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Abstract A two-dimensional analytical piezothermoelastic solution for a functionally graded material (FGM)
hollow sphere with integrated piezoelectric layers as a sensor and actuator subjected to non-axisymmetric loads
is carried out. A feedback gain control algorithm is used for the active control of stress and displacement of
an FGM hollow sphere. The material properties of the FGM layer are assumed to be graded in the radial
direction according to a power law function. Governing differential equations are developed in terms of the
components of the displacement field, the electric potential, and the temperature of each layer of the smart
FGM hollow sphere. These equations are solved analytically using the Legendre polynomials and the system
of Euler differential equations. The effects of grading index of material properties and feedback gain on the
mechanical–electrical responses are demonstrated in detail.

1 Introduction

The use of smart materials as sensors and actuators, for the control of the thermomechanical behavior of smart
structural systems, is becoming more prevalent. Piezoelectric materials are one of the most common materi-
als currently being investigated for smart structure applications due to their direct and converse piezoelectric
effects, which allow them to be utilized as both actuators and sensors. The piezoelectric actuators make use of
the direct effect of the piezoelectricity. In other words, they convert the input voltage into a strain/displacement
actuation and then transmits this actuation to the main structure in order to modify its mechanical state. Conse-
quently, an actuator has a good performance when we can get more stroke or strain for a specific voltage. The
converse effect of the piezoelectricity is the principle that governs piezoelectric sensors. They convert a strain
or displacement into an electrical field. In this case, a sensor possesses a good performance when it has high
sensitivity to strain or displacement. There are twomain fields to consider for piezoelectric sensors or actuators:
the elastic and the electrical field. Moreover, thermal effects are present in almost all applications of smart
structures and make enormous contributions as well. Sensing and controlling performance may change con-
siderably when smart structures work in environments where temperature varies significantly. Many analytical
studies concerning piezoelastic or piezothermoelastic problems have been reported, and their several books
have been published [1]. A theoretical analysis of the control of displacement was developed for a composite
rectangular plate constructed from an isotropic elastic layer and a piezoelectric layer due to non-uniform heat
supply [2], and a piezothermoelastic plate [3,4] was obtained. In the case of spherical structures, Shul’ga [5]
studied the radial electroelastic vibrations in a hollow piezoceramic sphere. By using the Frobenius series, an
analytical solution for a non-homogeneous isotropic piezoelectric hollow sphere was created by Ding et al.
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[6]. Chen and Shioya [7] investigated the piezothermoelastic behavior of a pyroelectric spherical shell. Chen
et al. [8] analytically investigated the problem of a piezoceramic hollow sphere based on the 3D equations of
piezoelasticity. Dai and Wang [9] presented the stress wave propagation, and transient and dynamic responses
in piezoelectric hollow spherical structures. By using the method of Laplace transformation, Ootao and Tani-
gawa [10] analyzed the transient piezothermoelastic problem for a functionally graded thermopiezoelectric
hollow sphere based on the linear theory of thermoelasticity. Wang et al. [11] studied the dynamic problem of
a multilayered piezoelectric sphere under spherically symmetric loading. The superposition method was used
to divide the problem into quasi-static and dynamic parts. Wang and Xu [12] studied the effect of material
inhomogeneity on the electromechanical behaviors of functionally graded piezoelectric spherical structures.
Chen [13] analyzed three-dimensional free vibrations in a piezoceramic hollow sphere in which filled with a
fluid; he considered three displacement functions for the mechanical displacement components in spherical
coordinate and obtained the mechanical and thermal stresses, and the electrical potential, mechanical and elec-
trical displacements along r, θ and ∅ using Bessel functions, and drew their graphs. Exact three-dimensional
analysis for a linear piezoelectric hollow sphere was conducted by Chen [14]; he investigated the results for
several pure material using three displacement function for displacement components and using Legendre
polynomials. In [15], a three-dimensional analytical piezothermoelastic solution is presented for a function-
ally graded piezoelectric spherical shell subjected to various thermal boundary condition using the state space
method. Furthermore, in [16], an exact solution is developed to obtain themechanical and thermal stress and the
electrical potential functions, the electrical and mechanical displacement in the two-dimensional steady-state
(r, θ), a functionally graded piezoelectric porous material hollow sphere (FGPPM) by Jabbari et al.

The functionally graded materials (FGMs) are microscopically inhomogeneous material in which the
mechanical properties vary smoothly and continuously from one surface to the other. They are used in modern
technologies as advanced structures. It has many favorable performances in engineering application such as
high resistance to large temperature gradient and reduction in stress concentration. The analytical solution for
the one-dimensional steady-state thermomechanical stresses in a hollow thick sphere made of functionally
graded material is given by Eslami et al. [17]. Obata and Noda [18] studied one-dimensional steady thermal
stresses in a functionally graded circular hollow cylinder and a hollow sphere using the perturbation method.
Jabbari et al. presented an analytical solution of one- and two-dimensional steady-state thermoelastic problems
of the FGM cylinder [19,20]. A thick hollow sphere analysis using FGM under mechanical and thermal loads
and in asymmetric and two-dimensional (r, θ) state was conducted investigating Navier equations and using
Legendre polynomials [21]. With the increasing use of the smart material such as piezoelectrics, shape alloys,
and rheological fluids, a smart functionally graded (FG) structural system with surface-bonded piezoelectric
layers has attracted some researchers’ attention. Noteworthy, analysis models on piezoelectric FG structures
include those of Ootao and Tanigawa [22], and a 3D solution for rectangular FG plates coupled with a piezo-
electric actuator layer was proposed by Reddy and Cheng [23] using transfer matrix and asymptotic expansion
techniques. Wang and Noda [24] analyzed a smart FG composite structure composed of a layer of metal, a
layer of piezoelectric, and an FG layer in between, while Huang and Shen [25] investigated the dynamics
of an FG plate coupled with two monolithic piezoelectric layers at its top and bottom surfaces undergoing
nonlinear vibrations in thermal environments. Reddy [26] presented the Navier solution and finite element
models based on the classical and shear deformation plate theories for the analysis of laminated composite
plates with integrated sensors and actuators, in which a simple negative velocity feedback control algorithm
coupling the direct and converse piezoelectric effects was used to actively control an intelligent structure.
Since this area is relatively new, very limited works can be found in the published literature for the active
control of FGM structures using piezoelectric materials. Among those, Liew and his colleagues used classical
laminated plate theory [27,28] and shallow shell model [29] to derive finite element formulation for the active
piezothermoelastic control of FGM plates and shells, respectively. Thermomechanical instability of shallow
spherical shells made of functionally graded material and surface-bonded piezoelectric actuators is studied
in [30]. In the deflection control of PFGM beams, Ahmad et al. [31] developed an analytical solution for the
analysis of functionally graded material beams containing two layers of piezoelectric material used as sensors
and actuators. Xiao and Shen [32] studied the performance of the functionally graded plates integrated with the
piezoelectric actuators. He et al. [33] examined the active control of a FGM plates with integrated piezoelectric
sensor and actuators using the finite element method.

In this paper, an analytical study on the active control of a smart FGM hollow sphere with integrated
piezoelectric sensor/actuator layers subjected to steady-state non-axisymmetric thermal loads is presented.
The material properties of the FGM layer are assumed to be expressed by power functions in r . The feedback
gain control algorithm is used in a closed control loop. Here, the output voltage of the sensor can be amplified
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and is feedback to the actuator. Numerical examples are given and discussed to show the significant influence
of grading index of material properties and negative feedback gain on the mechanical–electrical responses.
This will be useful for modern engineering design.

2 Governing equations

This section outlines the foundations and steps required to develop the governing equations of a smart FGM
hollow sphere. A spherical coordinate system (r, θ, φ) is adopted with the origin located at the center of the
sphere. Figure 1 shows an FGM substrate hollow sphere with an inside radius a and an outside radius b that are
integrated with the surface-bonded piezoelectric sensor (inner layer) and actuator (outer layer). Furthermore,
in this smart structure, a0 and b0 are the inner and outer radius, respectively.

2.1 Piezoelectric layers

It is assumed that the electrical, mechanical, and thermal loads and their associated boundary conditions are
such that the stress field is a function of variables r and θ . For the assumed condition, the strain–displacement
relations in piezoelectric layers are

εa,s
rr = ua,s

,r , (1a)

ε
a,s
θθ = ua,s

r
+ 1

r
v
a,s
,θ , (1b)

ε
a,s
∅∅ = ua,s

r
+ va,s

r
cot θ, (1c)

ε
a,s
rθ = 1

2

(
1

r
ua,s

,θ + va,s
,r − va,s

r

)
, (1d)

where ua,s and va,s are the displacement components along the r and θ directions, respectively. Here, the
suffixes “a” and “s” are used to denote the actuator and sensor layer, respectively.

The linear constitutive relations of a spherically isotropic piezoelectric medium are
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rr = c33ε

a,s
rr + c13ε

a,s
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a,s
∅∅ + e22E
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Here, σ
a,s
i j , ε

a,s
i j (i, j = r, θ, ∅), and Ea,s

i (i = r, θ) are the stress and strain tensors and electrical field;
T a,s (r, θ) is the temperature distribution determined from the heat conduction equation; zi and g2i (i = 1, 2)
are the coefficients of thermal expansion in effective stress and pyroelectric constants; ci j , ei j , and εi i are the
elastic, piezoelectric, and dielectric constants; Da,s

ii (i = r, θ) is the electrical displacement. Furthermore, we
can have that

zr = c33αr + c13αθ + c13α∅ = (c33 + 2c13) α, zθ = c11αθ + c13αr + c12α∅ = (c11 + c12 + c13) α, (3)

where αi are the thermal expansion coefficients along the radial direction and along some direction perpen-
dicular to the radial direction.

The equilibrium equations, disregarding the body forces and the inertia terms, are

σrr,r + 1

r
σrθ,θ + 1

r
(2σrr − σθθ − σ∅∅ + σrθ cot θ) = 0, (4a)

σrθ,r + 1

r
σθθ,θ + 1

2
((σθθ − σ∅∅) cot θ + 3σrθ ) = 0. (4b)
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The charge equation of electrostatics is (in the absence of free charge density in the body)

1
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) + 1
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(Dθθ sin θ) = 0. (5)

Employing a change in variable μ = cos θ and using Eqs. (1)–(5), the equilibrium equations in terms of the
displacement components (Navier equations) are obtained as
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where

S = g21
g22

, f = zθ
zr

. (7)

2.2 FGM layer

The host layer’s material is graded through the r -direction; thus, the material properties are functions of r . Let
uF and vF be the displacement components along the r and θ directions, respectively. (the suffix “F” is used
to denote the FGM layer). Then, the strain–displacement relations are

εFrr = uF
,r , (8a)
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The two-dimensional stress–strain relations in the FGM hollow sphere are

σ F
rr = λe + 2ωεFrr − (3λ + 2ω) αT F (r, θ), (9a)

σ F
θθ = λe + 2ωεFθθ − (3λ + 2ω) αT F (r, θ), (9b)

σ F
∅∅ = λe + 2ωεFφφ − (3λ + 2ω)αT F (r, θ), (9c)

σ F
rθ = 2ωεFrθ , σ F

θ∅ = σ F
r∅ = 0, (9d)

where σi i and εi i are the stress and strain tensors, T F (r, θ) is the temperature distribution determined from
the heat conduction equation, α is the coefficient of thermal expansion, and λ and μ are Lamé coefficients
related to the modulus of elasticity E and Poisson’s ratio ν as

λ = νE
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m2 , (11)

where E0, α0,m1, and m2 are the material constants. We may further assume that Poisson’s ratio is constant.
Employing a change in variable μ = cos θ and using Eqs. (4) and (8)–(11), the equilibrium equations in

terms of the displacement components (Navier equations) are obtained as
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3 Heat conduction problems

The heat conduction equation in the steady-state condition for the two-dimensional problem in spherical
coordinates is given as

T,rr +
(
k′(r)
k(r)

+ 2

r

)
T,r + 1

r2
(
1 − μ2) T,μμ − 2

r2
μT,μ = 0, −1 < μ < 1. (13)

where k(r) is the thermal conduction coefficient that for the piezo and the FGM layers is, respectively,

k(r) = k0r
m3 a < r < b, k0 is conduction coefficient (FGM layer), (14a)

k(r) = kp a0 < r < a, and b < r < b0, kp is conduction coefficient (piezoelectric layers). (14b)

Substituting Eq. (14a) into Eq. (13) yields the FGM heat conduction equation as
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,rr + 1

r
(m3 + 2) T F

,r + 1

r2
(
1 − μ2) T F

,μμ − 2

r2
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Solution of the conduction equation may be assumed in the form of Legendre series as

T F (r, μ) =
∞∑
n=0

T F
n (r)Pn(μ), (16)
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where T F
n (r) as the coefficient of Legendre series may be illustrated as
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Using Eq. (16), Eq. (15) may be written as
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Employing the change in variable given in Appendix A results into the separation of independent variables in
Eq. (18), which may be written as
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The above equation is the Euler equation. Thus, the solution may be written in the form
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Substituting Eq. (20) into Eq. (19) yields
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The general solution of Eq. (18) is
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Thus, the temperature distribution becomes
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Furthermore, for the piezoelectric layers by substituting Eq. (14b) into Eq. (13) and then with the similar
solution process, the temperature distribution becomes
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All the unknowns (AF
n1, A

F
n2, A

a,s
n1 , Aa,s

n2 ) can be evaluated by satisfying thermal boundary conditions

T s(a0, θ) = T1Pn(cos θ), T a(b0, θ) = T2Pn(cos θ), (26)

and the continuity conditions on the interfaces
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4 Analytical solution

4.1 Piezoelectric layers

The Navier equations (6a), (6b), and (6c) may be solved by a direct method of analysis employing the series
solution that is assumed in the form of Legendre series as
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(
ε11

e22

)
ϕa,s
n (r)

= −
(
g22
e22

) (
2 + Sn (n + 1) + β

a,s
n1

)
Aa,s
n1 r

β
a,s
n1 −1 + (

2 + Sn (n + 1) + β
a,s
n2

)
Aa,s
n2 r

β
a,s
n2 −1. (29c)

This is the system of Euler differential equations. Thus, the solution of the homogeneous part of Eqs. (29a),
(29b), and (29c) may be assumed in the form

ua,sg
n (r) = Ba,srη, (30a)

va,sg
n (r) = Ca,srη, (30b)



2202 A. R. Barati, M. Jabbari

ϕa,sg
n (r) = Da,srη, (30c)

where Ba,s,Ca,s , and Da,s are constants to be found using the given boundary conditions. Substituting Eqs.
(30) into the homogeneous parts of Eqs. (29a), (29b), and (29c) yields

[
η2 + 2η +

(
−n (n + 1)

c44
c33

+ 2c13 − 2 (c11 + c12)

c33

)]
Ba,s

+
[
n (n + 1)

(
c44 + c13

c33

)
η + n (n + 1)

(
c13 − (c44 + c11 + c12)

c33

)]
Ca,s

+
[(

e22
c33

)
η2 +

(
2 (e22 − e21)

c33
− n (n + 1)

e25
c33

)]
Da,s = 0, (31a)

[
−

(
1 + c13

c44

)
η −

(
2 + c11 + c12

c44

)]
Ba,s +

[
η2 + 2η − (2 + n (n + 1)

c11
c44

+ c12
c44

)

]
Ca,s

−
[(

e25 + e21
c44

)
η + 2e25

c44

]
Da,s = 0, (31b)

[
η2 +

(
2 + 2e21

e22

)
η +

(
2e21
e22

− n (n + 1)
e25
e22

)]
Ba,s +

[
n (n + 1)

((
e21+e25

e22

)
η − e21

e22
− e25
e22

)]
Ca,s

−
[(

ε22

e22

)
η2 +

(
2ε22
e22

)
η − n (n + 1)

(
ε11

e22

)]
Da,s = 0. (31c)

To obtain the non-trivial solution of the above equation, the determinant of the coefficients of the constants
Ba,s,Ca,s , and Da,s must vanish. This leads to the evaluation of the eigenvector η obtained as

(
η2 + 2η +

(
−n (n + 1)

c44
c33

+ 2c13 − 2 (c11 + c12)

c33

))
×

(
η2 + 2η − (2 + n (n + 1)

c11
c44

+ c12
c44

)

)

×
((

ε22

e22

)
η2 +

(
2ε22
e22

)
η − n (n + 1)

(
ε11

e22

))
−

((
e25 + e21

c44

)
η + 2e25

c44

)

×
(
n (n + 1)

((
e21 + e25

e22

)
η − e21

e22
− e25

e22

))

−
(
n (n + 1)

(
c44 + c13

c33

)
η + n (n + 1)

(
c13 − (c44 + c11 + c12)

c33

))

×
(

η2 + 2η +
(

−n (n + 1)
c44
c33

+ 2c13 − 2 (c11+c12)

c33

))
×

((
ε22

e22

)
η2+

(
2ε22
e22

)
η−n (n + 1)

(
ε11

e22

))

−
((

e22
c33

)
η2 +

(
2 (e22 − e21)

c33
− n (n + 1)

e25
c33

))
×

(
η2 +

(
2 + 2e21

e22

)
η +

(
2e21
e22

− n (n + 1)
e25
e22

))

+
(

η2 +
(
2 + 2e21

e22

)
η +

(
2e21
e22

− n (n + 1)
e25
e22

))

×
(

η2 + 2η +
(

−n (n + 1)
c44
c33

+ 2c13 − 2 (c11 + c12)

c33

))
×

(
η2 + 2η − (2 + n (n + 1)

c11
c44

+ c12
c44

)

)

×
((

ε22

e22

)
η2 +

(
2ε22
e22

)
η − n (n + 1)

(
ε11

e22

))

−
(
n (n + 1)

(
c44 + c13

c33

)
η + n (n + 1)

(
c13 − (c44 + c11 + c12)

c33

))

×
(

−
(
1 + c13

c44

)
η −

(
2 + c11 + c12

c44

))
= 0. (32)
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Thus, the general solution, utilizing the linearity lemma, is a linear combination of all values of eigenvalues
and is obtained as

ua,sg
n (r) =

6∑
j=1

Ba,s
n j rηnj , va,sg

n (r) =
6∑
j=1

Nnj B
a,s
n j rηnj , ϕa,sg

n (r) =
6∑
j=1

Mnj B
a,s
n j r

ηnj , (33)

where using Eq. (31), Mnj and Nnj may be found as

Mnj = (
n (n + 1) (c13 + c44) ηnj + n (n + 1) (c13 − (c44 + c11 + c12))

)
· ((c13 + c44) ηnj + (2c44 + c11 + c12)

)
/ (2c44 + n (n + 1) c11 + c12)

×
(
e22η

2
nj + 2 (e22 − e21) − n (n + 1) e25

)
− (

n (n + 1) (c13 + c44) ηnj + n (n + 1)
)−1

−
(2c44 + n (n + 1) c11 + c12)

(
c33η2nj + 2c33ηnj − n (n + 1) c44 + 2(c13 − (c11 + c12))

)
c13 − (c44 + c11 + c12)

(
(e21 + e25) ηnj + 2e25

) , (34a)

Nnj =
(
(e21 + e25) ηnj + 2e25

) (
c33η2nj + 2c33ηnj − n (n + 1) c44 + 2(c13 − (c11 + c12))

)
(
e22η2nj + 2 (e22 − e21) − n (n + 1) e25

) (
c44η2nj + 2c44ηnj − (2c44 + n (n + 1) c11 + c12)

)

−
(
e22η2nj + 2 (e22 − e21) − n (n + 1) e25

)
((c13 + c44) − (2c44 + c11 + c12))(

(e21 + e25) ηnj + 2e25
) (
n (n + 1) (c13 + c44) ηnj + n (n + 1) (c13 − (c44 + c11 + c12))

) . (34b)

The particular solutions of Eqs. (29a), (29b), and (29c) are assumed as

ua,s p
n (r) = Da,s

n1 rβ
a,s
n1 +1 + Da,s

n2 rβ
a,s
n2 +1, (35a)

va,s p
n (r) = Da,s

n3 rβ
a,s
n1 +1 + Da,s

n4 rβ
a,s
n2 +1, (35b)

ϕa,s p
n (r) = Da,s

n5 rβ
a,s
n1 +1 + Da,s

n6 rβ
a,s
n2 +1. (35c)

Substituting Eqs. (35) into Eqs. (29) yields

da,s
1 Da,s

n1 rβ
a,s
n1 −1 + da,s

2 Da,s
n2 rβ

a,s
n2 −1 + da,s

3 Da,s
n3 rβ

a,s
n1 −1 + da,s

4 Da,s
n4 rβ

a,s
n2 −1

+ da,s
5 Da,s

n5 rβ
a,s
n1 −1 + da,s

6 Da,s
n6 rβ

a,s
n2 −1 = da,s

7 rβ
a,s
n1 −1 + da,s

8 rβ
a,s
n2 −1, (36a)

da,s
9 Da,s

n1 rβ
a,s
n1 −1 + da,s

10 Da,s
n2 rβ

a,s
n2 −1 + da,s

11 Da,s
n3 rβ

a,s
n1 −1 + da,s

12 Da,s
n4 rβ

a,s
n2 −1

+ da,s
13 Da,s

n5 rβ
a,s
n1 −1 + da,s

14 Da,s
n6 rβ

a,s
n2 −1 = da,s

15 rβ
a,s
n1 −1 + da,s

16 rβ
a,s
n2 −1, (36b)

da,s
17 Da,s

n1 rβ
a,s
n1 −1 + da,s

18 Da,s
n2 rβ

a,s
n2 −1 + da,s

19 Da,s
n3 rβ

a,s
n1 −1 + da,s

20 Da,s
n4 rβ

a,s
n2 −1

+ da,s
21 Da,s

n5 rβ
a,s
n1 −1 + da,s

22 Da,s
n6 rβ

a,s
n2 −1 = da,s

23 rβ
a,s
n1 −1 + da,s

24 rβ
a,s
n2 −1, (36c)

where the coefficients da,s
1 through da,s

24 are presented in Appendix B. Equating the coefficients of identical
powers yields

da,s
1 Da,s

n1 + da,s
3 Da,s

n3 + da,s
5 Da,s

n5 = da,s
7 , (37a)

da,s
9 Da,s

n1 + da,s
11 Da,s

n3 + da,s
13 Da,s

n5 = da,s
15 , (37b)

da,s
17 Da,s

n1 + da,s
19 Da,s

n3 + da,s
21 Da,s

n5 = da,s
23 , (37c)

da,s
2 Da,s

n2 + da,s
4 Da,s

n4 + da,s
6 Da,s

n6 = da,s
8 , (38a)

da,s
10 Da,s

n2 + da,s
12 Da,s

n4 + da,s
14 Da,s

n6 = da,s
16 , (38b)

da,s
18 Da,s

n2 + da,s
20 Da,s

n4 + da,s
22 Da,s

n6 = da,s
24 . (38c)

Here, Da,s
ni (i = 1, . . . , 6) are obtained solving the two systems of algebraic equations.



2204 A. R. Barati, M. Jabbari

The complete solutions for displacements and electric potential are the sum of Eqs. (33) and (35) and are

ua,s
n (r) =

6∑
j=1

(
Ba,s
n j rηnj

)
+ Da,s

n1 rβ
a,s
n1 +1 + Da,s

n2 rβ
a,s
n2 +1, (39a)

va,s
n (r) =

6∑
j=1

(
Nnj B

a,s
n j rηnj

)
+ Da,s

n3 rβ
a,s
n1 +1 + Da,s

n4 rβ
a,s
n2 +1, (39b)

ϕa,s
n (r) =

6∑
j=1

(
Mnj B

a,s
n j rηnj

)
+ Da,s

n5 rβ
a,s
n1 +1 + Da,s

n6 rβ
a,s
n2 +1. (39c)

For n = 0, the system of Navier equations (29) leads to the following single differential equation (P ′
0(μ) = 0):

∂2ua,s
0 (r)

∂r2
+ 2

r

∂ua,s
0 (r)

∂r
+ 2

r2

(
c13 − (c11 + c12)

c33

)
ua,s
0 (r) + e22

c33

∂2ϕ
a,s
0 (r)

∂r2
+ 1

r

(
2 (e22 − e21)

c33

)
∂ϕ

a,s
0 (r)

∂r

= zr
c33

(
(2 − f ) + β

a,s
01

)
Aa,s
01 rβ

a,s
01 −1 + (

(2 − f ) + β
a,s
02

)
Aa,s
02 rβ

a,s
02 −1, (40a)

∂2ua,s
0 (r)

∂r2
+ 1

r

(
2 + 2e21

e22

)
∂ua,s

0 (r)

∂r
+ 2

r2

(
e21
e22

)
ua,s
0 (r) −

(
ε22

e22

)
∂2ϕ

a,s
0 (r)

∂r2
− 2

r

(
ε22

e22

)
∂ϕ

a,s
0 (r)

∂r

= −
(
g22
e22

) (
2 + β

a,s
01

)
Aa,s
01 rβ

a,s
01 −1 + (

2 + β
a,s
02

)
Aa,s
02 rβ

a,s
02 −1. (40b)

This is the system of Euler differential equations. Thus, the solution of homogeneous part of Eqs. (40) may
be assumed in the form

ua,sg

0 (r) = Ba,s
0 rη0 , (41a)

ϕ
a,sg

0 (r) = Da,s
0 rη0 , (41b)

where Ba,s
0 , Da,s

0 , and η0 are constants to be found using the given boundary conditions. Substituting Eqs. (41)
into the homogeneous parts of Eqs. (40) yields[

η20 + 2η0 +
(
2c13 − 2 (c11 + c12)

c33

)]
Ba,s
0 +

[(
e22
c33

)
η20 +

(
2 (e22 − e21)

c33

)
η0

]
Da,s
0 = 0, (42a)

[
η20 +

(
2 + 2e21

e22

)
η0 +

(
2e21
e22

)]
Ba,s
0 −

[(
ε22

e22

)
η20 +

(
2ε22
e22

)
η0

]
Da,s
0 = 0. (42b)

To obtain the non-trivial solution of the above equation, the determinant of coefficients of the constants Ba,s
0

and Da,s
0 must vanish. This leads to the evaluation of the eigenvector η0 obtained as

−
(

η20 + 2η0 +
(
2c13 − 2 (c11 + c12)

c33

))
×

((
ε22

e22

)
η20 +

(
2ε22
e22

)
η0

)

−
((

e22
c33

)
η20 +

(
2 (e22 − e21)

c33

)
η0

)
×

(
η20 +

(
2 + 2e21

e22

)
η0 +

(
2e21
e22

))
= 0. (43)

Thus, the general solution, utilizing the linearity lemma, is a linear combination of all values of eigenvalues
and is obtained as

ua,sg

0 (r) =
4∑
j=1

Ba,s
0 j rη0 j , ϕ

a,sg

0 (r) =
4∑
j=1

M0 j B
a,s
0 j rη0 j . (44)

The particular solution of Eqs. (40) is assumed as

ua,s p

0 (r) = Da,s
01 rβ

a,s
01 +1 + Da,s

02 rβ
a,s
02 +1, (45a)

ϕ
a,s p

0 (r) = Da,s
05 rβ

a,s
01 +1 + Da,s

06 rβ
a,s
02 +1. (45b)
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Substituting Eqs. (45) into Eqs. (40) yields

Da,s
01 = − (

da,s
011d

a,s
03 − da,s

09 da,s
05

)
da,s
07 da,s

03 − da,s
09 da,s

01
, (46a)

Da,s
02 = −(da,s

06 da,s
010 − da,s

04 da,s
012)

da,s
02 da,s

010 − da,s
04 da,s

08
, (46b)

Da,s
05 = −(da,s

011d
a,s
01 − da,s

07 da,s
05 )

da,s
07 da,s

03 − da,s
09 da,s

01
, (46c)

Da,s
06 = −(da,s

06 da,s
08 − da,s

02 da,s
012)

da,s
02 da,s

010 − da,s
04 da,s

08
, (46d)

where the coefficients da,s
01 through da,s

012 are presented in Appendix B. Here, D
a,s
0i (i = 1, 2, 5, 6) are obtained

solving the two systems of algebraic equations.
Thus, the complete solutions for the radial and circumferential displacement components and the electrical

potential for all values of n, using Eqs. (39), (44), and (45), are

ua,s (r, μ) =
4∑
j=1

(
Ba,s
0 j rη0 j

)
+ Da,s

01 rβ
a,s
01 +1 + Da,s

02 rβ
a,s
02 +1

+
∞∑
n=1

⎡
⎣ 6∑

j=1

(
Ba,s
n j rηnj

)
+ Da,s

n1 rβ
a,s
n1 +1 + Da,s

n2 rβ
a,s
n2 +1

⎤
⎦ × Pn(μ), (47)

va,s(r, μ) =
∞∑
n=1

⎡
⎣ 6∑

j=1

(
Nnj B

a,s
n j rηnj

)
+ Da,s

n3 rβ
a,s
n1 +1 + Da,s

n4 rβ
a,s
n2 +1

⎤
⎦ × P ′

n(μ)
(
1 − μ2) 1

2 , (48)

ϕa,s (r, μ) =
4∑
j=1

(
M0 j B

a,s
0 j rη0 j

)
+ Da,s

05 rβ
a,s
01 +1 + Da,s

06 rβ
a,s
02 +1

+
∞∑
n=1

⎡
⎣ 6∑

j=1

(
Mnj B

a,s
n j rηnj

)
+ Da,s

n5 rβ
a,s
n1 +1 + Da,s

n6 rβ
a,s
n2 +1

⎤
⎦ × Pn(μ). (49)

From relations (2), the radial, circumferential and shear stresses, and electrical displacement are obtained as

σ a,s
rr = c33

⎛
⎝ 4∑

j=1

(
η0 j

(
1+ e22

c33
M0 j

)
+ 2c13

c33

)
Ba,s
0 j rη0 j−1+Da,s

01

((
β
a,s
01 +1

) (
1+ e22

c33

Da,s
05

Da,s
01

)
+ 2c13

c33

)
rβ

a,s
01

+ Da,s
02

((
β
a,s
02 + 1

) (
1 + e22

c33

Da,s
06

Da,s
02

)
+ 2c13

c33

)
rβ

a,s
02 − zr

c33

(
Aa,s
01 rβ

a,s
01 + Aa,s

02 rβ
a,s
02

)

+
⎛
⎝ ∞∑

n=1

6∑
j=1

(
ηnj

(
1 + e22

c33
Mnj

)
+ c13

c33

(
2 + n (n + 1) Nnj

))
Ba,s
n j rηnj−1

+ Da,s
n1

((
β
a,s
n1 + 1

) (
1 + e22

c33

Da,s
n5

Da,s
n1

)
+ c13

c33

(
2 + n (n + 1) Nnj

Da,s
n3

Da,s
n1

))
rβ

a,s
n1

+ Da,s
n2

((
β
a,s
n2 + 1

) (
1 + e22

c33

Da,s
n6

Da,s
n2

)
+ c13

c33

(
2 + n (n + 1) Nnj

Da,s
n4

Da,s
n2

))
rβ

a,s
n2

− zr
c33

(
Aa,s
n1 rβ

a,s
n1 + Aa,s

n2 rβ
a,s
n2

))
× Pn(μ)

)
, (50)
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σ
a,s
rθ = c44

⎛
⎝ ∞∑

n=1

⎡
⎣ 6∑

j=1

Ba,s
n j

(
Nnj

(
ηnj − 1

) + e25
c44

Mnj − 1

)
+

⎤
⎦ rηnj−1

+ Da,s
n1

(
e25
c44

Da,s
n5

Da,s
n1

+ Da,s
n3

Da,s
n1

β
a,s
n1 − 1

)
rβ

a,s
n1

+Da,s
n2

(
e25
c44

Da,s
n6

Da,s
n2

+ Da,s
n4

Da,s
n2

β
a,s
n1 − 1

)
rβ

a,s
n1 × P ′

n(μ)
(
1 − μ2) 1

2

⎞
⎠ , (51)

σ
a,s
θθ = c13

⎛
⎝ 4∑

j=1

(
η0 j

(
1 + e21

c13
M0 j

)
+ c11 + c12

c13

)
Ba,s
0 j rη0 j−1

+ Da,s
01

((
β
a,s
01 + 1

) (
1 + e21

c13

Da,s
05

Da,s
01

)
+ c11 + c12

c13

)
rβ

a,s
01

+ Da,s
02

((
β
a,s
02 + 1

) (
1 + e21

c13

Da,s
06

Da,s
02

)
+ c11 + c12

c13

)
rβ

a,s
02 − zθ

c13

(
Aa,s
01 rβ

a,s
01 + Aa,s

02 rβ
a,s
02

)

+
⎛
⎝ ∞∑

n=1

6∑
j=1

(
ηnj

(
1 + e21

c13
Mnj

)
+ c11 + c12

c13

)
Ba,s
n j rηnj−1

+ Da,s
n1

((
β
a,s
n1 + 1

) (
1 + e21

c13

Da,s
n5

Da,s
n1

)
+ c11 + c12

c13

)
rβ

a,s
n1

+Da,s
n2

((
β
a,s
n2 + 1

) (
1 + e21

c13

Da,s
n6

Da,s
n2

)
+ c11 + c12

c13

)
rβ

a,s
n2 − zr

c33

(
Aa,s
n1 rβ

a,s
n1 + Aa,s

n2 rβ
a,s
n2

)⎞
⎠ Pn(μ)

⎞
⎠

+ c13

⎛
⎝ ∞∑

n=1

⎡
⎣ 6∑

j=1

(
Nnj B

a,s
n j rηnj−1

)
+ Da,s

n3 rβ
a,s
n1 +1 + Da,s

n4 rβ
a,s
n2 +1

⎤
⎦

×
[
c11
c13

n (n + 1) Pn(μ) + c12 − c11
c13

μP ′
n(μ)

] ⎞
⎠ , (52)

Da,s
rr = e22

⎛
⎝ 4∑

j=1

(
η0 j

(
1 − ε22

e22
M0 j

)
+ 2e21

e22

)
Ba,s
0 j rη0 j−1

+Da,s
01

((
β
a,s
01 + 1

) (
1 − ε22

e22

Da,s
05

Da,s
01

)
+ 2e21

e22

)
rβ

a,s
01

+ Da,s
02

((
β
a,s
02 + 1

) (
1 − ε22

e22

Da,s
06

Da,s
02

)
+ 2e21

e22

)
rβ

a,s
02 + g22

e22

(
Aa,s
01 rβ

a,s
01 + Aa,s

02 rβ
a,s
02

)

+
∞∑
n=1

⎛
⎝ 6∑

j=1

(
ηnj

(
1 − ε22

e22
Mnj

)
+ e21

e22

(
2 + n (n + 1) Nnj

))
Ba,s
n j r

ηnj−1

+ Da,s
n1

((
β
a,s
n1 + 1

) (
1 − ε22

e22

Da,s
n5

Da,s
n1

)
+ e21

e22

(
2 + Da,s

n3

Da,s
n1

n (n + 1)

))
rβ

a,s
n1

+Da,s
n2

((
β
a,s
n2 + 1

) (
1 − ε22

e22

Da,s
n6

Da,s
n2

)
+ e21

e22

(
2 + Da,s

n4

Da,s
n2

n (n + 1)

))
rβ

a,s
n2

+g22
e22

(
Aa,s
n1 rβ

a,s
n1 + Aa,s

n2 rβ
a,s
n2

))
× Pn(μ)

⎞
⎠ , (53)
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Da,s
θθ = e25

⎛
⎝ ∞∑

n=1

⎛
⎝ 6∑

j=1

Ba,s
n j

(
Nnj

(
ηnj − 1

) − ε11

e25
Mnj − 1

)
rηnj−1

+ Da,s
n1

(
β
a,s
n1

Da,s
n3

Da,s
n1

− ε11

e25

Da,s
n5

Da,s
n1

− 1

)
rβ

a,s
n1

+Da,s
n2

(
β
a,s
n2

Da,s
n4

Da,s
n2

− ε11

e25

Da,s
n6

Da,s
n2

− 1

)
rβ

a,s
n2

⎞
⎠ × P ′

n(μ)
(
1 − μ2) 1

2

⎞
⎠

+ g21

( ∞∑
n=0

(
Aa,s
n1 rβ

a,s
n1 + Aa,s

n2 rβ
a,s
n2

)
× Pn(μ)

)
. (54)

4.2 FGM layer

The solution of the Navier equations (12) is assumed in the form of Legendre series as

uF (r, μ) =
∞∑
n=0

uF
n (r)Pn(μ), (55a)

vF (r, μ) =
∞∑
n=0

vF
n (r)P ′

n(μ)
(
1 − μ2) 1

2 , (55b)

where uF
n (r) and vF

n (r) are functions of r . Substituting Eqs. (23) and (55) into Eqs. (12) and then using the
method given in Appendix A to separate the independent variables r and μ leads to

∂2uF
n (r)

∂r2
+ (2 + m1)

r

∂uF
n (r)

∂r
+ 1

r2

(
2ν

1 − ν
m1 − n (n + 1)

1 − 2ν

2 − 2ν
− 2

)
uF
n (r)

+ n (n + 1)

2r(1 − ν)

∂vF
n (r)

∂r
+ n (n + 1)

r2

(
ν

1 − ν
m1 − 3 − 4ν

2 − 2ν

)
vF
n (r)

= 1 + ν

1 − ν
α0

((
m1 + m2 + βF

n1

)
AF
n1 r

βF
n1+m2−1 +

(
m1 + m2 + βF

n2

)
AF
n2 r

βF
n2+m2−1

)
, (56a)

∂2vF
n (r)

∂r2
+ (2 + m1)

r

∂vF
n (r)

∂r
− 1

r2

(
m1 + n (n + 1)

2 − 2ν

1 − 2ν

)
vF
n (r)

− 1

r (1 − 2ν)

∂uF
n (r)

∂r
− 1

r2

(
m1 + 4 − 4ν

1 − 2ν

)
uF
n (r)

= − 1 + ν

1 − 2ν
α0

(
AF
n1 r

βF
n1+m2−1 + AF

n2 r
βF
n2+m2−1

)
. (56b)

Thus, the solution of homogeneous part of the system of Euler differential equations (56) may be assumed
in the form

uFg

n (r) = BFrγ , (57a)

vFg

n (r) = CFrγ . (57b)

Here, BF and CF are constants to be found using the given boundary conditions. Substituting Eqs. (57)
into the homogeneous parts of Eqs. (56) yields(

γ 2 + (m1 + 1) γ + 2νm1

1 − ν
− n (n + 1)

1 − 2ν

2 − 2ν
− 2

)
BF + n (n + 1)

2 − 2ν
(γ + 2νm1 − 3 + 4ν)CF = 0,

(58a)
−1

1 − 2ν
(γ + (1 − 2ν)m1 + 4 − 4ν) BF +

(
γ 2 + (m1 + 1) γ − m1 − n (n + 1)

2 − 2ν

1 − 2ν

)
CF = 0.

(58b)
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Equations (58) are a system of algebraic equations such that for obtaining their non-trivial solution, their
determinant should be equal to zero, and their four roots are evaluated as follows:(

γ 2 + (m1 + 1) γ + 2νm1

1 − ν
− n (n + 1)

1 − 2ν

2 − 2ν
− 2

)
×

(
γ 2 + (m1 + 1) γ − m1 − n (n + 1)

2 − 2ν

1 − 2ν

)

+ n (n + 1)

(2 − 2ν) (1 − 2ν)
(γ + 2νm1 − 3 + 4ν) × (γ + (1 − 2ν)m1 + 4 − 4ν) = 0. (59)

Therefore,

uFg

n (r) =
4∑
j=1

BF
nj r

γnj , vFg

n (r) =
4∑
j=1

Nnj B
F
njr

γnj , (60)

where

Nnj =
(
γ 2
nj + (m1 + 1) γnj + 2νm1

1−ν
− n (n + 1) 1−2ν

2−2ν − 2
)

− n(n+1)
2−2ν

(
γnj + 2νm1 − 3 + 4ν

) . (61)

The particular solutions of Eqs. (56) are assumed to be as follows:

uF p

n (r) = DF
n1 r

βF
n1+m2+1 + DF

n2 r
βF
n2+m2+1, (62a)

vF p

n (r) = DF
n3 r

βF
n1+m2+1 + DF

n4 r
βF
n2+m2+1. (62b)

Substituting Eqs. (62) into Eqs. (56) yields

dF
1 DF

n1 r
βF
n1+m2−1 + dF

2 DF
n2 r

βF
n2+m2−1 + dF

3 DF
n3 r

βF
n1+m2−1 + dF

4 DF
n4 r

βF
n2+m2−1

= dF
5 rβF

n1+m2−1 + dF
6 rβF

n2+m2−1, (63a)

dF
7 DF

n1 r
βF
n1+m2−1 + dF

8 DF
n2 r

βF
n2+m2−1 + dF

9 DF
n3 r

βF
n1+m2−1 + dF

10D
F
n4 r

βF
n2+m2−1

= dF
11 r

βF
n1+m2−1 + dF

12 r
βF
n2+m2−1, (63b)

where the coefficients dF
1 through dF

12 are presented in Appendix C. Equating the coefficients of identical
powers yields ⎧⎨

⎩
dF
1 DF

n1 + dF
3 DF

n3 = dF
5 ,

dF
7 DF

n1 + dF
9 DF

n3 = dF
11,

(64)

⎧⎨
⎩
dF
2 DF

n2 + dF
4 DF

n4 = dF
6 ,

dF
8 DF

n2 + dF
10D

F
n4 = dF

12.
(65)

Here, Da,s
ni (i = 1, . . . , 4) are obtained solving the two systems of algebraic equations.

The complete solutions for displacements are the sum of Eqs. (60) and (62) and are

uF
n (r) =

4∑
j=1

(
BF
nj r

γnj
)

+ DF
n1 r

βF
n1+m2+1 + DF

n2 r
βF
n2+m2+1, (66)

vF
n (r) =

4∑
j=1

(
Nnj B

F
nj r

γnj
)

+ DF
n3 r

βF
n1+m2+1 + DF

n4 r
βF
n2+m2+1. (67)

For n = 0 (P ′
0(μ) = 0), the system of Navier equations (56) leads to the following single differential

equation:

∂2uF
0 (r)

∂r2
+ (2 + m1)

r

∂uF
0 (r)

∂r
+ 1

r2

(
2νm1

1 − ν
− 2

)
uF
0 (r)

= 1 + ν

1 − ν
α0

((
m1 + m2 + βF

01

)
AF
01 r

βF
01+m2−1 +

(
m1 + m2 + βF

02

)
AF
02 r

βF
02+m2−1

)
. (68)
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Fig. 1 Schematic diagram showing the feedback configuration and geometry of the FGM hollow sphere with piezoelectric
sensor/actuator layers

Fig. 2 Temperature distribution in the piezo-FGM hollow sphere with various m, at θ = π/3

Solving the homogeneous and non-homogeneous parts of Eq. (68) provides the complete solution for uF
0 (r)

as

uF
0 (r) =

2∑
j=1

(
BF
0 j r

γ0 j
)

+ DF
01 r

βF
01+m2+1 + DF

02 r
βF
02+m2+1, (69)

where

γ0 j = −(m1 + 1)

2
±

(
(m1 + 1)2

4
+ 2νm1

1 − ν
− 2

) 1
2

, (70)

DF
0 j =

(1 + ν)
(
m1 + m2 + βF

0 j

)
α0AF

0 j

(1 − ν)
((

2 + m1 + m2 + βF
0 j

) (
1 + m2 + βF

0 j

)
+ 2νm1

1−ν
− 2

) . (71)
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Fig. 3 Radial displacement distribution in the piezo-FGM hollow sphere with various m, at θ = π/3

Fig. 4 Circumferential displacement distribution in the piezo-FGM hollow sphere with various m, at θ = π/3

Thus, the complete solution of radial and circumferential displacement components for all values of n
using Eqs. (66) and (69) is

uF (r, μ) =
2∑
j=1

(
BF
0 j r

γ0 j
)

+ DF
01 r

βF
01+m2+1 + DF

02 r
βF
02+m2+1

+
∞∑
n=1

⎡
⎣ 4∑

j=1

(
BF
njr

γnj
)

+ DF
n1 r

βF
n1+m2+1 + DF

n2 r
βF
n2+m2+1

⎤
⎦ × Pn(μ), (72)

vF (r, μ) =
∞∑
n=1

⎡
⎣ 4∑

j=1

(
Nnj B

F
njr

γnj
)

+ DF
n3 r

βF
n1+m2+1 + DF

n4 r
βF
n2+m2+1

⎤
⎦ P ′

n(μ)
(
1 − μ2) 1

2 . (73)
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Fig. 5 Radial stress distribution in the piezo-FGM hollow sphere with various m, at θ = π/3

Fig. 6 Shear stress distribution in the piezo-FGM hollow sphere with various m, at θ = π/3

From the stress–strain relations (2), the radial, circumferential, and shear stresses are obtained as

σ F
rr = E0

(1 + ν) (1 − 2ν)

⎛
⎝ 2∑

j=1

((
2ν + (1 − ν) γ0 j

)
BF
0 j r

γ0 j+m1−1

+DF
0 j

(
2ν + (1 − ν) (γ0 j + m2 + 1)

)
rβF

0 j+m1+m2
)

− α0 (1 + ν)
(
AF
01 r

βF
01+m1+m2 + AF

02 r
βF
02+m1+m2

)

+
⎛
⎝ ∞∑

n=1

⎡
⎣ 4∑

j=1

(
2ν + (1 − ν) γnj + n(n + 1)νNnj

)
BF
nj r

γnj+m1−1

+
((

2ν + (1 − ν)
(
βF
n1 + m2 + 1

))
DF
n1 + n(n + 1)νDF

n3

)
rβF

n1+m1+m2
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+
((

2ν + (1 − ν)
(
βF
n2 + m2 + 1

))
DF
n2 + n(n + 1)νDF

n4

)
rβF

n2+m1+m2

⎤
⎦

⎞
⎠ × Pn(μ)

⎞
⎠

− E0α0 (1 + ν)

(1 + ν) (1 − 2ν)

( ∞∑
n=1

(
AF
n1 r

βF
n1+m1+m2 + AF

n2 r
βF
n2+m1+m2

)
× Pn(μ)

)
, (74)

σ F
rθ = E0

2 (1 + ν)

⎛
⎝ ∞∑

n=1

⎡
⎣ 4∑

j=1

(
Nnj

(
γnj − 1

) − 1
)
BF
nj r

γnj+m1−1 −
(
DF
n1 −

(
βF
n1 + m2

)
DF
n3

)
rβF

n1+m1+m2

−
(
DF
n2 −

(
βF
n2 + m2

)
DF
n4

)
rβF

n2+m1+m2

⎤
⎦ × P ′

n(μ)
(
1 − μ2) 1

2

⎞
⎠ , (75)

σ F
θθ = E0

(1 + ν) (1 − 2ν)

⎛
⎝ 2∑

j=1

((
1 + νγ0 j

)
BF
0 j r

γ0 j+m1−1 + (1 + ν)
(
γ0 j + m2 + 1

)
DF
0 j r

βF
0 j+m1+m2

)

− α0 (1 + ν)
(
AF
01 r

βF
01+m1+m2 + AF

02 r
βF
02+m1+m2

)

+
∞∑
n=1

⎡
⎣ 4∑

j=1

(
1 + νγnj

)
BF
nj r

γnj+m1−1 + (1 + ν)
(
βF
n1 + m2 + 1

)
DF
n1 r

βF
n1+m1+m2

+ (1 + ν)
(
βF
n2 + m2 + 1

)
DF
n2 r

βF
n2+m1+m2 − α0 (1 + ν)

×
(
AF
n1 r

βF
n1+m1+m2 + AF

n2 r
βF
n2+m1+m2

) ⎤
⎦ × Pn(μ)

⎞
⎠

+ E0

(1 + ν) (1 − 2ν)

⎛
⎝ ∞∑

n=1

⎡
⎣ 4∑

j=1

Nnj B
F
nj r

γnj+m1−1 + DF
n3 r

βF
n1+m1+m2 + DF

n4 r
βF
n2+m1+m2

⎤
⎦

× [(
n2 + n

)
(1 − ν) Pn(μ) − (1 − 2ν) μP ′

n(μ)
]
⎞
⎠ . (76)

Fig. 7 Circumferential stress distribution in the piezo-FGM hollow sphere with various m, at θ = π/3
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Fig. 8 Radial electrical displacement in the sensor layer with various m, at θ = π/3

Fig. 9 Radial electrical displacement in the actuator layer with various m, at θ = π/3

4.3 Boundary and continuity conditions

It is obvious that the unknown parameters BF
nj ( j = 1, . . . , 4) and Ba,s

n j ( j = 1, . . . , 6) (16 unknown constants)
can be evaluated by satisfying the boundary conditions and continuity requirements on the interface. Therefore,
displacements, electric potential, stress, and other responses can be evaluated. The corresponding boundary
conditions can be selected from the following general mechanical boundary conditions

us (a0, θ) = R1Pn (cos θ) , vs (a0, θ) = R2Pn (cos θ) ,

σ s
rr (a0, θ) = R3Pn (cos θ) , σ s

rθ (a0, θ) = R4Pn (cos θ) , (77a)

ua (b0, θ) = R5Pn (cos θ) , va (b0, θ) = R6Pn (cos θ) ,

σ a
rr (b0, θ) = R7Pn (cos θ) , σ a

rθ (b0, θ) = R8Pn (cos θ) , (77b)

where R1 through R8 are some known constant coefficients.
Furthermore, for electrical boundary conditions, we have:
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Fig. 10 Electric potential distribution in the sensor layer with various m, at θ = 0

Fig. 11 Electric potential distribution in the actuator layer with various m, at θ = 0

For the sensor layer,
Ds
rr (a0, θ) = 0, ϕs (a, θ) = 0; (78)

For the actuator layer,
ϕa (b, θ) = 0 , ϕa (b0, θ) = V a Pn (cos θ) . (79)

V a Pn(cos θ) is the input voltage to the actuator layer that can be obtained as follows:

V a Pn (cos θ) = G V s Pn(cos θ). (80)

Here, G is the feedback gain, and V s Pn(cos θ) is the output voltage of the sensor layer:

ϕs (a0, θ) = V s Pn (cos θ) . (81)

In fact, the sensor output is used to determine the input to the actuator using the feedback gain control algorithm
(see Fig. 1).
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Fig. 12 Circumferential electrical displacement in the sensor layer with various m, at θ = π/3

Fig. 13 Circumferential electrical displacement in the actuator layer with various m, at θ = π/3

In addition, the continuity requirements for the stresses and displacements on the interfaces must be
satisfied; therefore, we have

us (a, θ) = uF (a, θ), vs (a, θ) = vF (a, θ), σ s
rr (a, θ) = σ F

rr (a, θ), σ s
rθ (a, θ) = σ F

rθ (a, θ), (82a)

uF (b, θ) = ua (b, θ), vF (b, θ) = va (b, θ), σ F
rr (b, θ) = σ a

rr (b, θ), σ F
rθ (b, θ) = σ a

rθ (b, θ). (82b)

5 Numerical results and discussion

The analytical solutions obtained in the previous section may be checked for two examples. Then, consider a
thick smart FGM hollow sphere (Fig. 1) with the following geometry properties:

a0 = 0.40m, a = 0.44m, b = 0.64m, b0 = 0.68m. (83)



2216 A. R. Barati, M. Jabbari

Fig. 14 Radial displacement distribution in the piezo-FGM hollow sphere with various G, where m = 1 at θ = π/3

Fig. 15 Circumferential displacement distribution in the piezo-FGM hollow sphere with various G, where m = 1 at θ = π/3

The following are material constants considered for piezoelectric layers (PZT-4):

C11 = 139 GPa, C12 = 78GPa, C13 = 74.3 GPa, C33 = 115GPa, C44 = 25.6GPa,

α = 2.4 × 10−6 (
K−1) , kp = 1.5(Wm−1 K−1),

e21 = −5.2
(
Cm−2) , e22 = 15.1

(
Cm−2) , e25 = 12.7

(
Cm−2) ,

g21 = −2.94 × 10−6 (
Cm−2 K−1) , g22 = −2.94 × 10−6 (

Cm−2 K−1) ,

ε11 = 64.64 × 10−10 (
Fm−1) , ε22 = 56.22 × 10−10 (

Fm−1) .

And the material properties of the FGM layer are

E0 = 200GPa, α0 = 1.2 × 10−6 K−1, ν = 0.3, km = 2Wm−1 K−1. (84)
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Fig. 16 Radial stress distribution in the piezo-FGM hollow sphere with various G, where m = 1 at θ = π/3

Fig. 17 Shear stress distribution in the piezo-FGM hollow sphere with various G, where m = 1 at θ = π/3

The power of material properties is considered as identical, m1 = m2 = m3 = m.
Example 1. In this example, the inside surface of the inner layer (sensor) is assumed to be heated and

cooled by a temperature distribution given by T s (a0, θ) = 30P1(cos θ). The outside surface of the outer
layer (actuator) is considered in zero temperature. Traction-free conditions are assumed at the outside surface
(r = b0), and the inside surface (r = a0) is assumed to be fixed in r and θ directions. The thermal, mechanical,
and electrical boundary conditions are as follows:

T s (a0, θ) = 30P1 (cos θ), T a (b0, θ) = 0, (85)

us (a0, θ) = 0, vs (a0, θ) = 0, (86a)

σ a
rr (b0, θ) = 0, σ a

rθ (b0, θ) = 0, (86b)

ϕs (a, θ) = 0, Ds
rr (a0, θ) = 0, (87a)

ϕa(b, θ) = 0, ϕa (b0, θ) = 0. (87b)
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Fig. 18 a Circumferential stress distribution in the piezo-FGM hollow sphere with various G, where m = 1 at θ = π/3. b
Circumferential stress distribution in the FGM layer with various G, where m = 1 at θ = π/3 (host layer)

As determined from Eq. (87b) in this example, the input control voltage to the actuator layer is zero,
which means there is no active control over the structure. The example shows the significant influence of
the grading index of material properties “m” on the mechanical and electrical response of the piezo-FGM
structure.

Figure 2 is the temperature distribution along the radius at θ = π/3 for different power law indices. The
temperature distribution follows the given boundary conditions at the inside and outside surfaces. For different
values of m, radial and circumferential displacement, radial stress, shear stress, and circumferential stress
along the radial direction at θ = π/3 are plotted in Figs. 3, 4, 5, 6, and 7, respectively. From Figs. 3 and 4, one
can see that the radial and circumferential displacement decreases as the graded index m increases in the same
radial point at θ = π/3, respectively. It can easily be seen from Figs. 5 and 6 that the radial and shear stress
at the external boundaries which satisfy the given mechanical boundary conditions decreases as the graded
index m increases along the radial direction at θ = π/3. The distribution of circumferential stress along the
radial direction at θ = π/3 is shown in Fig. 7, and the magnitude of the circumferential stress is decreased as
the power index m is increased.

Figures 8 and 9 show radial electrical displacement distributions along the radius at θ = π/3 in the piezo
layers with various m. It can easily be seen from Fig. 8 that radial electrical displacement decreases as the
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Fig. 19 Effective stress distribution in the FGM layer with various G, where m = 1 at θ = π/3 (host layer)

Fig. 20 Electric potential distribution in the actuator layer with various G, where m = 1 at θ = 0

graded index m increases at the same radial point in the sensor layer. The distribution of electric potential in
the sensor and actuator layers along the radius at θ = 0 is shown in Figs. 10 and 11, respectively. It can easily
be seen from Figs. 10 and 11 that electric potential satisfies the prescribed electrical boundary conditions.
Here, the magnitude of the electric potential is decreased as the power index m is increased in sensor and
actuator layers. The plots of circumferential electrical displacement distributions along the radius at θ = π/3
in the piezo layers with various m are shown in Figs. 12 and 13. It can easily be seen from Fig. 12 that the
circumferential electrical displacements decrease as the power index m is increases at the same radial point in
sensor layer.

Example 2. In this example, which shows the control aspect of the article, the electrical boundary conditions
of the smart FGM structure (Fig. 1), in which the inner and outer piezoelectric layers serve, respectively, as
the sensor and actuator, which are linked by a constant gain control algorithm, are, respectively, taken as

ϕs (a, θ) = 0, Ds
rr (a0, θ) = 0, (88a)

ϕa (b, θ) = 0, ϕa (b0, θ) = V a P1 (cos θ) = G V s P1 (cos θ). (88b)
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Fig. 21 Radial electrical displacement in the actuator layer with various G, where m = 1 at θ = π/3

Fig. 22 Circumferential electrical displacement in the actuator layer with various G, where m = 1 at θ = π/3

In this example, the mechanical and thermal boundary conditions are according to the relations (85)–(86), as
in Example 1. In this example, when the Piezo-FGM structure suffers thermal strain, the piezoelectric sensor
generates an output voltage, and this voltage can be amplified and feedback to the actuator. The piezoelectric
actuator converts the input voltage into a strain/displacement actuation and transmits this actuation to the main
structure (FGM layer) in order to modify its mechanical state. Thus, in this example, the effect of the control
voltage on the mechanical response of structures will be presented. Here, the graded index is m = 1, and it is
noteworthy that Fig. 10 illustrates the electric potential distribution in the sensor layer (while m = 1). Also,
Fig. 2 is the temperature distribution along the radius (while m = 1).

Figures 14, 15, 16, 17, and 18 show the distributions of radial and circumferential displacement, radial stress,
shear stress, and circumferential stress along the radial direction at θ = π/3 in the piezo-FGM hollow sphere
with different values of G(feedback gain), respectively. Here, from Figs. 14 and 15, one can see that the radial
and circumferential displacement decreases considerably with the increase in the negative feedback gain G
(fromG = 0 toG = −0.6) at the same radial point, respectively. It can easily be seen from Figs. 16 and 17 that
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the radial and shear stress at the external boundaries which satisfy the given mechanical boundary conditions
decreases considerably with the increase in the negative feedback gain in Figs. 16 and 17, respectively. The
distribution of circumferential stress along the radial direction at θ = π/3 is shown inFig. 18, and themagnitude
of the circumferential stress is decreased as there is increase in the negative feedback gain, noticeably.

The effective stress in the FGM layer is significantly reduced.
It is noteworthy that the effective stress in the FGM layer is considered to be in accordance with the

following formula:

σ F
e =

√(
σ F
rr − σ F

θθ

)2 + (
σ F

θθ − σ F
ϕϕ

)2 + (
σ F
rr − σ F

ϕϕ

)2 + 6
(
σ F
rθ

)2
/
√
2. (89)

From Figs. 14, 15, 16, 17, 18, and 19, it is clear that with the increase in the negative feedback gain parameter
G, and in fact, with the increase in the input control voltage to the actuator layer, the deformation and thermal
stress in the FGM layer are controlled, i.e., considerably reduced.

The distribution of electric potential in the actuator layer along the radius at θ = 0 with different values
of G is shown in Fig. 20 (while m = 1). It can easily be seen from Fig. 20 that electric potential satisfies the
prescribed electrical boundary conditions.

Figure 21 is the plot of radial electrical displacement in the actuator layer. It can easily be seen that the
radial electrical displacement decreases from outer surface to inner surface of the actuator layer as the negative
feedbackgain increases at the same radial point. Theplot of circumferential electrical displacement distributions
along the radius at θ = π/3 in actuator layer with various G is shown in Fig. 22 (while m = 1). From Fig. 22,
one can see that, with the increase in the negative feedback gain, the magnitude of the circumferential electrical
displacement decreases.

6 Conclusions

In this article, an analytical study of piezothermoelastic behavior and controls of an FGMhollow spherewith an
integrated piezoelectric sensor and actuator under non-axisymmetric thermal loads is presented. A feedback
control algorithm coupling the direct and inverse piezoelectric effects is applied via a closed-loop system
to provide feedback control of the piezothermoelastic response of the multilayered hollow sphere. Thermal,
mechanical, and electrical boundary conditions are assumed to be the functions of the variables r and θ . A
power law model is considered for the variations in the FGM profiles. Direct method of solution based on
the power series and Legendre functions is used to obtain the solution of governing differential equations.
Numerical examples are given and discussed to show the significant influence of the grading index of material
properties and negative feedback gain on the mechanical–electrical responses. The conclusions are:

(i) Numerical results inExample 1 show that the graded indexm has a great effect on the piezothermoelectric
behavior of a smart FGM hollow sphere, and adopting a certain value of the m can optimize the
responses. It is possible for engineers to design piezo-FGM spherical structures that can meet some
special requirements.

(ii) Through the results in Example 2, it can be concluded that it is possible to an active control of
stress/displacement of the FGM hollow sphere by applying a suitable negative feedback gain. This
will be of particular importance in modern engineering design.

Appendix A

Consider the Legendre differential equation [34] as(
1 − x2

)
y′′ (x) − 2xy′ (x) + n (n + 1) y (x) = 0,

where x and y are independent and dependent variables, respectively. The solution of the foregoing differential
equation is

y (x) = Pn(x),

where Pn(x) is a Legendre polynomial and may be written as

Pn (x) = 1

2nn!
dn

dxn
(x2 − 1)n .
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Utilizing Eqs. (46)–(48), the following relations may be derived

(x2 − 1)P ′
n (x) = nx Pn (x) − nPn−1 (x) ,

2(x2 − 1)P ′′
n (x) + x P ′

n (x) = nx P ′
n (x) + nPn (x) − nPn−1 (x) ,

x P ′
n (x) − Pn−1 (x) = nPn (x) ,

(x2 − 1)P ′′
n (x) + 2x P ′

n (x) = (
n + n2

)
Pn (x) .

Appendix B
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