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Abstract The mechanical response of a finite circular disc with a central elliptic hole is modelled mathemati-
cally assuming that the disc is subjected to radial pressure varying according to a parabolic law along two finite
arcs of its periphery. The symmetry axis of the pressure forms an arbitrary angle with respect to the major axis
of the elliptic hole. Using the complex potentials technique, the displacement and stress fields are determined
in the form of infinite series. Assuming then that the short semi-axis of the elliptic hole tends to zero, compact
expressions are obtained for the stress intensity factors characterizing the severity of the stress field around the
end points of the ellipse’s major axis, which now becomes the tips of a discontinuity resembling a mathematic
crack. The solution for the stress intensity factors is validated against the respective one proposed by Atkinson
et al. in the limiting case of a centrally cracked disc under diametral compressive point forces. The agreement
is very good as long as the length of the crack does not exceed the disc’s radius. The novelty of the present
solution (besides imposing parabolic pressure instead of uniform one or point forces) is that the discontinuity
covers the whole range from the circular hole (ring) to the mathematical crack. Moreover, the expressions
obtained are exact, complete and easily programmable. From a practical point of view, the solution introduced
can be proven a valuable, easy-to-use tool for engineers using the Brazilian-disc test for the determination of
fracture toughness of brittle geomaterials. Indeed, the parabolic pressure considered here approaches closely
the actual load distribution exerted on the disc during the standardized implementation of the test. In addition,
the form of discontinuity considered here is closer to the shape of the cracks actuallymachined in the specimens
of the test which are by no means mathematical cuts but rather they are slits with a finite distance between
their lips.

1 Introduction

Modelling the mechanical response (or in other words determining the stress and displacement fields) of a
body of finite dimensions subjected to an external mechanical load is usually a challenging task. The presence
of geometric discontinuities (usually in the form of cracks and holes) makes things even more difficult. As a
result, analytic closed-form solutions do not exist even in the case of relatively simple configurations.

Among these configurations, of increased practical interest is the circular discwith a central non-mathematic
crack (i.e. a crack which is not simulated by an ideal cut of zero distance between its lips) the length of which
is not very small with respect to the disc’s diameter. The specific configuration is the basis of the technique
widely used to determine the fracture toughness, KIC, of brittle materials either in the form of Cracked Chevron
Notched Brazilian Disc (CCNBD) or in the form of the Cracked Straight Through Brazilian Disc (CSTBD).
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The respective procedure has is long ago been standardized by the International Society for Rock Mechanics
[1]. The importance of the specific standard is clearly understood by taking into account that fracture toughness
quantifies the resistance of a cracked body to further extension of the pre-existing crack (crack initiation and
crack propagation), and therefore, its knowledge is sine qua non for quite a few engineering applications as
it is for example rock drilling and cutting, rock slope study, hydraulic fracturing, underground excavations,
tunnelling, etc.

In spite of this increased practical importance, there are, even today, some open questions about the
applicability of the specific standard [2,3] and the accuracy of its final outcome. To the authors’ opinion,
among the most controversial aspects of the standard is the one related to the exact formulae of the respective
stress intensity factors (SIFs): the main obstacle hard to overcome is that the crack usually machined in a
disc made of a brittle geomaterial is neither a mathematic cut nor a rectangular hole. Moreover, for practical
reasons, the length of the machined crack cannot be very short (it is mentioned, for example, that according to
Dong [4] “… the recommended range of the relative crack length is between 0.4 and 0.6” (with respect to the
disc’s diameter)).

It is emphasized from the very beginning that the specific problem (i.e. to determine the SIFs in a cracked
circular disc of finite radius) is extremely complicated and it is not expected that closed solutions can be
reached, unless simplifying assumptions are introduced. Such an attempt was recently proposed considering
a finite centrally cracked disc under the assumption that the crack is a mathematic cut of very small length
(compared to the disc’s radius) and that the disc is loaded by uniformly distributed radial pressure along two
finite arcs of its periphery [5]. Although that solution is closer to reality compared to previous ones (which
have considered, for example, a centrally cracked disc under anti-diametral point forces [6]), there are still
some points restricting its applicability in engineering practice. The most critical ones are the consideration of
a mathematic cut instead of a crack with finite distance between its lips and the simulation of the load applied
as uniformly distributed pressure.

In this context, an attempt is here described to relax the above two restricting assumptions. To achieve this
goal, a finite circular disc with a central elliptic hole is considered subjected to a radial pressure distribution
which varies along the disc’s loaded arcs according to a parabolic law. The specific problem is here solved
by determining first the complex potentials that characterize the equilibrium of the elliptically perforated disc
adopting the method introduced by Kolosov [7] and Muskhelishvili [8]. Given the complex potentials, one
can determine the stress and displacement fields all over the disc’s area. Moreover, one can then determine the
SIFs assuming that the minor semi-axis of the elliptic hole becomes very small compared to the long one or
equivalently that the elliptic hole tends to become a crack. The solutions for both the stress and displacement
fields and also for the SIFs are obtained in series form, and the respective expressions (although rather lengthy)
are compact and easily programmable.

The formulae for the SIFs are validated against older, widely accepted solutions, and especially against the
formulae of the pioneering work by Atkinson et al. [6], assuming that the loaded arc (which is of finite length
in the present study) becomes very small so that the loading scheme becomes that of a line force (uniformly
distributed along a single generatrix of the disc’s lateral surface). The comparison is very satisfactory as long
as the length of the crack does not exceed the disc’s radius, which is a critical threshold in case the results are
to be used for the determination of fracture toughness [4].

Taking advantage of the as-above-validated expressions, a parametric analysis is implemented in order for
the dependence of the SIFs on some critical geometric parameters of the configuration (inclination of the crack
with respect to the loading axis, disc’s thickness and relative length of the crack) to be quantified. In addition,
the role of the disc’s material is studied, since it influences (although indirectly) the final outcome through the
dependence of the loaded arc’s length on the relative stiffness of the disc’s–loading platen’s materials.

Finally, some crucial aspects of the centrally perforated (cracked) disc, related to the contact (partial or
complete) of the lips of the elliptic hole (crack) for specific orientations of the ellipse’s long axis with respect
to the axis of symmetry of the loading imposed, are quantitatively explored. This mutual contact of the initially
stress-free crack lips was thoroughly studied already from the early seventies, in an attempt to quantify the
SIFs in case of partially closed Griffith cracks [9–11]. The onset of lips contact is critical since it designates
termination of the validity of the solution obtained given that the initially considered boundary conditions are
strongly violated. As a last step, the limitations imposed by the fact that the friction stresses along the loaded
arc were ignored during the analysis are critically discussed.
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Fig. 1 Formulation of the mathematical problem and definition of symbols

2 Theoretical analysis

2.1 Formulation of the mathematical problem

Consider a circular disc of radius RO and thickness t with a central elliptic hole L . The length of the long
semi-axis of the elliptic hole is denoted by α while that of the short one is denoted by b. Assume that the disc
is subjected to a parabolic pressure σr along two symmetric arcs of its periphery LO , each one of length 2ωo
(Fig. 1). The axis of symmetry of the pressure distribution subtends an angle φo with respect to the long axis
of the elliptic hole. The elliptic hole is assumed to be completely stress free.

The problem is considered as a plane one and the disc’s cross section lies at the z = x+ iy = reiφ complex
plane. The disc’s centre is considered as the origin of the Cartesian reference system xOy. Without loss of
generality, it is assumed that the long axis of the elliptic hole is directed along the x-axis (Fig. 1). The radial
pressure acting along 2ωo is described as:

σr = −P(φ) = −Pc
[
1 − sin2 (φo − φ)/sin2 ωo

]
,

where Pc = P(φ)max. The above pressure distribution is directly associatedwith the respective contact problem
of a circular intact disc compressed between circular jaws of radius Rjaw = 1.5RO [12–14], according to the
respective ISRM standards [1,15]. Both Pc and ωo are provided as functions of specific geometric and elastic
characteristics of the two bodies in contact [13]. However, as it will be shown in Sect. 2.2, the pressure
distribution, σr , may be equally well adapted also to the case of a loaded arc of arbitrarily predefined extent,
equal to 2ωo, by suitably adjusting the parameter Pc.

The disc is considered to be made of a homogeneous, isotropic and linearly elastic material, and Kolosov’s
[7] and Muskhelishvili’s [8] complex potentials technique is employed for the solution of the problem.

The final target of the present study is to determine the SIFs characterizing the severity of the stress field in
case the short semi-axis of the elliptic hole tends to zero or in other words in case the elliptic hole approaches
a mathematic cut (crack) of length 2α.

2.2 Determination of the complex potentials

For the determination of the complex potentials characterizing the equilibrium of the circular disc with the
elliptic hole, advantage is taken of a recently obtained solution for the respective problem of a circular ring [16].
According to that study, a ring of outer and inner radii RO and RI, respectively, and thickness t was considered
subject to the same loading conditions as the ones previously described for the elliptically perforated disc
(parabolic pressure distribution along two symmetric finite arcs of its periphery) when the loading symmetry
axis coincided with y-axis of the Cartesian reference. For the needs of the present study, the complex potentials
for the ring’s elastic equilibrium obtained by Kourkoulis et al. [16] are here redefined in the Cartesian reference
system shown in Fig. 1, i.e. for the case the loading symmetry axis forms the arbitrary angle φo with the x-axis,
as:

ϕo(z) = Pc
π

{
b0z + B2

3
z3 − B−2z

−1
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Fig. 2 The transition from the circular ring under parabolic pressure to the elliptically perforated disc (a) and the respective
conformal mapping (b)

+
∞∑

n=1

[
B4n

4n + 1
z4n+1 − B−4n

4n − 1
z−(4n−1) + B2(2n+1)

4n + 3
z4n+3 − B−2(2n+1)

4n + 1
z−(4n+1)

]}

, (1)

ψo(z) = Pc
π

{
B ′
0z + B ′

2

3
z3 − b′−2z

−1 − B ′−4

3
z−3

+
∞∑

n=1

[
B ′
4n

4n + 1
z4n+1 + B ′

2(2n+1)

4n + 3
z4n+3 − B ′

−4(n+1)

4n + 3
z−(4n+3) − B ′

−2(2n+1)

4n + 1
z−(4n+1)

]}

, (2)

where Bj , B ′
j are the newvalues of the respective constants b j , b′

j ofRef. [16] in the present Cartesian reference
system. Especially, b0 and b′−2 remain unchanged. Given their length, the respective expressions are given for
brevity in “Appendix I”. It is to be understood that the functions ϕo(z) and ψo(z) of Eqs. (1) and (2) dictate the
stress and displacement states everywhere in the ring through the well-known Muskhelishvili’s [8] formulae.

In order now to pass from the ring to the elliptically perforated disc, an elliptic contour L is considered,
with semi-axes α and b, circumscribing the inner hole of the ring L I so that RI = b (Fig. 2a). Removing from
the ring the shadowed area between contours L and L I, an elliptically perforated disc is obtained. Then, the
complex potentials that define the elastic equilibrium of such a region will be of the form:

ϕ(z) = ϕo(z) + ϕ∗(z),
ψ(z) = ψo(z) + ψ∗(z), (3)

where ϕo(z) and ψo(z) are given by Eqs. (1) and (2), whereas ϕ∗(z) and ψ∗(z) are unknown functions corre-
sponding to the influence (disturbance in ϕo(z) and ψo(z)) of the elliptic hole. In case L is sufficiently small,
ϕo(z) and ψo(z) will prevail near the disc’s periphery LO . Then, it could be assumed that LO lies at infinity,
regarding L , and that ϕo(z) andψo(z) govern the elastic equilibrium at remote parts of the region, which might
be conceived as an infinite one. In that case, ϕ∗(z) and ψ∗(z) should be zero at LO , which lies at infinity, and
therefore, they must be holomorphic in the region between L and LO , i.e. in the elliptically perforated disc.

To insert the elliptic hole L into the problem, the conformal transformation

z = ω(ζ ) = R (ζ + m/ζ ) (4)

(with R = (α + b)/2 and m = (α − b)/(α + b)) is introduced, mapping the part of the ring remaining on
the right of L (described in the counterclockwise direction) to the mathematical ζ = ξ + iη = ρeiθ complex
plane with the unit hole γ (L corresponds to γ on which the point ζ is denoted by s = eiθ (Fig. 2b)).

By combining Eqs. (3) and (4), and using the notation ϕ(ζ ) = ϕ(ω(ζ )) and ψ(ζ ) = ψ(ω(ζ )), one obtains
the relations

ϕ(ζ ) = ϕo(ζ ) + ϕ∗(ζ ),

ψ(ζ ) = ψo(ζ ) + ψ∗(ζ ). (5)
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By demanding L to be free from stresses (see Eq. (6) below), the shadowed area between contours L and L I
(Fig. 2a) is essentially removed, “transforming” the ring into the elliptically perforated disc in question. In that
case, the Muskhelishvili’s formula [8] for the boundary conditions regarding stresses on L , becomes

ϕ(s) + s2 + m

s(1 − ms2)
ϕ′(s) + ψ(s) = 0 (6)

for s on γ ; a prime denotes the first-order derivative, while an over-bar denotes the complex conjugate value.
Substituting Eq. (5) into Eq. (6), it is obtained that

ϕ∗(s) + s2 + m

s(1 − ms2)
ϕ′∗(s) + ψ∗(s) = −

[
ϕo(s) + s2 + m

s(1 − ms2)
ϕ′
o(s) + ψo(s)

]

︸ ︷︷ ︸
f∗(s)

, (7)

where, as stated before, ϕ∗(z) and ψ∗(z) should be conceived as functions holomorphic, vanishing at infinity.
Then, according to Muskhelishvili’s general formulae for infinite regions [8], the solution of Eq. (7) is written
as

ϕ∗(ζ ) = − 1

2π i

∫

γ

f∗(s)ds
s − ζ

,

ψ∗(ζ ) = − 1

2π i

∫

γ

f∗(s)ds
s − ζ

− ζ
1 + mζ 2

ζ 2 − m
ϕ′∗(ζ ). (8)

By combining Eqs. (1), (2), (4), (5), (7) and (8), and using properties of Cauchy’s type integrals, firstly ϕ∗(ζ )
and ψ∗(ζ ), and in turn ϕ(ζ ) and ψ(ζ ) are obtained as follows:

ϕ(ζ ) = PcR

π

⎧
⎨

⎩
(
b0 + mR2B2

)
ζ + R2B2

3
ζ 3 −

mb0 + B ′
0 + R2

[(
1 + 2m2

)
B2 + mB ′

2

]

ζ

−
(

mB2 + B ′
2

3

)
R2

ζ 3 +
∞∑

n=1

R4n

[
B4n

4n + 1
G∞

4n+1(ζ ) − B4nG
0
4n(ζ ) − B ′

4n

4n + 1
G0

4n+1(ζ )

+R2

(
B2(2n+1)

4n + 3
G∞

4n+3(ζ ) − B2(2n+1)G
0
2(2n+1)(ζ ) − B ′

2(2n+1)

4n + 3
G0

4n+3(ζ )

)]}

, (9)

ψ(ζ ) = PcR

π

ζ 2

ζ 2 − m

{(

B ′
0 + 2mR2B ′

2

3

)

ζ + R2B ′
2

3
ζ 3 −

(
8mB2

3
+ B ′

2

)
R2

ζ 5

−
R2

(
41+3m2

3 B2 + 2mB ′
2

)
+ B ′

0

ζ 3 − 2

(
1 + m2

) (
b0 + 2mR2�B2

)+ m� (
B ′
0 + mR2B ′

2

)

ζ

+
(
1

ζ
+ mζ

) ∞∑

n=1

R4n

[

B4n
dG0

4n(ζ )

dζ
− B4n

4n + 1

dG∞
4n+1(ζ )

dζ
+ B ′

4n

4n + 1

dG0
4n+1(ζ )

dζ

+R2

(

B2(2n+1)
dG0

2(2n+1)(ζ )

dζ
− B2(2n+1)

4n + 3

dG∞
4n+3(ζ )

dζ
+ B ′

2(2n+1)

4n + 3

dG0
4n+3(ζ )

dζ

)]

−
(
1 − m

ζ 2

) ∞∑

n=1

R4n

[
B4n

4n + 1
G0

4n+1(ζ ) − B4nG
∞
4n(ζ ) − B ′

4n

4n + 1
G∞

4n+1(ζ )

+R2

(
B2(2n+1)

4n + 3
G0

4n+3(ζ ) − B2(2n+1)G
∞
2(2n+1)(ζ ) − B ′

2(2n+1)

4n + 3
G∞

4n+3(ζ )

)]}

. (10)
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In Eqs. (9) and (10), the symbol � denotes the real part. Moreover G∞
j (ζ ) and G0

j (ζ ) are the principal parts
of analytic functions involved during the solution at the point at infinity and at ζ = 0, respectively. Again for
brevity, their analytic expressions are given (in the order they appear in Eqs. (9) and (10)) in “Appendix II”.

At this point, it must bementioned that the value of Pc as well as that of the extent of the loaded semi-arcωo,
entering into the above formulae through the constants b0, Bj and B ′

j , can be either provided by the solution
of a contact problem or arbitrarily prescribed at one’s convenience. For example, assuming that upon being
squeezed between the jaws of the ISRM-suggested device for the implementation of the Brazilian-disc test
under an overall load Pframe, the elliptically perforated disc behaves, in the immediate vicinity of the contact
arc, like the intact one, it can be written that [13]:

ωo = arcsin

√
6K Pframe

πROt
, Pc = P(φ)max =

√
3π Pframe

32K ROt
, K = κ + 1

4μ
+ κJ + 1

4μJ
, (11)

where κ, κJ and μ,μJ are Muskhelishvili’s constants and the shear moduli of the materials of the elliptically
perforated disc and the jaw, respectively.

On the contrary, for the second choice (i.e. in case arbitrary values are to be ascribed to ωo), it is readily
seen that for static equivalence to be maintained, the following relation between ωo and Pc must hold:

Pc = P(φ)max = Pframe

2ROωot
· 4ωo sin2 ωo

sin 2ωo − 2ωo cos 2ωo
. (12)

Concerning the accuracy of the solution, it can be seen that by considering R = (α + b)/2 � RO (or in other
words that RO → ∞ in comparison with the major axis α of the elliptic hole) then indeed, ϕ∗(ζ ) → 0 and
ψ∗(ζ ) → 0 for ζ → ∞. Therefore, the assumption that ϕ(ζ ) → ϕo(ζ ) and ψ(ζ ) → ψo(ζ ) on LO is fulfilled.
In other words, the ring’s solution dominates at points far from L . Obviously, as L increases beyond certain
limits (and therefore R becomes well comparable to RO), the infinite-region assumption collapses. In such
a case, the influence of L becomes stronger affecting also the region close to the disc’s periphery LO . An
attempt to assess the degree of accuracy of the solution as well as the limits of its applicability is presented in
Sect. 3.3 below, where the results for the SIFs (as obtained according to the present approach) are compared
against the respective ones according to the widely accepted formulae for the SIFs introduced by Atkinson et
al. [6] almost thirty years ago.

2.3 The displacement field along the boundary of the elliptic hole

Introducing now ϕ(ζ ) and ψ(ζ ), as they were obtained in Eqs. (9) and (10), into the well-known formula [8]

2μ(u + iv) = κϕ(ζ ) − ω(ζ )

ω′(ζ )
ϕ′(ζ ) − ψ(ζ ), (13)

setting ζ = s = eiθ and separating real � from imaginary � parts, the Cartesian components of the displace-
ments at any point on the elliptic hole’s boundary L are obtained analytically as:

uL(θ) = PcR(κ + 1)

2πμ

{� [
(1 − m)b0 − B ′

0 + R2 [(m − 1 − 2m2) B2 − mB ′
2

]]
cos θ

+R2�
[(

1

3
− m

)
B2 − B ′

2

3

]
cos 3θ + � [B ′

0 + R2 [(1 + 2m2 − m
)
B2 + mB ′

2

]]
sin θ

−R2�
[(

1

3
− m

)
B2 − B ′

2

3

]
sin 3θ +

∞∑

n=1

R4n
[
�B4n

(�G∞
4n+1(θ)

4n + 1
− �G0

4n(θ)

)

−�B4n

(�G∞
4n+1(θ)

4n + 1
+ �G0

4n(θ)

)
− �B ′

4n�G0
4n+1(θ) + �B ′

4n�G0
4n+1(θ)

4n + 1



The finite circular disc with a central elliptic hole 1935

+R2
(

�B2(2n+1)

(�G∞
4n+3(θ)

4n + 3
− �G0

2(2n+1)(θ)

)
− �B2(2n+1)

(�G∞
4n+3(θ)

4n + 3

+ �G0
2(2n+1)(θ)

)
− �B ′

2(2n+1)�G0
4n+3(θ) + �B ′

2(2n+1)�G0
4n+3(θ)

4n + 3

)]}

, (14)

vL(θ) = PcR (κ + 1)

2πμ

{� [
(1 + m)b0 + B ′

0 + R2 [(m + 1 + 2m2) B2 + mB ′
2

]]
sin θ

+R2�
[(

1

3
+ m

)
B2 + B ′

2

3

]
sin 3θ + � [B ′

0 + R2 [(1 + 2m2 + m
)
B2 + mB ′

2

]]
cos θ

+R2�
[(

1

3
+ m

)
B2 + B ′

2

3

]
cos 3θ +

∞∑

n=1

R4n
[
�B4n

(�G∞
4n+1(θ)

4n + 1
+ �G0

4n(θ)

)

+�B4n

(�G∞
4n+1(θ)

4n + 1
− �G0

4n(θ)

)
+ �B ′

4n�G0
4n+1(θ) − �B ′

4n�G0
4n+1(θ)

4n + 1

+R2
(

�B2(2n+1)

(�G∞
4n+3(θ)

4n + 3
+ �G0

2(2n+1)(θ)

)
+ �B2(2n+1)

(�G∞
4n+3(θ)

4n + 3

− �G0
2(2n+1)(θ)

)
+ �B ′

2(2n+1)�G0
4n+3(θ) − �B ′

2(2n+1)�G0
4n+3(θ)

4n + 3

)]}

. (15)

The real and imaginary parts of functions G∞
j (θ) and G0

j (θ) (as obtained from the respective expressions of

G∞
j (ζ ) and G0

j (ζ ) given in “Appendix II”) are included, again due to their lengthiness, in “Appendix III” (in
the order they appear in Eqs. (14) and (15)).

2.4 The stress field in the elliptically perforated disc

The components of the stress field at any point of the elliptically perforated disc are obtained by taking
advantage of the familiar formulae [8]:

σρ − iσρθ = 2�Φ(ζ) − ζ 2

ρ2ω′(ζ )

[
ω(ζ )Φ ′(ζ ) + ω′(ζ )�(ζ )

]
,

σρ + σθ = 4�Φ(ζ). (16)

The functions Φ(ζ) = ϕ′(ζ )/ω′(ζ ) and �(ζ) = ψ ′(ζ )/ω′(ζ ) are relatively easily obtained by combining
Eqs. (4), (9) and (10).

Focusing attention to the points of the disc along the x-axis, the Cartesian components σx (= σρ), σy(= σθ )
and σxy(= σρθ ) of the respective stress field are obtained as follows:

σx
σy

}
= 2Pc

π

ξ2

ξ2 − m

{

�
(
mB2 + B ′

2

3

)
3R2

ξ4
+ mb0 + �B ′

0 + R2� [(
1 + 2m2

)
B2 + mB ′

2

]

ξ2

+R2�B2
(
m + ξ2

)+ b0+
∞∑

n=1

R4n

[

�B4n

(
1

4n + 1

dG∞
4n+1

dζ
(ξ) − dG0

4n

dζ
(ξ)

)

− �B ′
4n

4n + 1

dG0
4n+1

dζ
(ξ)

+R2

(

�B2(2n+1)

(
1

4n + 3

dG∞
4n+3

dζ
(ξ) − dG0

2(2n+1)

dζ
(ξ)

)

− �B ′
2(2n+1)

4n + 3

dG0
4n+3

dζ
(ξ)

)]}

∓ Pc
π

ξ2

(
ξ2 − m

)3

{
3�B ′

0 + R2�B2

[
m

(
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In Eqs. (17) and (18), G∞
j (ξ) and G0

j (ξ) are provided by the expressions of “Appendix II” by simply setting

ζ = ξ . In addition,
dG∞

j

dζ
(ξ),

dG0
j

dζ
(ξ) and

d2G∞
j

dζ 2
(ξ),

d2G0
j

dζ 2
(ξ) are the first and second-order derivatives of

G∞
j (ζ ),G0

j (ζ )with respect to ζ at the point ζ = ξ . Regarding the value of ξ , inverting the conformal mapping
(Eq. (4)) it follows that

ξ =
(
x +

√
x2 − 4mR2

)/
(2R).

2.5 Applications demonstrating the capabilities of the solution

In order for the capabilities of the solution introduced in Sects. 2.3 and 2.4 to become clear, and also for a
quantitative overview of the variation of the displacement and stress components along some characteristic loci
to be obtained, a specific case is here considered: the disc’s radius RO is equal to 0.05m and its thickness t is
equal to 0.01m. The axes of the elliptic hole are α = 0.4RO = 0.02m and b = 0.1RO = 0.005m, i.e. the ratio
α/b is equal to 4. The disc is assumed to bemade of PMMAwithYoung’smodulus E = 3.19GPa and Poisson’s
ratio ν = 0.36. The disc is squeezed between the jaws of the ISRM-suggested device for the standardized
implementation of the Brazilian-disc test, which are made of steel with Young’s modulus EJ = 210GPa and
Poisson’s ratio νJ = 0.30. The externally imposed load Pframe is considered equal to 20kN. The solution of
the respective contact problem yields for the contact semi-angle ωo = 11.88◦ (see the first of Eqs. (11)). The
number of additional terms, n, used ranges from about 4 to 20, depending on whether displacements along L or
stresses along the x-axis are considered, according to a preliminary convergence analysis which indicated that
beyond these values any additional terms do not contribute significantly to the accuracy of the results obtained.

As far as it concerns the orientationφo of the long semi-axis of the elliptic hole with respect to the symmetry
axis of the pressure distribution, two configurations were considered: one with φo = 0◦ (absolutely symmetric)
and one with φo = 30◦. The first one is of crucial practical importance since the limiting value of the transverse
normal stress σy(y = 0) along this locus is used as an alternative approach for the determination of the stress
intensity factors (SIFs) [17] (assuming that the elliptic hole tends to a mathematic crack). The second one is
considered since previous studies [5,6] indicate that (for short mathematic cracks) it is approximately equal
to the limiting value beyond which KI becomes negative. Moreover, it offers an overview of the potentials of
the present approach even in case the symmetry of the load with respect to the elliptic hole is violated. For all
the calculations following the commercially available software, Wolfram Mathematica 10 was used.

In Fig. 3, the polar variation of the displacements of the elliptic hole’s upper lip is plotted against the angle
θ (considered in the ζ plane) within the interval [0◦, 180◦]. As it is expected, for φo = 0◦ (Fig. 3a), vL is
symmetric whereas uL is anti-symmetric with respect to the θ = 90◦ line. In other words, the shape of the hole
remains elliptic, the length of its long semi-axis decreases while that of the short one increases. The maximum
value of the uL -component is equal to about 0.021α or equivalently to about 0.42mm. For the vL -component,
the maximum value is equal to 0.011α or equivalently to about 0.21mm.

On the other hand, for φo = 30◦ (Fig. 3b), the symmetry of the displacements is lost and the deformed
shape of the hole is not anymore elliptic. It is observed that now the values of the vL -component are not
constantly positive: a sign change occurs at an angle equal to about θ = 85◦. The maximum absolute value
detected at θ = 0◦ and 180◦ is equal to about 0.015α or equivalently to 0.30mm. For the uL -component, the
maximum absolute value attained at an angle θ equal to about 56◦, is equal to about 0.019α or equivalently to
about 0.38mm. In addition, it is mentioned that the axes of the ellipse are slightly rotated with respect to their
initial orientation. The specific point will be discussed again in Sect. 5 in conjunction to the partial contact of
the crack lips observed for specific combinations of φo and Pframe.

The results concerning the stress field are plotted in Fig. 4a, b. As it can be seen from Fig. 4a, in case
φo = 0◦, σx is of compressive nature almost all along the locus considered (α < x < RO) and only as x → α
it becomes tensile. Its magnitude reaches−Pc for x → RO, while its maximum tensile value attained at x → α
is equal to only 0.14Pc. From the same figure, it is seen that σy is compressive in the 0.78RO ≤ x ≤ RO range
while in the α ≤ x < 0.78RO one it becomes tensile. Its magnitude ranges from −Pc (at x = RO) to 1.15Pc
(at x = α). What’s more, σxy is zero due to the symmetry of the configuration. In case the loading symmetry
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Fig. 3 The variation of the displacement components along the upper arc of the elliptic hole for φo = 0◦ (a) and φo = 30◦ (b)

axis is inclined with respect to the hole’s long semi-axis (φo = 30◦), it is seen from Fig. 4b that all three stress
components are negative almost all along the locus studied (α ≤ x ≤ RO). As it is expected, their magnitude
tends to zero as x → RO, while it reaches minimum values equal to about −0.16Pc at x = α and x = 0.70RO
(for σy), −0.38Pc at x = 0.44RO (for σxy) and −0.08Pc at x = 0.50RO (for σx ).

It is indicated at this point that for x = RO, i.e. on the discs’ outer periphery, the boundary conditions
σx = σy = σxy = 0 (stress-free external boundary) are only approximately satisfied, especially concerning
the σxy(x = RO) = 0 condition. This behaviour is a consequence of series truncation errors together with
the limited accuracy of the infinite-region assumption (when the elliptic hole’s major axis exceeds 80% of the
disc’s radius) in case of asymmetric configurations (as it is the one here considered (φo = 30◦)). Regarding the
last statement, it is recalled that stresses along the elliptically perforated disc’s periphery should by assumption
approximate those of the respective ring. Indeed, as it is seen from Fig. 4c, where the stress fields of the disc
with the elliptic hole and of the respective ring are drawn in juxtaposition to each other, the normal stresses
are very much alike at the point x = RO (the same number n of additional terms has been considered for both
solutions). This is not the case for the shear stress for which a slight difference appears. However, this difference
should be expected given that in case φo �= 0◦ and φo �= 90◦, the inherent asymmetry of the configuration does
not permit static equilibrium to be maintained unless a distribution of shear stresses is considered (along the
disc’s boundary), maintaining equilibrium by counterbalancing the inevitable rigid-body-rotation tendency.
Such a distribution of shear stresses was not taken into account (according to the common procedure of almost
all existing analytic approaches [6]) in the formulation of the problem. This point will be further discussed in
Sect. 4. In any case, the relatively small magnitude of this inconsistency and also the fact that emphasis will
be paid exclusively in the disc’s area around the tips of the elliptic hole rather than along its periphery, render
the specific discrepancies well manageable.

Consider now that for the specific configuration with φo = 0◦, the short semi-axis of the elliptic hole is
becoming gradually shorter and shorterwhile the numerical values of the other quantities previously adopted are
kept constant. Clearly, the σy-stress component increases due to the intensification of the stress concentration.
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To quantify this increase, the value of σy normalized over Pc at x = α is plotted against the b/α ratio in Fig. 5.
As it is expected, for relatively increased b/α ratios (exceeding 0.2), the magnitude of σy(x = α) is more or
less insensitive to the exact b/α value. In particular, for b/α exceeding 0.5 its value tends to Pc. On the other
hand, as b/α becomes small σy(x = α) starts increasing abruptly. It is mentioned characteristically that for
b/α = 0.01 σy(x = α) is almost twenty times the value of Pc. For b/α ratios even smaller than 0.01, the value
of σy(x = α) tends to infinity, as it is obviously expected (recall that the analysis described in the present study
is based on the linear elasticity assumption), since the elliptic hole tends to become a mathematic crack of
zero distance between its lips, and therefore the “stress concentration” concept gives its position to the concept
of “ stress intensity”. The specific limiting case (i.e. b/α → 0) is the object of next Sect. 3, where the stress
intensity factors will be determined.

At any other arbitrary point of the elliptically perforated disc, the stress field can be obtained similarly by
substituting in Eqs. (16) the expressions for the complex potentials (Eqs. (9) and (10)). Since the respective
expressions are extremely lengthy (and considering that from here on attention will be focused at points along
x-axis), they are omitted.

3 The stress intensity factors (SIFs)

As it was previously mentioned, the case with b/α → 0 corresponds to the circular disc with a central
discontinuity which closely resembles the circular disc with a central mathematic crack of length 2α. This
configuration is of crucial importance for practical applications since it simulates the familiar crackedBrazilian-
disc test, which is widely used for the determination of mode-I fracture toughness of brittle geomaterials.

The respective stress and displacement fields for this limiting case are obtained by setting b = RI = 0, so
that m = 1 and R = α/2 in the corresponding formulae of Sect. 2, which are still valid. For obvious reasons
(linear elasticity), the theoretical solution provides singular stresses at the points ±α (standing now as the tips
of a mathematic crack) that are conveniently expressed with the aid of the respective stress intensity factors
[17].

3.1 The analytic expressions for the SIFs according to the present approach

The SIFs are usually determined either from the stress field or through the complex potential Φ(z) [17].
The latter is the alternative chosen for the needs of the present study. In this direction, it is recalled that
Φ(ζ) = ϕ′(ζ )/ω′(ζ ). Then, reverting to the variable z, through the inversion of Eq. (4), i.e. by writing

ζ =
(
z + √

z2 − 4mR2
)
/(2R), and by considering R = α/2 and m = 1, which is the case when the minor

axis of the elliptic hole b is zeroed, Φ(z) is obtained in the case the elliptic hole has become a crack of length
2α, as:
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, (19)

whereb0,B j andB′
j denote the values of b0, Bj and B ′

j for b = RI = 0, respectively. Their explicit expressions

are given, again for brevity, in “Appendix IV”. In addition,
dG∞

j

dζ
(z) and

dG0
j

dζ
(z) are the first-order derivatives

of G∞
j (ζ ) and G0

j (ζ ) with respect to ζ , after reverting to the variable z. Clearly, Φ(z) as it has been obtained
in Eq. (19) is singular at the crack tips ±α. It is easily seen that in order to remove the singularity from Φ(z) at
points ±α, passing instead to the notion of SIFs, the later must be redefined in the case of an elliptic hole as:
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Combination of Eqs. (19) and (20) yields:
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where G0
j ,G

∞
j are real quantities obtained from

dG∞
j

dζ
(z),

dG0
j

dζ
(z) for z = α (or for ζ = 1) and m = 1. Their

analytic expressions are included in “Appendix V”.

3.2 The influence of critical geometric features on the values of the SIFs

Taking now advantage of the analytic expressions derived in Sect. 3.1, it is possible to explore in a quantitative
manner the role of some critical geometrical parameters of the overall configuration on the values of the SIFs.

As a first step in this direction, the mode-I and mode-II SIFs are plotted in Fig. 6 against the inclination, φo,
of the crack axis with respect to the symmetry axis of the pressure distribution. The disc’s radius RO is again
equal to 0.05m, and its thickness t is equal to 0.01m.A relatively long crackwith 2α = RO is considered, while
four different (arbitrarily prescribed) values are ascribed to the contact semi-angleωo, equal to 1◦ (approaching
the point force loading type), 10◦, 20◦ and 30◦. The overall external force Pframe is assumed equal to 20kN,
and the respective Pc values are obtained through Eq. (12). The number n of additional terms of the series
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expansion used here is restricted to 3, since convergence analysis indicated that increasing n further does not
contribute to the accuracy of the solution.

It is seen from Fig. 6 that for relatively small φo values, the mode-I SIF is positive indicating a tendency of
the stress field to open the crack. However, at some critical angle φo,cr (the exact value of which depends—very
slightly—on the contact semi-angleωo), KI is zeroed and becomes negative. The range of validity of the present
analysis (and of any other similar one) is restricted in the 0 ≤ φo < φo,cr domain since negative KI-values
imply that the crack lips came in contact to each other and contact stresses have inevitably been generated.
The appearance of contact stresses alters the initially considered boundary conditions (stress-free crack lips)
rendering the solution in the φo,cr ≤ φo ≤ 90◦ domain unnatural (formalistic application of the respective
formulae for the displacement field leads to overlapped crack lips as in the case of the infinite cracked plate
[18,19]). The solution of the specific problem is very complicated for a crack in a finite domain. A relatively
simple case of a finite circular domain with a short central crack was recently discussed by Markides et al.
[20,21].

Concerning the mode-II SIF, it is seen from Fig. 6 that it is of constantly negative sign. Its magnitude
increases with increasing φo for the whole range of φo values for which the present analysis is valid (0 ≤ φo <
φo,cr).

From Fig. 6, it is also concluded that in general the values of both KI and KII do depend on the contact semi-
angle ωo. For KI, this dependence is more pronounced for small φo-values and it is maximized at φo = 0◦. On
the contrary, for KII, this dependence is maximized at φo = φo,cr. It is noticed, however, that for moderate ωo-
values (ranging from 0◦ to about 12.5◦), this dependence is rather ignorable for practical applications. This is
an interesting observation since it is by no means expected that the contact angle 2ωo could exceed 25◦ [22,23]
in case a cracked disc made of a brittle geomaterial is compressed according to the ISRM standards [1,15]. It is
therefore concluded that the simplified expressions used for the determination of fracture toughness according
to the respective standards, which assume a small (arbitrarily determined) contact angle, are valid and the error
due to the deformability of the disc–jaw elastic system could be ignored at least in a first approximation.

The second geometric parameter of interest is the disc’s thickness. Its influence (for the same numerical
data as before) is visualized in Fig. 7a, b for the PMMA–steel pair of disc’s and jaw’s materials. The number
n of additional terms of the series expansion used is restricted again to three and the externally imposed load
Pframe is kept constant equal to 20kN. For thin discs, corresponding to the plane stress configuration, five
cases are considered for the thickness t of the disc, equal to 0.002, 0.004, 0.006, 0.008 and 0.01m. Following
Muskhelishvili’s [8] notation constant κ* for plane stress conditions is equal to (3 − ν)/(1 + ν). For disc
thicknesses t exceeding 0.01m, the problem is assumed to be a plane strain one and then Muskhelishvili’s
constant κ is equal to 3− 4ν. For both plane stress and plane strain conditions, the contact semi-angle ωo and
the load parameter Pc are obtained from the respective contact problem according to Eq. (11). Therefore, all
constants b0 and B j ,B′

j appearing in the solution are functions of ωo.
The variation of the mode-I and mode-II SIFs against the crack inclination angle φo is plotted in Fig. 7a. As

it is expected, the magnitude of both KI and KII decreases with increasing thickness (recall that the external
load is kept constant), tending to the respective plane strain distributions. It is seen that for t = 0.01m,
the plane stress distribution approaches accurately enough the respective plane strain one indicating that the
specific thickness is the critical (limiting) value of the disc’s thickness signalling the transition from plane
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Fig. 7 a The dependence of the SIFs on the thickness of the disc. b The mode-I SIF against the disc thickness for φo = 0◦ for
plane stress and plane strain conditions

stress to plane strain. Obviously, this limiting thickness value is not a universal constant since it depends on
the level of the externally applied load.

From the same Fig. 7a, it is seen that the critical value of the crack inclination angle φo,cr, designating the
end of the validity range of the analytic solution, does not depend on the disc’s thickness. For the numerical
values here assigned to the various parameters of the problem it holds that φo,cr = 22◦.

The dependence of mode-I SIF on the disc’s thickness for the specific case with φo = 0◦ (i.e. the configura-
tion used for the determination of themode-I fracture toughness KIC) is plotted in Fig. 7b. It is observed that the
KI − t relation is not monotonous. A clear maximum appears at t = 0.0015m. From this value, the KI-values
decrease smoothly tending to the respective plane strain value at about t = 0.01m. Assuming that the load
imposed is the one causing crack initiation, the plane strain value of KI corresponds to the fracture toughness
value which is considered as a material property somehow quantifying the resistance of the disc’s material to
crack propagation. It is mentioned at this point that the above results are of limited practical importance in
case of very thin discs: imposing compressive load on very thin discs is very difficult (if not impossible) due
to the inevitable buckling of the disc.

The last geometric parameter studied is the relative length of the crack with respect to the disc radius (the
accuracy of the present solution for long cracks will be assessed in the next section). The specific parameter
is of crucial importance since most analytic solutions are restricted to short cracks. The dependence of both
KI and KII on φo is plotted in Fig. 8 for various α/RO ratios ranging from very short cracks (α/RO = 0.1)
to rather long ones (α/RO = 0.5). As it is expected, for φo = 0, the mode-I SIF increases with increasing
α/RO ratios (from 1.5 for α/RO = 0.1 to 3.3 for α/RO = 0.5). For increasing crack inclination angles φo,
the magnitude of KI decreases, and this decrease is more abrupt for high α/RO ratios. As a result, the angle
φo, at which KI becomes zero is equal to φo,cr = 21.8◦ for α/RO = 0.5, while for α/RO = 0.1 it is equal
to φo,cr = 29.4◦. On the contrary, the dependence of KII on α/RO is more straightforward: increasing the
ratio α/RO the value of KII decreases systematically at least for the range of φo values for which the present
analytic solution is naturally sound (0 ≤ φo < φo,cr).
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3.3 Validation of the solution for the SIFs

In order for the above-described analytic solution to be properly validated, it is recalled that according to the
pioneering paper by Atkinson et al. [6], the SIFs are given (adopting the notation of the present study) as:
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In Eqs. (23) and (24), T�, S�,A�(ϑ) and B�(ϑ) are quantities provided by Atkinson et al. [6] in tabulated form.
In fact, T� and S� are real coefficients related to the α/RO ratio while A�(ϑ) and B�(ϑ) are sums involving
angle ϑ , which according to the notation and terminology of the present study is equal to π − φo.

On the other hand, considering (for comparison reasons) the casewhen the angleωo is arbitrarily prescribed,
so that Pc is given by Eq. (12), the respective formulae of the present analysis (given by Eqs. (21) and (22)),
are equivalently re-written as:
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Careful examination of Eqs. (23), (24), (25) and (26) reveals a qualitative similarity between Atkinson et
al.’s [6] formulae and those obtained in the present analysis, considering that NI, NII and FI, FII, respectively,
are double sums of terms involving the angle φo. The main difference (and main advantage) of the formulae
deduced during the present study is that the contact semi-angle ωo enters also into the calculations. This is
not the case for Atkinson et al.’s solution who assumed point loading. Moreover, the present analysis provides
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“closed-form” analytic expressions rather than coefficients in tabulated form. For the two solutions to become
comparable to each other, a very small arbitrary value must be ascribed to the angle ωo of the present solution
to simulate as close as possible point loading.

The comparison of the two solutions is implemented in Fig. 9 where both KI and KII are plotted against
angle φo for a disc with RO = 0.05m, t = 0.01m and Pframe = 20kN. Four α/RO ratios are considered equal
to 0.1, 0.2, 0.3 and 0.4. A very small contact semi-angle ωo equal to 0.001◦ is assumed for the present solution.
The number n of additional terms used (beyond the closed-form ones) for the calculations related to the present
solution are equal to 1 forα/RO = 0.1 and 0.2, n = 2 forα/RO = 0.3 and n = 3 forα/RO = 0.4 (convergence
is satisfactory), while for Atkinson et al.’s solution, all five terms provided in tabular form were used.

To further assess the present analysis, comparison is made in Fig. 9 also against the results of a recently
obtained solution for the SIFs, in case of a cracked circular disc under uniformly distributed pressure [5],
which is valid under the assumption of very short cracks with respect to the disc’s radius. Again, a very small
contact semi-angle ωo = 0.001◦ is considered, while for static equivalency, the uniformly distributed pressure
is assumed equal to p = Pframe/2ROωot . The respective formulae for both the mode-I and mode-II SIFs,
K ShortCr
I , K ShortCr

II , are given in “Appendix VI”. In these formulae, t1,2 = ROe∓i(φo−ωo) are the end points of
the first encountered loaded arc on LO .

As it is seen from Fig. 9a, b, for relatively short cracks (α/RO ≤ 0.2) all three solutions considered are
almost identical all over the range of validity of these solutions (corresponding to positive KI-values). The
difference between the present analysis and that by Atkinson et al. [6] does not exceed 5.5% (for φo = 0◦) and
tends to zero as φo → φo,cr. On the contrary, the difference between the present solution and that for cracked
discs with short cracks under uniform load is zero for φo = 0◦ and tends to about 4.5% as φo → φo,cr. For
α/RO > 0.2, the differences between the three solutions start increasing. For example, for α/RO = 0.4, the
mode-I SIF for φo = 0◦ according to Atkinson et al.’s solution exceeds those of the present analysis by about
19% (for higher φo values, the difference becomes smaller tending to zero as φo → φo,cr). On the other hand,
the solution by Markides et al. [5] is identical to the present one for φo = 0◦ and the difference increases with
increasing φo, finally reaching a maximum value equal to about 18% as φo → φo,cr. Concerning the mode-II
SIF, the conclusions, concerning the discrepancies between the three solutions, are similar to the ones related
to KI, both from quantitative and qualitative point of view.

The differences detected between the three solutions for relatively long cracks should be definitely expected
since the role of the boundary conditions becomes more decisive compared to that for shorter cracks given that
for the latter the crack tip is more or less insensitive to the exact conditions prevailing at the disc–jaw interface
(length of the contact arc, distribution of pressure).

4 Discussion

In this section, some crucial aspects of the centrally cracked circular disc will be discussed, in the light of
the as-above-obtained and validated solution, keeping always in mind that the specific configuration is closely
related to the application of the cracked Brazilian disc for the determination of fracture toughness.

The first point that must be highlighted is that the stress field along the boundary of the elliptic hole imposes
a rotation tendency on the hole which in turn imposes a rotational rigid-body-motion tendency to the disc itself.
This is true for any arbitrary angle φo different from zero (or π) and π/2 (or 3π/2). Under ideal conditions
(perfectly frictionless pressure), it is expected that the disc would rotate so that in its final equilibrium position,
the long axis of the elliptic hole would be normal to the symmetry axis of the external load. Such a rotation
is not observed in praxis since frictional stresses σrφ are developed along the disc–jaw interface prohibiting
free rigid body rotation. In other words, the rotational moment M appearing at the disc’s centre due to the
nature of the stress field imposed by radial pressure is balanced by the moment of the respective frictional
stresses developed. A schematic representation of the problem is shown in Fig. 10a for the case with m = 1,
i.e. for the mathematic crack of length 2α. It is seen from this figure that in order for the moment developed
at the disc’s centre to be balanced, a Coulomb friction σrφ = ηP(φ) (η is the respective coefficient of friction
between the disc and the jaw) must be inevitably considered along the disc–jaw contact arc. In addition, taking
into account the inevitable deformability of the disc–jaw pair, a second kind of friction stresses is developed
due to the incompatibility of the local displacement field in the immediate vicinity of the disc–jaw contact
arc. Friction stresses concern engineering community [24,25] since in some cases, they are responsible for
premature disc cracking at points away from the disc’s centre rendering the Brazilian-disc test’s outcomes
questionable. For the case of an intact disc, the friction stresses due to the displacement’s incompatibility were
recently quantified [26].
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Strictly speaking, the only possibility to achieve global equilibrium of the disc (and thus to achieve the
correct static solution of the problem) is to superimpose these additional loading conditions (i.e. the {M; σrφ}
couple) to the problem of the disc loaded exclusively by a radial pressure distribution σr . Ignoring these
additional loading conditions restricts the validity of the solutions obtained for the stress and displacement
fields only in the immediate vicinity of the hole (crack). In case full-field solutions are to be obtained, the
present solution (as well as any other of a cracked disc not taking under consideration friction stresses on the
loaded arc) should be carefully reconsidered.

In this direction, an effort was recently undertaken to quantify the friction stresses required to maintain the
disc’s global equilibriumand also to determine the respective stress fields. For this target to be accomplished, the
magnitude of the centralmomentM is determined directly from the forces obtained through an “inverse” second
fundamental problem. Preliminary results of this effort can be seen in Fig. 10b in which the exact boundary
conditions along the cracked disc’s periphery (including the loaded arc) are plotted taking into account all three
stress distributions (radial and the two tangential ones) depicted in Fig. 10a. In order for Fig. 10b to be drawn,
a PMMA disc of radius RO = 0.05m and thickness t = 0.01m with a central mathematic crack (m = 1)
of length 2α = 0.2RO at an angle φo = 30◦ with respect to the symmetry axis of the pressure induced was
considered. The disc is compressed under plane strain conditions between the ISRM curved steel jaws by an
overall external force Pframe = 20kN. The coefficient of friction η along the disc–jaw pair was set equal to
0.5. Both ωo and Pc are obtained from the respective contact problem. It is very interesting to observe from
Fig. 10b that both the shear- and the tangential-stress-component (σrφ and σφ) distributions are not symmetric
with respect to the symmetry axis of the radial stress component σr .

Along the above line of thought, the point concerning the accuracy and convergence of the present solution
at points close enough to the disc’s boundary (a point discussed shortly also in Sect. 2.2) is here reconsidered.
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Clearly, in case L is not very small compared to LO , so that apart from ϕo(ζ ) andψo(ζ ) some additional ϕ∗(ζ )
and ψ∗(ζ ) also exist on LO , then in order for the initial global equilibrium to be maintained, extra boundary
conditions counterbalancing these ϕ∗(ζ ) and ψ∗(ζ ) should be imposed to the loaded rim. Such boundary
conditions could be connected to the friction stresses (the existence of which was justified in the previous
paragraph) which were ignored in the present analysis. In such a case, ϕ∗(ζ ) and ψ∗(ζ ) could be deduced by
taking into account the central moment M considered in previous paragraph. Nonetheless, it should be stressed
that the above considerations concern the general case of asymmetric-problem configurations. In case φo = 0◦,
which is related to the determination of KIC, the solution remains accurate even for long elliptic holes and, for
any load level, since then the stress and displacement states on the outer periphery turn up to be the same for
both the elliptically perforated disc and the ring rendering the infinite-region assumption pretty legitimated.

The second crucial point that must be carefully explored is the possible contact of the crack lips. Indeed,
it is well documented in the literature [6,9–11,18,20,21] that beyond a critical φo -value (depending among
others on the initial distance between the crack lips) contact stresses are generated since the crack lips come in
contact to each other. The specific problem is very complicated especially in case of non-mathematic cracks,
as it is the elliptic hole considered here, since the contact may be partial, realized only along a finite portion of
their lip’s length. Therefore, an additional parameter enters in the problem, i.e. the length of the portion of the
crack lips coming in contact. The solution described in Sect. 2 permits the accurate determination of the crack’s
deformed shape and therefore the quantification of its portion along which the crack lips are in mutual contact.

The specific feature of the present analysis is visualized in Fig. 11a–d in which the deformed shape of a
disc with an elliptic hole is drawn in juxtaposition to its initial configuration. Figure 11a is drawn for a PMMA
disc with RO = 0.05m, t = 0.01m and a central elliptic crack of semi-length α = 0.6RO and α/b = 20 at
an angle φo = 50◦. Again, the disc is compressed between the ISRM steel jaws by an overall external force
Pframe = 75kN, andωo, Pc are obtained from the respective contact problem. The results are obtained for plane
strain conditions using n= 3 additional terms of the respective series expansions. It is very interesting to observe
(see the magnified view Fig. 11b) both the partial contact of the crack lips and the deformed configuration of
the initially elliptic hole: its axis is rotated clockwise with respect to its initial orientation, while at the same
moment, its shape is distorted tending to a nonlinear sigmoid configuration. On the other hand, Fig. 11c, d is
drawn for an elliptically perforated disc of the same dimensions and material as previously mentioned, but for
α/b = 6 (with α = 0.6RO), subjected to an overall external load Pframe = 150kN at an angle φo = 70◦, and
ωo arbitrarily predefined, equal to 2◦. Pc is now obtained through Eq. (12). Although the specific load level is
of only theoretical importance (its application is feasible due to the linear elasticity assumption), it is believed
that Fig. 11c offers a very clear view of the perforated disc’s deformation tendency. In addition, this theoretical
example demonstrates the unique capability of the present solution to provide naturally sound results for any
configuration, even for combinations of parameters leading to partial contact of the crack lips along the middle
region of their length rather than close to their tips (see the magnified view in Fig. 11d).

5 Conclusions

The finite circular disc with a central elliptic hole was considered analytically. Emphasis was placed to the
determination of the complex potentials characterizing the equilibrium of the disc under a parabolic distribution
of radial pressure acting along two finite arcs of its periphery. Knowledge of the complex potentials permitted
determination of both the stress and displacement fields all over the disc (ignoring the rotation tendency due
to the asymmetric configuration).

In the second part of the study, attention was paid to the limiting case when the minor semi-axis of the
elliptic hole tends to zero, and therefore, the elliptic hole tends to the mathematical crack with zero distance
between its lips. Taking advantage of the complex potentials, it was possible to obtain analytic expressions for
the stress intensity factors characterizing the intensity of the stress field in the vicinity of the tips of the crack.

The formulae obtained were compared against the respective ones introduced by Atkinson et al. and also
against the respective ones of a recently proposed solution of a similar problem, i.e. that of a disc with a short
central crack under uniform radial pressure. The comparison revealed that for short cracks (i.e. for crack length
over disc radius ratios lower than 0.2), all three solutions provide almost identical results. For longer cracks,
deviations between the three solutions appear approaching even 20% in case the α/RO ratio exceeds 0.4.

The main advantages of the present solution against previous ones can be summarized as follows:

i. The load distribution considered, i.e. parabolically varying radial pressure, is closer to the actual pressure
distribution along the disc–jaw interface as it is obtained from the solution of the respective contact
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problem [12,13]. Previous solutions considered either uniformly distributed pressure [5] or even a point
load (i.e. force along a generatrix of the disc’s periphery) [6].

ii. The solution is flexible because the length of the contact arc can be either considered equal to an arbitrary
predefined value or it can be obtained from the solution of the respective contact problem of the intact
disc–jaw problem assuming that the presence of the hole (crack) does not influence the conditions along
the disc’s boundary (i.e. for crack lengths not exceeding the radius of the disc).

iii. The formulae obtained for the stress and displacement fields as well as for the stress intensity factors,
although relatively lengthy, are “analytic” and can be easily used (even with the aid of commercial
software) since there is no need to resort to tabulated values. Moreover, using even a relatively small
number of additional terms of the respective series expansions, the accuracy obtained is very satisfactory,
at least for points not very close to the disc’s boundary.

iv. The solution for the displacement field of the elliptic hole’s boundary permits determination of the
deformed shape of the initially elliptic hole and, in addition, it permits the determination of the portions
of the hole’s lips that came in contact against each other and therefore along which contact stresses are
generated.

v. An alternative definition for the stress intensity factors through Φ(z) is introduced in the case of an
elliptic crack.

The main conclusions drawn can be summarized as follows:

i The tensile normal stress at the tip of the elliptic hole (x = α) for b/α ratios exceeding 0.2 is not sensitive
to the exact b/α value. Especially, for φo = 0◦ and 0.2 < b/α ≤ 0.5, σy tends to Pc. For lower b/α
ratios, σy at x = α increases very rapidly and the linear elasticity assumption collapses.
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ii The range of φo values, for which the present solution for the SIFs (and any other similar one) is valid,
is terminated when KI becomes negative due to the fact that from this point on, the crack lips come in
mutual contact, and contact stresses appear (both normal and shear) altering the boundary conditions.
The angle φcr at which KI changes sign depends on both the extent of the contact arc 2ωo and also on
the length 2α of the crack.

iii The values of the SIFs depend on the length of the contact arc. It is a fortunate fact, however, that for
moderate ωo-values (not exceeding 12.5◦), this dependence is very small and can be ignored. Therefore,
in practical applications, in which brittle materials are tested using the cracked Brazilian-disc test, it
is absolutely safe to assume that the simplified expressions for the SIFs (based on the assumption of
an arbitrarily determined small contact angle) are valid, and the error due to the deformability of the
disc–jaw elastic system is ignorable.

iv In general, the dependence of KI on the disc’s thickness is non-monotonous, and a clear maximum
of the KI − KI(t) graph is observed. For discs of diameter equal to about 100mm, the plane strain
assumption appears to be valid for disc’s thickness exceeding 10mm. There is no need therefore to test
thicker specimens in case the fracture toughness of brittle materials is to be determined using the cracked
Brazilian-disc test.

Before concluding, it should be emphasized once again that the solution described was obtained under a
number of simplifying assumptions. The most restricting one is perhaps that the ring’s boundary is insensitive
to the presence of the crack; therefore, the superposition principle was used in order to obtain the complex
potentials as the sum of those characterizing the equilibrium of a finite ring and those characterizing the elliptic
hole in an infinite plate. This is in fact the technique accepted also by Muskhelishvili [8] in the case of an
infinite long strip with a circular hole. Although any assumption is finally subjected to the litmus test of being
validated against either experimental reality or previous widely accepted analytic solutions (the latter is the
test successfully passed by the present solution), it is to be accepted that in case of crack lengths exceeding
the disc’s radius, and for the general case φo �= 0◦ and φo �= 90◦, the present solution (as well as any other
previously introduced) is to be considered with caution and reservation.

One might think at this point that the solution for the elliptically perforated disc could be obtained based
on the respective one of the intact disc instead of that for a ring-shaped body (as it was done in the present
analysis). This statement sounds meaningful; however, the fact that the ring’s solution has been obtained in
series form makes it more convenient than that of the intact disc. Indeed, the ring’s solution, though very
lengthy, is at least relieved from the presence of extra distinct poles (appearing in the intact disc’s solution at
the end points of the loaded arcs) apart from those at infinity and at the zero point, increasing the difficulty of
the procedure.

The second restricting assumption is that the disc is loaded by exclusively a distribution of radial pressure.
In other words, the influence of any kind of friction along the contact arc (tangential stresses) was ignored.
Although it is the privilege of the researcher to define the mathematic problem he intends to solve (considering
that all assumptions are clearly and unambiguously stated), it is to be accepted that the specific assumption limits
the practical applicability of the present solution. This is because in case the test is implemented using the device
suggested by ISRM for the standardized Brazilian-disc test [1,15], it is definitely proven [24–26] that complex
friction stress distributions are developed, the magnitude of which is not ignorable. Moreover, neglecting
friction imposes an additional complication since the static equilibrium of the disc becomes questionable: the
inherent lack of symmetry of the configuration studied (unless the long semi-axis of the elliptic hole is parallel
or normal to the axis of symmetry of the load imposed) tends to cause a rigid body rotation rendering the
assumption of static equilibrium under radial pressure only erroneous.

In spite of the above limitations, it is believed that the present study offers a valuable tool, not only
theoretical but also of practical value, to researchers working with the cracked Brazilian disc configuration:
the conclusions drawn could be the chargeable spark in the direction of modifying the relative standards for the
determination of KIC, while, on the other hand, they could be used in the direction of assessing and validating
sophisticated numericalmodelswhich nowadays arewidely used for the parametric study of a series of practical
aspects of the specific configuration.
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Appendix I: The coefficients of the series expansions of Eqs. (1) and (2)
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Appendix II: The principal parts, i.e. parts of the following functions in brackets that spawn poles at
the point at infinity and at ζ = 0, entering in Eqs. (9) and (10)
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Appendix III: The real, �, and imaginary, �, parts of the first six functions of Appendix II, appearing
in Eqs. (14) and (15)
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Appendix IV: The coefficients of the series expansions of Eq. (19), following from the values of the
respective coefficients of Appendix I for RI = 0
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Appendix V: Functions appearing in Eqs. (21) and (22) that indicate the first-order derivatives of the
first six functions of Appendix II with respect to ζ , for ζ = 1 (or after reverting to the variable z, for
z = α) and m = 1
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Appendix VI: The SIFs for a circular disc with a short central crack under uniform radial pressure [5]
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R8
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Oα2
(
R4
O + α4

)
cos 2ωo cos 2φo + 2R4

Oα4
(
cos 4φo + 2 cos2 2ωo

)
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