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Abstract Dynamic incident anti-plane shearing (SH-wave) analysis is considered to calculate the dynamic
stress intensity factors (DSIFs) in transversely isotropic piezoelectric bi-materials,which contain symmetrically
radial cracks, near the edges of a non-circular cavity. Green’s functions are established based on complex
variable and conformal mapping methods. Conjunction and crack-deviation techniques are used to evaluate
DSIFs at the cracks’ tips. Boundary conditions are solved by applying the orthogonal function expansion
technique. Models with elliptic cavities are studied numerically based on FORTRAN language program. A
comparison is accomplished to adjust program validity. Results clarified the influences on DSIFs under proper
conditions.

1 Introduction

In modern science technology, important smart materials as piezoelectric materials are utilized widely. They
have very important applications due to their electro-mechanical coupling response. As example, piezoelectric
materials have been used to establish many devices in the design and health monitoring of marine structures,
such as sensors, actuators and power supplies. But due to materials stiff and brittle nature, the faults and
brittleness are occurring during manufacturing, polling process and service procedures. Researchers payed
great attention to study the defects behaviors and influences, and how they harm the efficiency and validity of
those devices.

In the last few years, the defects existing in piezoelectric materials have been analyzed in various arrange-
ments and loading conditions. For a two-dimensional piezoelectric plate subjected to mechanical and electric
load based on conformal mapping technique, Qin [1] developed a Green’s function satisfying traction-free and
exact electric boundary conditions along a hole. Wu [2] developed an effective method to study a crack in a
confocal elliptic piezoelectric in-homogeneity embedded in an infinite piezoelectric medium. Liu and Wang
[3] analyzed the electro-elastic interaction of a screw dislocation and a notch in a piezoelectric bi-material.
Sasaki et al. [4] performed an analysis on transversely isotropic piezoelectric materials containing an arbitrarily
shaped boundary at infinity, using the complex variable function method. Gui et al. [5] studied the problem
of collinear periodic cracks in an infinite piezoelectric body by means of the Stroh formalism. Guo et al.
[6] investigated the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a
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piezoelectric solid based on the Stroh-type formalism. Also, they considered the fracture behavior of multiple
cracks emanating from a circular hole in piezoelectric materials using the complex variable function method
[7].

For scattering of SH-waves and dynamic stress concentration under the complex function method, Chen et
al. [8] investigated the cases at bi-material structures that possess an interface elliptic cavity, by using Green’s
function. Liu and Chen [9] investigated cases by radial cracks of any limited length along the radius originating
at the boundary of an elliptical hole, using Green’s function. Liu and Lin [10] constructed a suitable Green’s
function for cases of an interacting interface crack and a circular cavity near a bi-material interface.

For anti-plane mechanical and in-plane electric loading based on conformal mapping technique, Wu and
Dzenis [11] studied an interfacial edge crack in a piezoelectric bi-material wedge interacting with a screw
dislocation. Chen et al. [12] presented a novel efficient procedure to analyze the elliptical in-homogeneity
problem in piezoelectric materials, using Green’s function.

Recently, based on the complex variable method combined with the method of conformal mapping,
Rogowski [13] considered that in the mode III two asymmetrical edge cracks emanate from an elliptical
hole problem in a medium possessing coupled electro-magneto-elasticity. Lu et al. [14] studied the fracture
problem of two semi-infinite collinear cracks in a piezoelectric strip under the anti-plane shear stress and the
in-plane electric load. Also, Guo and Lu [15] investigated the problem of two non-symmetrical collinear cracks
emanating from an elliptical hole in a piezoelectric solid based on the Stroh-type formalism and conformal
mapping technique. Xiao et al. [16] investigated piezoelectric materials with a doubly periodic array of cracks
and rigid-line inclusions by employing the conformal mapping technique and the elliptical function theory.

The dynamic incident anti-plane shearing (SH-wave) analysis is considered in the present paper to calculate
theoretically the dynamic stress intensity factors (DSIFs) in transversely isotropic piezoelectric bi-materials,
which contain symmetrically radial cracks, near the edges of a non-circular cavity. The objective of the paper
is placed on obtaining DSIFs at the cracks’ inner and outer tips based on complex variable and conformal
mapping methods by conjunction and crack-division techniques. The boundary conditions are solved by
applying the orthogonal function expansion technique. By applying FORTRAN language program, numerical
models with elliptic cavities are studied for different elliptic axial length ratios, different wave numbers, and
different piezoelectric parameters. Also, a comparison is shown to adjust program validity. Results clarified the
influences on DSIFs which affect the efficiency of piezoelectric devices and materials under proper conditions.

2 Fundamental equations

Consider two symmetric interfacial cracks near the edges of a non-circular cavity, at transversely isotropic
semi-infinite piezoelectric media PMI and PMII in the XY -plane. The poling direction is the positive Z -axis.
As it is clear in Fig. 1, A represents the cracks’ lengths, and B represents the distances between the cavity edges
and the cracks’ inner tips. The positions of the left crack’s inner and outer tips are η1 and η2, respectively. The
model is subjected to a dynamic SH-wave. The time-harmonic and the two-dimensional field can be expressed
by the following equation:

F∗(X, Y, t) = F(X, Y )e−iωt (1)

where F∗ is the desired field variable and ω is the incident wave frequency. For the sake of convenience, the
time-independent variable F(X, Y )will be accounted in all the following equations neglecting the exponential
e−iωt [17].

Fundamental equations of linear piezoelectricity under an SH-wave effect, in the absence of body forces
and free charges, can be specified as

c44∇2w + e15∇2φ + ρω2w = 0, e15∇2w − κ11∇2φ = 0 (2)

where c44, e15 and κ11 are shear elastic modulus, piezoelectric constant and dielectric constant of the piezo-
electric medium, respectively, while w, φ and ρ are out-of-plane displacement, electric potential and mass
density of the medium, respectively.

Based on the conformal mapping method and by using complex variables X+ iY = ω(η), X− iY = ω(η),
the external field of a non-circular cavity in the XY -plane can be transformed into one outside of a unit circle
in the η-plane, if only ω′(η) �= 0 [17]. The mapping domain expressed by the column coordinate system (r, θ)
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Fig. 1 Piezoelectric bi-materials with symmetrically interfacial cracks near a non-circular cavity and the equivalent mapping
plane

is centered at the origin-o, where η = reiθ and R0 = 1 is the circular cavity radius as shown in Fig. 1. In this
case, the fundamental equations (2) can be simplified further as:

∂2w

∂η∂η
=
(
ik

2

)2
ω′(η)ω′(η)ω(η, η),

∂2 f

∂η∂η
= 0 (3)

where k = ω
√

ρ/c∗ is the wave number, c∗ = c44(1 + λ) is the effective piezoelectric stiffness, and λ =
e215/c44κ11 is the dimensionless piezoelectric parameter of the medium.

The electric potential can be defined by

φ = e15
κ11

w + f. (4)

Then, the anti-plane shear stress components (τr z and τθ z) and the in-plane electric displacement compo-
nents (Dr and Dθ ) for a piezoelectric solid can be expressed by:

τr z = c∗

|ω′(η)|
(

∂w

∂η
eiθ + ∂w

∂η
e−iθ

)
+ e15

|ω′(η)|
(

∂ f

∂η
eiθ + ∂ f

∂η
e−iθ

)
,

τθ z = ic∗

|ω′(η)|
(

∂w

∂η
eiθ − ∂w

∂η
e−iθ

)
+ ie15

|ω′(η)|
(

∂ f

∂η
eiθ − ∂ f

∂η
e−iθ

)
, (5)

Dr = − κ11

|ω′(η)|
(

∂ f

∂η
eiθ + ∂ f

∂η
e−iθ

)
,

Dθ = − iκ11
|ω′(η)|

(
∂ f

∂η
eiθ − ∂ f

∂η
e−iθ

)
. (6)

3 Green’s functions and boundary conditions

Green’s functions of elastic displacementGw and electric potentialGφ for a semi-infinite piezoelectricmedium,
under a dynamic incident SH-wave at an arbitrary point η0 with angle θ0, can be described, respectively, as
[8,9]:



2092 T. Song, A. Hassan

Gw = i

2c∗ H
(1)
0 (k|ω(η) − ω(η0)|) +

∞∑
n=0

AnH
(1)
n (k|ω(η)|)

[{
ω(η)

|ω(η)|
}n

+
{

ω(η)

|ω(η)|
}−n

]
, (7)

Gφ = e15
κ11

Gw + i

2c∗
∞∑
n=0

(
Bnη

−n + Cnη
−n) (8)

where H (1)
n is the Hankel function of the first kind. In the semicircular cavity, Green’s function Gc

φ can be
described as:

Gc
φ = i

2c∗

[
D0 +

∞∑
n=1

(
Dnη

n + Enη
n)
]

. (9)

Consider that the dynamic incident SH-wave directed with an angle α0 in medium PMI and the two
interfacial cracks are existing near the edges of a circular cavity in the equivalent mapping plane as shown in
Fig. 1. Superscripts I, II and c are used to express variables in PMI, PMII and the cavity, respectively. Under
traction- free and electrically permeable assumptions, the boundary continuity conditions across the medium
cavity interface should be as follows [17,18]:{

DI
r = Dc

r , GI
φ = Gc

φ, τ Ir z = 0,
DII
r = Dc

r , G
II
φ = Gc

φ, τ IIr z = 0

}
, |η| ∈ 1. (10)

Using the orthogonal function expansion technique, unknown coefficients in Green’s functions (An , Bn ,
Cn , Dn , En and D0) can be defined by applying the boundary continuity conditions and Hankel function
relations [8,17]:

∂

∂η

[
H (1)
n (k|ω(η)|)

{
ω(η)

|ω(η)|
}n]

= k

2
H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

ω′(η),

∂

∂η

[
H (1)
n (k|ω(η)|)

{
ω(η)

|ω(η)|
}n]

= −k

2
H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

ω′(η),

∂

∂η

[
H (1)
n (k|ω(η)|)

{
ω(η)

|ω(η)|
}−n

]
= −k

2
H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n−1

ω′(η),

∂

∂η

[
H (1)
n (k|ω(η)|)

{
ω(η)

|ω(η)|
}−n

]
= k

2
H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n+1

ω′(η). (11)

Then, the following relations can be determined:

Dn = −κ11

κ0
Cn, En = −κ11

κ0
Bn, (12)

e15
κ11

∞∑
n=0

AnH
(1)
n (k|ω(η)|)

[{
ω(η)

|ω(η)|
}n

+
{

ω(η)

|ω(η)|
}−n

]
+ i

2c∗ (1 + κ11

κ0
)

∞∑
n=1

(
Bne

−inθ + Cne
inθ
)

− D0 = −e15i

2κ11c∗ H
(1)
0 (k|ω(η) − ω(η0)|), (13)

k
∞∑
n=0

An

[
H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

− H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n−1

]
ω′(η)eiθ

− k
∞∑
n=0

An

[
H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

− H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n+1

]
ω′(η)e−iθ

− e15ni

c∗2
∞∑
n=1

(Bne
−inθ + Cne

inθ ) = − ki

2c∗ H
(1)
−1 (k|ω(η) − ω(η0)|)

{
ω(η) − ω(η0)

|ω(η) − ω(η0)|

}
ω′(η)eiθ

− ki

2c∗ H
(1)
−1 (k|ω(η) − ω(η0)|)

{
ω(η) − ω(η0)

|ω(η) − ω(η0)|
}

ω′(η)e−iθ (14)
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where κ0 is the permittivity dielectric constant of the vacuum inside the cavity. Multiplying both sides of Eqs.
(13) and (14) by the factor e−imθ where m = 0,±1,±2, . . . and integrating them from 0 to 2π about θ , the
final relations have the form of an infinite linear algebraic system of equations about the unknown coefficients
[17]:

∞∑
n=0

An Pln +
∞∑
n=1

Bnqln +
∞∑
n=1

Cnsln + D0βl = εl , l = 1, 2 (15)

in which

P1n = e15
2πκ11

∫ 2π

0
H (1)
n (k|ω(η)|)

[{
ω(η)

|ω(η)|
}n

+
{

ω(η)

|ω(η)|
}−n

]
e−imθdθ,

P2n = k

2π

∫ 2π

0

[
H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

− H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n−1

]
ω′(η)eiθe−imθdθ

− k

2π

∫ 2π

0

[
H (1)
n+1(k|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

− H (1)
n−1(k|ω(η)|)

{
ω(η)

|ω(η)|
}−n+1

]
ω′(η)e−iθe−imθdθ,

q1n = i

4πc∗ (1 + κ11

κ0
)

∫ 2π

0
e−inθe−imθdθ,

q2n = − e15ni

2πc∗2

∫ 2π

0
e−inθe−imθdθ,

s1n = i

4πc∗ (1 + κ11

κ0
)

∫ 2π

0
einθe−imθdθ,

s2n = − e15ni

2πc∗2

∫ 2π

0
einθe−imθdθ,

β1 = − 1

2π

∫ 2π

0
e−imθdθ, β2 = 0,

ε1 = − e15i

4πc∗κ11

∫ 2π

0
H (1)
0 (k|ω(η) − ω(η0)|) e−imθdθ,

ε2 = − ki

4πc∗

∫ 2π

0
H (1)

−1 (k|ω(η) − ω(η0)|)
{

ω(η) − ω(η0)

|ω(η) − ω(η0)|

}
ω′(η)eiθe−imθdθ,

− ki

4πc∗

∫ 2π

0
H (1)

−1 (k|ω(η) − ω(η0)|)
{

ω(η) − ω(η0)

|ω(η) − ω(η0)|
}

ω′(η)e−iθe−imθdθ.

Using the polynomials truncation in Eq. (15) to the Nth term and m = 0,±1,±2, . . . ,±N , the relations
can be reduced to a finite 4N + 2 linear algebraic system of equations and 4N + 2 unknown coefficients.
Calculating the reduced relations leads to determine the unknown coefficients. The satisfied calculations can
be obtained only by taking N = 8.

4 Dynamic electro-elastic fields

At the interface of the piezoelectric bi-materials, different impedances caused scattering phenomena. The
dynamic electro-elastic fields and the corresponding scattering fields can be given as follows [8,9]:

1. Incident elastic displacement and electric potential fields in PMI:

w(i) = w0 exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}
, φ(i) = eI15

κ I
11

w(i) (16)

where w0 is the magnitude of the incident displacement wave.
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2. Reflecting and scattering electro-elastic fields in PMI:

w(r) = w1 exp

{−ikI
2

(
ω(η)eiα1 + ω(η)e−iα1

)}
, φ(r) = eI15

κ I
11

w(r), (17)

w(s) =
∞∑

n=−∞

(
A(is)
n + A(rs)

n

)
H (1)
n (kI|ω(η)|)

{
ω(η)

|ω(η)|
}n

,

φ(s) = eI15
κ I
11

w(s) + i

2c∗
I

[ ∞∑
n=1

(
B(is)
n η−n + C (is)

n η−n + B(rs)
n η−n + C (rs)

n η−n
)]

(18)

where w1and α1 are the magnitude and angle of the reflecting displacement wave, respectively.
3. Refracting and scattering electro-elastic fields in PMII:

w( f ) = w2 exp

{−ikII
2

(
ω(η)eiα2 + ω(η)e−iα2

)}
, φ( f ) = eII15

κ II
11

w( f ), (19)

w( f s) =
∞∑

n=−∞
A( f s)
n H (1)

n (kII|ω(η)|)
{

ω(η)

|ω(η)|
}n

,

φ( f s) = eII15
κ II
11

w( f s) + i

2c∗
II

[ ∞∑
n=1

(
B( f s)
n η−n + C ( f s)

n η−n
)]

(20)

where w2and α2 are the magnitude and angle of the refracting displacement wave, respectively.
4. The cavity is assumed to be filled with homogeneous gas or vacuum, and free of forces and surface

charges. So, the electric potential inside the cavity can be given as:

φc(is) = i

2c∗
I

[
D(is)
0 +

∞∑
n=1

(
D(is)
n ηn + E (is)

n ηn
)]

,

φc(rs) = i

2c∗
I

[
D(rs)
0 +

∞∑
n=1

(
D(rs)
n ηn + E (rs)

n ηn
)]

,

φc( f s) = i

2c∗
II

[
D( f s)
0 +

∞∑
n=1

(
D( f s)
n ηn + E ( f s)

n ηn
)]

. (21)

The total electro-elastic fields for the two media PMI andPMII are, respectively:

wI = w(i) + w(r) + w(s), φI = φ(i) + φ(r) + φ(s), (22)

wII = w( f ) + w( f s), φII = φ( f ) + φ( f s). (23)

All unknown coefficients for incident, reflecting and refracting fields can also be calculated by using
the orthogonal function expansion technique. The boundary continuity conditions across the medium cavity
interface should be in the following forms:

{
DI
r = Dc

r , φI = φc, τ Ir z = 0
DII
r = Dc

r , φII = φc, τ IIr z = 0

}
, |η| ∈ 1. (24)

In case of incident unknown coefficients (A(is)
n , B(is)

n , C (is)
n , D(is)

n , E (is)
n and D(is)

0 ), the next relations can
be determined:

D(is)
n = −κ I

11

κ0
C (is)
n , E (is)

n = −κ I
11

κ0
B(is)
n , (25)
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eI15
κ I
11

∞∑
n=−∞

A(is)
n H (1)

n (kI|ω(η)|)
{

ω(η)

|ω(η)|
}n

+ i

2c∗
I

(
1 + κ I

11

κ0

) ∞∑
n=1

(
B(is)
n e−inθ + C (is)

n einθ
)

− D(is)
0 = −eI15

κ I
11

w0 exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}
, (26)

kI

∞∑
n=−∞

A(is)
n

[
H (1)
n−1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

ω′(η)eiθ − H (1)
n+1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

ω′(η)e−iθ

]

− eI15 ni

c∗
I
2

∞∑
n=1

(
B(is)
n e−inθ + C (is)

n einθ
)

= ikIw0 exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}

×
{
eiα0ω′(η)eiθ + e−iα0ω′(η)e−iθ

}
. (27)

The infinite linear algebraic system of equations about the incident unknown coefficients is as follows:

∞∑
n=−∞

A(is)
n Pln +

∞∑
n=1

B(is)
n qln +

∞∑
n=1

C (is)
n sln + D(is)

0 βl = εl , l = 1, 2 (28)

in which

P1n = eI15
2πκ I

11

∫ 2π

0
H (1)
n (kI|ω(η)|)

{
ω(η)

|ω(η)|
}n

e−imθdθ,

P2n = kI
2π

∫ 2π

0
H (1)
n−1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

ω′(η)eiθe−imθdθ

− kI
2π

∫ 2π

0
H (1)
n+1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

ω′(η)e−iθe−imθdθ,

q1n = i

4πc∗
I
(1 + κ I

11

κ0
)

∫ 2π

0
e−inθe−imθdθ,

q2n = − eI15ni

2πc∗
I
2

∫ 2π

0
e−inθe−imθdθ,

s1n = i

4πc∗
I
(1 + κ I

11

κ0
)

∫ 2π

0
einθe−imθdθ,

s2n = − eI15ni

2πc∗
I
2

∫ 2π

0
einθe−imθdθ,

β1 = − 1

2π

∫ 2π

0
e−imθdθ, β2 = 0,

ε1 = − eI15w0

2πκ I
11

∫ 2π

0
exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}
e−imθdθ,

ε2 = −kIw0i

2π

∫ 2π

0
exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}
.
{
eiα0ω′(η)eiθ + e−iα0ω′(η)e−iθ

}
e−imθdθ.

The incident unknown coefficients can be calculated by using the polynomials truncation in Eq. (28) by the
same procedure as Eq. (15). Also, the same procedures can be followed to calculate the unknown coefficients for
the reflecting field (A(rs)

n , B(rs)
n , C (rs)

n , D(rs)
n , E (rs)

n and D(rs)
0 ) and the unknown coefficients for the refracting

field (A( f s)
n , B( f s)

n , C ( f s)
n , D( f s)

n , E ( f s)
n and D( f s)

0 ).
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5 Integral equation and DSIFs

The conjunction and crack-deviation techniques are used to determine the integral equation and DSIFs at the
cracks’ inner and outer tips. The piezoelectric bi-materials’ conjunction is shown in Fig. 2.

The interface intervals in the mapping plane can be defined as:⎧⎪⎨
⎪⎩

�1 ∈ [R0, R0 + B], θ = π, �2 > R0 + B + A, θ = π,
�3 ∈ [R0, R0 + B], θ = 0, �4 > R0 + B + A, θ = 0,
C1 ∈ [R0 + B, R0 + B + A], θ = π,
C2 ∈ [R0 + B, R0 + B + A], θ = 0

⎫⎪⎬
⎪⎭ . (29)

To apply the crack-deviation technique, two negative shear stresses −τ Iθ z and −τ IIθ z are estimated at the
cracks locations. The continuity conditions of shear stresses excluding the areas of the cracks and the cavity
can be expressed by [9,18]:

τ Iθ z cos θ0 + f1(r0, θ0) = τ IIθ z cos θ0 + f2(r0, θ0), at �1, �2, �3 and �4 (30)

where f1(r0, θ0) and f2(r0, θ0) are two additional stresses applied at the well-bounded interfaces. Returning
to Eq. (3), it can be concluded that:

τ Iθ z = τ
(i)
θ z + τ

(r)
θ z + τ

(s)
θ z , τ IIθ z = τ

( f )
θ z + τ

( f s)
θ z (31)

in which

τ
(i)
θ z = kIc∗

I w0

2|ω′(η)|
[
exp

{−ikI
2

(
ω(η)eiα0 + ω(η)e−iα0

)}
.
{
eiα0ω′(η)eiθ − e−iα0ω′(η)e−iθ

}]
,

τ
(r)
θ z = kIc∗

I w1

2|ω′(η)|
[
exp

{−ikI
2

(
ω(η)eiα1 + ω(η)e−iα1

)}
.
{
eiα1ω′(η)eiθ − e−iα1ω′(η)e−iθ

}]
,

τ
(s)
θ z = ikIc∗

I

2|ω′(η)|
∞∑

n=−∞
(A(is)

n + A(rs)
n )

[
H (1)
n−1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

ω′(η)eiθ

+H (1)
n+1(kI|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

ω′(η)e−iθ

]

Fig. 2 Piezoelectric bi-materials’ conjunction with two semi-non-circular cavities and the equivalent mapping plane
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+ eI15n

2c∗
I |ω′(η)|

∞∑
n=1

(
B(is)
n e−inθ − C (is)

n einθ + B(rs)
n e−inθ − C (rs)

n einθ
)

τ
( f )
θ z = kIIc∗

IIw2

2|ω′(η)|
[
exp

{−ikII
2

(
ω(η)eiα2 + ω(η)e−iα2

)}
.
{
eiα2ω′(η)eiθ − e−iα2ω′(η)e−iθ

}]

τ
( f s)
θ z = ikIIc∗

II

2|ω′(η)|
∞∑

n=−∞
A( f s)
n

[
H (1)
n−1(kII|ω(η)|)

{
ω(η)

|ω(η)|
}n−1

ω′(η)eiθ

+H (1)
n+1(kII|ω(η)|)

{
ω(η)

|ω(η)|
}n+1

ω′(η)e−iθ

]
+ eII15n

2c∗
II|ω′(η)|

∞∑
n=1

(
B( f s)
n e−inθ − C ( f s)

n einθ
)

.

The continuity conditions of elastic displacements can be expressed by [18]:

wI(r, θ) + w( f1)(r, θ) + w(cr I)(r, θ) = wII(r, θ) + w( f2)(r, θ) + w(cr II)(r, θ) (32)

in which

w( f1) =
∫

�1&�2

f1(r0, π)GI
w(r, θ; r0, π)dr0 +

∫
�3&�4

f1(r0, 0)G
I
w(r, θ; r0, 0)dr0,

w( f2) = −
∫

�1&�2

f2(r0, π)GII
w(r, θ; r0, π)dr0 −

∫
�3&�4

f2(r0, 0)G
II
w(r, θ; r0, 0)dr0,

w(cr I ) =
∫
C1

τ Iθ z(r0, π)GI
w(r, θ; r0, π)dr0 −

∫
C2

τ Iθ z(r0, 0)G
I
w(r, θ; r0, 0)dr0,

w(cr I I ) = −
∫
C1

τ IIθ z(r0, π)GII
w(r, θ; r0, π)dr0 +

∫
C2

τ IIθ z(r0, 0)G
II
w(r, θ; r0, 0)dr0.

Gathering all the equations above, the final integral equation can be expressed as follows [18]:
∫

�1&�2

f1(r0, π)
[
GI

w(r, θ; r0, π) + GII
w(r, θ; r0, π)

]
dr0

+
∫

�3&�4

f1(r0, 0)
[
GI

w(r, θ; r0, 0) + GII
w(r, θ; r0, 0)

]
dr0

=
∫

�1&�2

[
τ Iθ z(r0, π) − τ IIθ z(r0, π)

]
GII

w(r, θ; r0, π)dr0

−
∫

�3&�4

[
τ Iθ z(r0, 0) − τ IIθ z(r0, 0)

]
GII

w(r, θ; r0, 0)dr0

−
∫
C1

τ Iθ z(r0, π)GI
w(r, θ; r0, π)dr0 −

∫
C1

τ IIθ z(r0, π)GII
w(r, θ; r0, π)dr0

+
∫
C2

τ Iθ z(r0, 0)G
I
w(r, θ; r0, 0)dr0 +

∫
C2

τ IIθ z(r0, 0)G
II
w(r, θ; r0, 0)dr0

− w(s)(r, θ) + w( f s)(r, θ), θ = 0, π. (33)

Finally, the dimensionless DSIFs (kσ
3 ) at η1 and η2 can be defined by:

kσ
3 η1

= 1

τ0Q

∣∣∣∣ lim
r0→R0+B

f1(r0, π)
√
2(r0 − R0 − B)

∣∣∣∣ , (34)

kσ
3 η2

= 1

τ0Q

∣∣∣∣ lim
r0→R0+B+A

f1(r0, π)
√
2(r0 − R0 − B − A)

∣∣∣∣ (35)

where the characteristic length Q = √
A/2, and τ0 = kIw0c∗

I refers to the shear stress magnitude of the
incident wave [9,18].
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6 Numerical examples and discussions

To examine the influences of different parameters on the DSIFs, some calculations are provided based on
FORTRAN language program for Eqs. (34) and (35), for piezoelectric bi-materials media with an elliptic
cavity. The conformal mapping function, which transforms the domain outside an ellipse in the XY -plane into
one outside a unit circle in η-plane is given by [8,9]:

X + iY = ω(η) = a + b

2

(
η + a − b

a + b
η−1
)

(36)

in which a and b represent the semi-axes’ lengths of the ellipse along the X-axis and Y-axis, respectively.
To adjust the FORTRAN program validity, a comparison of DSIFs at η2 is accomplished between the paper

model and the document [18] model with cracks emerging from circular cavity edges as shown in Fig. 3.
The document model is solved without using complex variable and conformal mapping methods. It can be

noticed that the two curves are almost swaying in the same manner with the wave number increment, but they
did not coincide well. The DSIFs at kIa = 1.0 are quite different. Also, the peak for the current model’s curve
occurred at about kIa = 1.9 later than the peak for the document model’s curve which occurred at kIa = 1.6.

So, using complex variable and conformal mapping methods in the present paper solution causes the wide
change in DSIFs. On the other hand, the distance B is very small (B/a = 0.001) but still exists as a separation
between the cracks and the cavity. It can be concluded that, depending on the medium’s geometry and the
sequence of calculations, the relation between the cracks and the cavity is altered causing the changes occurring
in the values of the DSIFs.

Divergences of DSIFs at η1 and η2 for different semi-axes’ percentages of the ellipse are shown in Fig. 4.
The outer tip gave the larger values of DSIFs than the inner tip (about 80–95%). On both tips, the oscillations of

Fig. 3 DSIFs comparison between two models under vertical incidence

Fig. 4 DSIFs at η1 and η2 versus kIa for different semi-axes’ percentages of the ellipse
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Fig. 5 DSIFs at η1 and η2 versus kIa for different A/a percentages

Fig. 6 DSIFs at η1 and η2 versus A/a percentage for different semi-axes’ percentages of ellipse

the curves started to be clear at kIa > 0.6. The peak of the curves occurred at almost the same kIa percentages
for the two tips’ curves. Then, the DSIFs continue to decrease rapidly with kIa increment. But when b/a = 1.5,
the decrement occurr slowly. So, the increment of the semi-axes’ percentage leads to the decrement of both
the curve’s peak and the variation of DSIFs with kIa.

Variations of DSIFs at η1 and η2 for different A/a percentages are shown in Fig. 5. The semi-axes’
percentage is b/a = 0.8.

On the inner tip, the variations of the curves started to be clear at kIa > 0.9. The curve for the percentage
A/a = 0.5 showed a very little increase in DSIFs with the increment of kIa. While the percentage A/a
increased, the curve showed higher oscillation and a rapid decrease of the DSIFs. On the outer tip, while the
percentage A/a increased, the peak value of the curve increased and the DSIFs decreased rapidly.

Divergences of DSIFs at η1 and η2 for different semi-axes’ percentages of the ellipse are shown in Fig. 6.
The outer tip gave larger values of DSIFs than the inner tip. The peak of the curves occurred at almost the
same A/a percentages for the two tips’ curves. In the inner tip, the peak value decrease with the increment of
the b/a percentage. In the outer tip, the peak value decrement is small. The DSIFs curves continue to decrease
rapidly with the A/a increment. But, the values of DSIFs are larger for b/a = 1.5 for the two tips’ curves. So,
the DSIFs decreased with the increment of the A/a, for different semi-axes’ percentages, and the semi-axes’
percentage of the ellipse b/a = 1.5 gave the smaller peaks and the larger values of DSIFs for the two tips.

Variations of DSIFs at η1 and η2 for different incident wave frequencies (λI) are shown in Fig. 7. The
curves at the inner tip almost coincide while λI changes. But at the outer tip, the difference between the curves
is clearer. On both tips, the DSIFs curves continue to decrease rapidly while A/a > 2. So, the DSIFs decreased
with the increment of A/a for different incident wave frequencies.

It can be concluded that the rise of the incident wave number harms the efficiency of piezoelectric devices
and materials used, especially when the crack length is longer than twice the elliptic cavity’s semi-axis a.
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Fig. 7 DSIFs at η1 and η2 versus A/a percentage for different wave frequencies

7 Conclusions

A theoretical analysis is followed to calculate the DSIFs due to the existence of symmetrically radial cracks
near the edges of a non-circular cavity, in transversely isotropic piezoelectric bi-materials. The model is
considered under dynamic SH-wave. Based on complex variable and conformal mapping methods, Green’s
functions are constructed, and the DSIFs at the cracks’ inner and outer tips are obtained by conjunction and
cracks-deviation techniques. Numerical calculations are provided with an elliptic cavity based on FORTRAN
language program. Calculating results clarified that, depending on the medium’s geometry and the sequence
of calculations, the relation between the cracks and the cavity is altered causing the changes occurring to the
values of the DSIFs. The outer tip gave the larger values of DSIFs than the inner tip in all cases of study. The
increment of the semi-axes’ percentage led to the decrement of both the curve’s peak and the DSIFs variation
with the wave number. The DSIFs decreased with the increment of the crack length ratio for both the different
semi-axes’ percentages and the different incident wave frequencies. The rise of the incident wave number
harms the efficiency of piezoelectric devices and materials used, especially when the crack length is longer
than twice the elliptic cavity’s semi-axis a.
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