and magnesium alloy, are listed in Table 1
[31].

Zhang and Barber [31] investigated the thermoelastic instability between two homogeneous half-planes.
If the gradient indexes of the FGM half-plane are set as zero, the present problem can be directly reduced to
Zhang and Barber’s problem. Figure 2 presents the stability boundaries as a function of R∗ for a homogeneous
stainless steel half-plane and a homogeneous aluminum alloy half-plane. Zhang and Barber’s results are also
given in Fig. 2. It is observed that the present results agree well with Zhang and Barber’s results.
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Fig. 2 Stability boundaries as a function of R∗ for the contact between two homogeneous half-planes: comparison with existing
results
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Fig. 3 Stability boundaries as functions of R∗ with different gradient indexes n (Type 1)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

250

Q*

n

Real root: 
 R* = 1.00
 R* = 10.0
 R* = 20.0
 R* = 30.0

Fig. 4 Stability boundaries as functions of gradient index n with different R∗ (Type 1)
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Fig. 6 Stability boundaries as functions of gradient index n with different R∗ (Type 2)
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Fig. 7 Stability boundaries as functions of R∗ with different gradient index n (Type 3)
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Fig. 8 Stability boundaries as functions of gradient index n with different R∗ (Type 3)

4.1 Type 1 material combination

Figure 3 gives the stability boundaries as functions of R∗ with different gradient index n. Since R∗ can
take any positive value, it is convenient to condense the infinite range by plotting Q∗ against the function
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Fig. 9 Effect of the gradient index n on the critical heat flow Q∗ for different material combinations with R∗ = 1.0

1/(1 + R∗), which is always between 0 and 1. The curve of n = 0 corresponds to the contact between two
homogeneous half-planes. For Type 1 material combination, the stability boundaries can be only determined
from the linear real root criterion (61); and instability occurs for the heat flux flowing into the more distortive
material (i.e., FGM half-plane, Q∗ > 0) no matter whether the gradient index is positive or negative. A similar
phenomenon was also found by Zhang and Barber [31]. Obviously, the critical heat flux increases with the
increase of the thermal contact resistance. This stability behavior is quite different from that of an FGM layer
on a homogeneous half-plane studied by Mao et al. [25] where the system can exhibit instability for both
directions of the heat flux.

Figure 4 shows the effect of the gradient index n on the critical heat flux Q∗ for different dimensionless
thermal contact resistances R∗. The critical heat flux decreases rapidly as the gradient index n increases from
-2 to 1, and then, it changes slightly as n ≥ 1. For a given value of n, the bigger the contact resistance R∗ is,
the more stable the system is. The results imply that we can change the stability boundaries by adjusting the
gradient index of FGMs and hence modify the thermoelastic stability behavior of systems.

4.2 Type 2 material combination

Figure 5 plots the stability boundaries as functions of R∗ with different values of the gradient index n(−0.2 ≤
n ≤ 0.2). Dissimilar with Type 1 material combination, instability can occur for both directions of the heat
flux for Type 2 material combination. For a smaller gradient index −0.2 ≤ n ≤ 0.2, the critical heat flux is
determined from the real root criterion when the heat flux is positive, and increases with the increase of the
gradient index. However, the critical heat flux is determined from the complex root criterion when the heat
flux is negative, and the absolute value of Q∗ decreases with the increase of the gradient index.

Figure 6 examines the effect of the gradient index n on the critical heat flux Q∗ for different dimensionless
thermal contact resistances R∗.When the heat flux flows into themore distortivematerial (i.e., FGMhalf-plane,
Q∗ > 0), the contact is very stable for n ≥ 0.6. When the heat flux flows into the less distortive material (i.e.,
homogeneous half-plane, Q∗ < 0), the critical heat flux is determined from the complex root criterion for the
smaller gradient index n(say n ≤ 1.1), while it is determined from the real root criterion for the lager n (say
n > 1.1). Furthermore, the contact is very stable for Q∗ < 0 when the gradient index n < −0.25. Similar
to Type 1 material combination, the absolute value of the critical heat flux increases with the increase of the
thermal contact resistance.

4.3 Type 3 material combination

Figure 7 depicts the stability boundaries as functions of R∗ with different values of the gradient index n. For
n < 0, the system exhibits the real root instability with the positive heat flux and the complex root instability
with the negative heat flux. For n ≥ 0, the system only exhibits the complex root instability with the negative
heat flux.
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Table 2 Stability behavior for the static thermoelastic contact with R∗ = 1.00

Material combination Gradient index n Critical heat flux Root

Type 1 −2.0 ≤ n ≤ 2.0 Q∗ > 0 Real
Type 2 −2.0 ≤ n < 0.6 Q∗ > 0 Real

1.1 < n ≤ 2.0 Q∗ < 0 Real
−0.25 < n ≤ 1.1 Complex

Type 3 −2.0 ≤ n < 0 Q∗ > 0 Real
−2.0 ≤ n ≤ 2.0 Q∗ < 0 Complex

Figure 8 shows the effect of the gradient index n on the critical heat flux Q∗ for different values of the
dimensionless thermal contact resistance R∗. When the heat flux transmits into the less distortive material
(i.e., the FGM half-plane, Q∗ > 0), the critical heat flux increases with the increases of the thermal contact
resistance; and the contact is very stable when the gradient index n ≥ 0. When the heat flux transmits into
the more distortive material (i.e., the homogeneous half-plane, Q∗ < 0), the system exhibits the complex root
instability, and the absolute value of the critical heat flux increases with the increase of the thermal contact
resistance.

4.4 Comparison between three types of material combinations

Figure 9 compares the effects of the gradient index n on the critical heat flux Q∗ for three types of material
combinations with R∗ = 1.0. For positive heat flux, Types 1, 2 and 3 exhibit the real root instability, and Type
3 material combination leads to the maximum critical heat flux. Therefore, Type 3 material combination has
the best performance on the thermoelastic instability among these material combinations for positive heat flux.
However, for the negative heat flux, both complex and real roots can cause the instability for Types 2 and 3,
while Type 1 will not exhibit instability. And also, the maximum critical heat flux of Type 2 is larger than that
of Type 3.

Table 2 sums up the stability behavior for the static thermoelastic contact of three types of material
combinations with R∗ = 1.00. It is found that the gradient index has a significant effect on the stability
behavior of the system. Both complex and real roots can cause the instability for a certain range of gradient
index n for types 2 and 3, while only real root instability occurs for Type 1 when n is in the range from−2 to 2.
For the three types of material combinations, it is obvious that the effect of the gradient index n on the present
system is totally different from that on the system of an FGM layer on a homogeneous half-plane reported by
Mao et al. [25] (please refer to Table 2 in Ref. [25]).

4.5 Comparison of the stability behavior with Mao et al. [25]

In this subsection, we give a detailed comparison of the stability behavior between the present paper and
Mao et al. [25] for Types 1, 2 and 3 material combinations. Mao et al. [25] considered the thermoelastic
instability between an FGM layer and a homogeneous half-plane (system I), while the present paper considers
the thermoelastic instability between an FGM half-plane and a homogeneous half-plane (system II).

Figure 10 shows the comparison of the stability boundaries of the two systems for Type 1material combina-
tion with the gradient index n = 0.50. For system II, only the real root instability can occur. System I, however,
can exhibit both complex and real root instabilities for the small thickness and only real root instability for the
large thickness. It is observed that the stability boundaries of system II are nearly the same as those of system
I when the thickness of the FGM layer H ≥ 5.50.

Figure 11 gives the comparison of the stability boundaries of the two systems for Type 2 material combi-
nation with the gradient index n = 0.20. System II can exhibit only the real root instability for the positive
heat flux and only the complex root instability for the negative heat flux. System I, however, can exhibit both
complex and real root instabilities for both directions of the heat flux at a certain thickness. If the thickness
range is H ≥ 5.50, the two systems can give the same solution.

Figure 12 presents the comparison of the stability boundaries of the two systems for Type 3 material
combination with the gradient index n = 0.50. For system II, both complex and real root instabilities can
occur for the negative heat flux, while the critical heat flux is determined from the complex root instability.
For system I with small thickness of the FGM layer (H = 1.00), it can exhibit the complex root instability for



2308 J.-J. Mao et al.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

FGM half-plane:
 Real root

Complex root:
 H = 1.00
 H = 1.50

FGM layer [25]:
Real root:

 H = 1.00   H = 1.50
 H = 2.00   H = 5.50

Q
*

1/(1+R*)

Fig. 10 Comparison of the stability boundaries of the two systems for Type 1 material combination with the gradient index
n = 0.50

0.0 0.2 0.4 0.6 0.8 1.0
-300

-200

-100

0

100

200

300

FGM half-plane:
 Real root
 Complex root

Complex root:
 H = 1.00
 H = 2.50
 H = 3.50
 H = 5.50

FGM layer [25]:
Real root:   H = 1.00  
                   H = 2.50
                   H = 3.50 
                   H = 5.50

Q
*

1/(1+R*)

Fig. 11 Comparison of the stability boundaries of the two systems for Type 2 material combination with the gradient index
n = 0.20

0.0 0.2 0.4 0.6 0.8 1.0
-200

-150

-100

-50

0

50

100

150

200

FGM half-plane:
 Real root
 Complex root

Complex root:
 H = 1.00   H = 3.00
 H = 4.00   H = 5.50

FGM layer [25]:
Real roots:

 H = 1.00  
 H = 3.00
 H = 4.00  
 H = 5.50

Q*

1/(1+R*)

Fig. 12 Comparison of the stability boundaries of the two systems for Type 3 material combination with the gradient index
n = 0.50



Thermoelastic instability of functionally graded materials 2309

the positive heat flux and the real root instability for the negative heat flux. Similar to Types 1 and 2 material
combinations, the two systems for Type 3 material combination can give the same solution when H ≥ 5.50.

5 Conclusions

By using the perturbation method, this paper investigates the static thermoelastic contact instability of an FGM
half-plane and a homogeneous half-plane under the plane strain state. Two frictionless half-planes are pressed
together by a uniform pressure and transmit a uniform heat flux at their interface. The characteristic equation
is obtained to determine the stability boundary for three types of material combinations. The effects of the
gradient index and material combination on the critical heat flux and stability boundaries are discussed in
detail. The results of the present analysis are validated by reducing the problem to the contact between two
homogeneous half-planes. It is found that:

1. Instability only occurs when the heat flux flows into the material with larger distortivity for Type 1
material combination, while it could occur at both directions of the heat flux for Types 2 and 3 material
combinations.

2. For all three types, the absolute value of the critical heat flux Q∗ increases significantly with the increase
of the thermal contact resistance.

3. Type3material combinationhas the best performanceon the thermoelastic instability among thesematerial
combinations for the positive heat flux, while Type 1 material combination has the best performance for
the negative heat flux.

4. The results indicate that we can increase the critical heat flux and change the stability boundaries by
adjusting the gradient index of FGMs, and hence improve the thermoelastic stability behavior of systems.
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Appendix A

{g1i } = { f11 − ms1, f12 − ms2,
M2

M1
+ η11 + γ , 0, 0, 0}T , (A1)

{g2i } = {0, 0, 0, 2m, 1 − Θ2, 2η21}T , (A2)

{g3i } =
{

μb

Θ1 − 1
L1,

μb

Θ1 − 1
L2, μbW, 2mμ2, − (Θ2 + 1) μ2, 2mμ2

}T
, (A3)

{g4i } =
{
s1, s2, − M2

mM1
, 1,−Θ2

m
,
η21

m

}T
, (A4)

{g5i } =
{
0, 0,

kb (Θ1 − 1) η11

ᾱ1M1
, 0, 0, −k2η21 (Θ2 + 1)

(
η221 − m2

)
ᾱ2

}T

, (A5)

{g6i } =
{
0, 0,− Θ1 − 1

4ᾱ1mM1
, 2mq0μ2R

′,

−q0μ2 (1 + Θ2) R
′,

(1 + Θ2) (1 + η21k2R0)
(
η221 − m2

)
4mᾱ2

+ 2mq0μ2R
′
}T

, (A6)

where

W = 1

mM1
− (Θ1 + 1) M2 (γ + η11)

m (Θ1 − 1) M1
− m (Θ1 − 3)

Θ1 − 1
, W ∗ = 1

M∗
1

− (Θ1 + 1) M∗
2

(
γ ∗ + η∗

11

)
(Θ1 − 1) M∗

1
− Θ1 − 3

Θ1 − 1
,

L j = s j f1 j (Θ1 + 1) − m (Θ1 − 3) , L∗
j = s j f

∗
1 j (Θ1 + 1) − (Θ1 − 3) , j = 1, 2.
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Appendix B

C1(H, z) = (Θ1 − 1) η∗
11r2

(
η∗
21 − 1

)
[(Θ1 + 1)r4 + (Θ2 + 1)]

[
(s2 − f ∗

12)L
∗
1 − (s1 − f ∗

11

)
L∗
2

]
+2η∗

21r3
(
η∗
21

2 − 1
)
[1 + Θ2 + r4 (1 + Θ1)]

[
(Θ1 − 1)

(
f ∗
12s1 − f ∗

11s2
)+ M∗

1 F1 + M∗
2 F2
]
, (B1)

C2(H, z) = 4 (Θ1 − 1)2 η∗
11η

∗
21

(
η∗
21

2 − 1
)
r3r4

[(
f ∗
12 − s2

)
s1 − ( f ∗

11 − s1)s2
]

+ (Θ1 − 1) (Θ2 + 1) η∗
11η

∗
21

(
η∗
21 − 1

) (
1 + η∗

21r3
) [(

s2 − f ∗
12

)
L∗
1 − (s1 − f ∗

11

)
L∗
2

]
(B2)

where

F1 = (Θ1 + 1)
(
f ∗
11 − f ∗

12

) (
η∗
11 + γ ∗) s1s2 + (3 − Θ1)

[(
f ∗
12s1 − f ∗

11s2
)+ (s2 − s1)

(
η∗
11 + γ ∗)] ,

F2 = (Θ1 + 1)
[
f ∗
11 f

∗
12 (s1 − s2) − (η∗

11 + γ ∗) ( f ∗
12s1 − f ∗

11s2
)]+ (Θ1 − 3)

(
f ∗
11 − f ∗

12

)
.

References

1. Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behav-
iour. Int. Mater. Rev. 42, 85–116 (1997)

2. Suresh, S.: Graded materials for resistance to contract deformation and damage. Science 292, 2447–2451 (2001)
3. Ke, L.L., Wang, Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations

of material properties. Int. J. Solids Struct. 43, 5779–5798 (2006)
4. Ke, L.L., Wang, Y.S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A

Solids 26, 171–188 (2007)
5. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41, 3865–3889 (2004)
6. Guler, M.A., Erdogan, F.: Contact mechanics of two deformable elastic solids with graded coatings. Mech. Mater. 38, 633–

647 (2006)
7. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded

coatings. Int. J. Mech. Sci. 49, 161–182 (2007)
8. El-Borgi, S., Abdelmoula, R., Keer, L.: A receding contact plane problem between a functionally graded layer and a

homogeneous substrate. Int. J. Solids Struct. 43, 658–674 (2006)
9. Elloumi, R., Kallel-Kamoun, I., El-Borgi, S.: A fully coupled partial slip contact problem in a graded half-plane. Mech.

Mater. 42, 417–428 (2010)
10. Aizikovich, S.M., Vasilev, A.S., Krenev, L.I., Trubchik, I.S., Seleznev, N.M.: Contact problems for functionally graded

materials of complicated structure. Mech. Compos. Mater. 47, 539–548 (2011)
11. Chen, P.J., Chen, S.H., Peng, Z.: Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta

Mech. 223, 2647–2665 (2012)
12. Chen, P.J., Chen, S.H.: Partial slip contact between a rigid punch with an arbitrary tip-shape and an elastic graded solid with

a finite thickness. Mech. Mater. 59, 24–35 (2013)
13. Choi, C.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system

with frictional heat generation. J. Mech. Phys. Solids 56, 1673–1692 (2008)
14. Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Steady state thermoelastic contact problem in a functionally graded material. Int.

J. Eng. Sci. 46, 775–789 (2008)
15. Shahzamanian,M.M., Sahari, B.B., Bayat, M., Ismarrubie, Z.N., Mustapha, F.: Transient and thermal contact analysis for the

elastic behavior of functionally graded brake disks due tomechanical and thermal loads.Mater. Design 31, 4655–4665 (2010)
16. Shahzamanian, M.M., Sahari, B.B., Bayat, M., Ismarrubie, Z.N., Mustapha, F.: Finite element analysis of thermoelastic

contact problem in functionally graded axisymmetric brake disks. Compos. Struct. 92, 1591–1602 (2010)
17. Liu, J., Ke, L.L., Wang, Y.S.: Two-thermoelastic contact problem of functionally graded materials involving frictional

heating. Int. J. Solids Struct. 48, 2536–2548 (2011)
18. Liu, J., Ke, L.L., Wang, Y.S., Yang, J., Alam, F.: Thermoelastic frictional contact of functionally graded materials with

arbitrarily varying properties. Int. J. Mech. Sci. 63, 86–98 (2012)
19. Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat

generation. Int. J. Solids Struct. 50, 1108–1119 (2013)
20. Li, C.: Thermoelastic Contact Stability Analysis, Ph.D. thesis. University of Michigan, Michigan (1998)
21. Jang, Y.H., Ahn, S.H.: Frictionally-excited thermoelastic instability in functionally graded material. Wear 262, 1102–

1112 (2007)
22. Lee, S., Jang, Y.H.: Effect of functionally graded material on frictionally excited thermoelastic instability. Wear 266, 139–

146 (2009)
23. Lee, S., Jang, Y.H.: Frictionally excited thermoelastic instability in a thin layer of functionally graded material sliding

between two half-panes. Wear 267, 1715–1722 (2009)
24. Hernik, S.: Modeling FGM brake disk against global thermoelastic instability (hot-spot). Z. Angew. Math. Mech. 89, 88–

106 (2009)
25. Mao, J.J., Ke, L.L., Wang, Y.S.: Thermoelastic contact instability of a functionally graded layer and a homogeneous half-

plane. Int. J. Solids Struct. 51, 3962–3972 (2014)
26. Lee, K., Barber, J.R.: Frictionally excited thermoelastic instability in automotive disk brakes. J. Tribol. 115, 607–614 (1993)



Thermoelastic instability of functionally graded materials 2311

27. Yi, Y.B., Barber, J.R., Zagrodzki, P.: Eigenvalue solution of thermoelastic instability problems using Fourier reduction. Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456, 2799–2821 (2000)

28. Lee, K.: Frictionally excited thermoelastic instability in automotive drum brakes. J. Tribol. 122, 849–855 (2000)
29. Afferrante, L., Ciavarella, M., Decuzzi, P., Demelio, G.: Thermoelastic instability in a thin layer sliding between two

halfplanes: transient behavior. Tribol. Int. 36, 205–212 (2003)
30. Ahn, S.H., Jang, Y.H.: Frictionally excited-elastoplastic instability. Tribol. Int. 43, 779–784 (2010)
31. Barber, J.R.: Stability of thermoelastic contact. Inst. Mech. Eng. Int. Conf. Tribol. 981(-986), 981–986 (1987)
32. Zhang, R., Barber, J.R.: Effect of material properties on the stability of static thermoelastic contact. J. Appl. Mech. 57, 365–

369 (1990)
33. Yeo, T., Barber, J.R.: Stability of thermoelastic contact of a layer and a half-plane. J. Therm. Stress. 14, 371–388 (1991)
34. Li, C., Barber, J.R.: Stability of thermoelastic contact of two layers of dissimilar materials. J. Therm. Stress. 20, 169–

184 (1997)
35. Afferrante, L., Ciavarella, M.: Frictionally excited thermoelastic instability in the presence of contact resistance. J. Strain

Anal. Eng. Design 39, 351–357 (2004)
36. Afferrante, L., Ciavarella, M.: Instability of thermoelastic contact for two half-planes sliding out-of-plane with contact

resistance and frictional heating. J. Mech. Phys. Solids 52, 1527–1547 (2004)
37. Ciavarella, M., Barber, J.R.: Stability of thermoelastic contact for a rectangular elastic block sliding against a rigid wall. Eur.

J. Mech. A Solids 24, 371–376 (2005)
38. Dundurs, J.: Distortion of a body caused by free thermal expansion. Mech. Res. Commun. 1, 121–124 (1974)


	Thermoelastic instability of functionally graded materials in frictionless contact
	Abstract
	1 Introduction
	2 Formulation of the thermoelastic instability problem
	2.1 Temperature perturbation
	2.2 Thermoelastic stress and displacement fields
	2.2.1 The FGM half-plane
	2.2.2 The homogeneous half-plane

	2.3 Boundary conditions
	2.4 Perturbation of the thermal contact resistance relation

	3 Stability criterion
	4 Results and discussion
	4.1 Type 1 material combination
	4.2 Type 2 material combination
	4.3 Type 3 material combination
	4.4 Comparison between three types of material combinations
	4.5 Comparison of the stability behavior with Mao et al. [25]

	5 Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	References




