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Abstract The non-conservative instability of a deep cantilever beam subjected to a lateral force with partial
distribution has been verified. The governing equations have been derived using the extended Hamilton’s prin-
ciple, and the Galerkin method has been implemented to approximate the response of system. The influence of
system parameters like mass centroid offset, radius of gyration, fundamental frequencies ratio, load distribution
model, and the added effect of a free stream with chord-wise velocity has been examined on the instability
boundaries of the beam. In addition, the validity of the proposed model has been corroborated in comparison
with the available results in the literature.

List of symbols
A Beam cross sectional area
b Beam semi-width
c Mass centroid offset from elastic axis
E Young’s modulus
G Shear modulus
H(x) Heaviside step function
Iy′ Beam’s moment of inertia from y′ axis
Iz′ Beam’s moment of inertia from z′ axis
J Torsional rigidity
i, j, k Unit vectors associated with undeformed beam coordinate system
i′, j′,k′ Unit vectors associated with deformed beam coordinate system
km Radius of gyration
l Beam length
Mz′ Bending moment about the z′ axis
p̄ Intensity of the distributed follower force
t Time
T Kinetic energy
u, v, w Displacements in the x, y, z directions, respectively
U Strain energy
U∞ Free stream velocity
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x, y, z Mutually perpendicular axis system with x along the undeformed beam
δ( ) Variational operator
δ W Virtual work of the non-conservative forces
εxx εxy εxz Engineering strains
σxx σxy σxz Engineering stresses
ωθ Fundamental torsion frequency
ρ∞ Free stream density
ρ Beam density
θ Twist about elastic axis
κz′ Bending curvature about the z′ axis
( )′ Derivative with respect to x
(˙) Derivative with respect to t

1 Introduction

Follower forces have been a matter of research for more than 60 years owing to their real nature, numerous
practical applications, and being a possible catastrophic failure source. Also, they have been a matter of interest
because of the non-conservative features and the distinctive response of systems subjected to these kinds of
forces. Different patterns of follower forces are tangential [1] and lateral [2], as well as concentrated [3] and
distributed [4]. A broad investigation on types and characteristics of follower forces has been carried out by
Bolotin [5], Simitses and Hodges [6], and Langthjem and Sugiyama [7].

Cantilevered beams might be subjected to lateral follower forces in different examples such as the influence
of an end thrust applied on aircraft wing [8], powered engines in the middle portion of a wing [9], applied loads
on an aircraft wing as a result of actuated high lift devices, ailerons, or spoilers during flight, friction-induced
problems, and in steel and offshore structures.

The problem of non-conservative instability of a cantilever under the influence of a lateral force has been
first studied by Como [2]. The lateral load was considered as a follower force at the tip of the cantilever that was
modeled as the effect of a jet engine. The jet engine was modeled as a lumped mass attached to the cantilever,
and the effect of the cantilever mass was ignored in the equations of motion. The critical follower force was
found for this simplified case via the approximation methods. Later, Feldt and Herrmann [10] investigated
the bending-torsional flutter of a cantilevered wing subjected to an end lateral follower force. Moreover, the
effects of a lumped mass at the end and the aerodynamic loadings with Theodorsen model were studied. The
destabilizing influence of the follower force and the stabilizing effect of the end mass were proved. Also, it was
shown that the structural damping might have pronounced influence on the dynamic instability of the wing.

Bending-torsion flutter of deep cantilever beams subjected to an end thrust with and without the presence
of aerodynamic loadings has been investigated by Hodges [8] and Hodges et al. [11]. Changes in the critical
follower force versus the physical parameters of the system like mass centroid offset, radius of gyration,
ratio of flexural to torsional rigidities, and the velocity of chord-wise flow were examined. Fazelzadeh et al.
[9] studied the torsional-flexural aeroelastic instability characteristics of aircraft wings with arbitrary located
lumped mass under the influence of a concentrated follower force. The lumped mass was modeled as an aircraft
engine with mass centroid offset in three directions. The influence of the chord-wise and span-wise locations
of the mass and the magnitude of the follower force on the flutter speed and frequency of the aircraft wing was
studied. In addition, the effect of a time-dependent lateral follower force modeled as an engine thrust and the
added effect of aerodynamic loadings on the dynamic instability of aircraft wings were analyzed by Mazidi
et al. [12]. The stabilizing and destabilizing influence of the follower force with respect to its chord-wise and
span-wise location was examined. Furthermore, the complete nonlinear aeroelastic trim and stability analysis
of a flying wing aircraft considering the effect of four powered engines attached on the wings were studied by
Mardanpour et al. [13] and the flutter speed and frequencies were derived for various placements of engines.

The dynamic instability of cantilever beams under the influence of a partially distributed tangential force
was explored by Fazelzadeh and Kazemi-Lari [14], and the stable regions were derived for different load
distribution models. Also, the effects of an arbitrary located lumped mass and an elastic foundation were
investigated on the dynamic instability boundaries. Moreover, Fazelzadeh and Kazemi-Lari [15] studied the
flutter and divergence of deep cantilever beams subjected to a laterally distributed follower force. The influences
of bending to torsion frequency ratio, beam’s radius of gyration, and mass centroid offset on the static and
dynamic critical forces were analyzed.
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The present study investigates the bending-torsion instability of a deep cantilever beam subjected to a
partially distributed lateral follower force under the influence of a free stream. The changes in the beam’s mass
centroid offset, radius of gyration, and flexural and torsional rigidities which considerably affect the type and
magnitude of the critical follower force on the stability boundaries of the system are examined. Also, different
patterns are analyzed for the distribution of the follower force along the beam’s span. Moreover, the influence
of free stream velocity and the resulting lift and moment exerted on the beam on the instability characteristics
are studied. In addition, in order to verify the validity of the current formulations, the simulation results are
compared with available results in the literature.

2 Mathematical modeling

2.1 Problem description

The isotropic deep cantilever beam of uniform cross section is demonstrated in Fig. 1. A partially distributed
follower force with constant magnitude of p̄ is laterally exerted on the beam. In addition, the beam is subjected
to a free stream with a uniform chord-wise flow velocity of U∞. The distribution of area cross section is
such that the value of flexural rigidity in the z direction is much greater than its value in the y direction, i.e.,
E Iz′ � E Iy′ . Also, the negligible effects of rotatory inertia and deformations due to the transverse shear force
in bending analysis, as well as warping in torsion analysis, are not considered to avoid inessential complexity
in the governing equations [8,16].

2.2 Problem formulation

To establish the governing equations, the extended Hamilton’s principle is used as below:

δ

t2∫

t1

(T − U ) dt +
t2∫

t1

δW = 0, (1)

where the first variation of the kinetic energy can be readily written as [8]

δT =
l∫

0

−ρA
[
v̈δv + ẅδw + cθ̈ δw + k2

m θ̈ δθ + cẅδθ
]

dx . (2)

Also, the beam’s strain energy can be generally described as

U = 1

2

l∫

0

∫ ∫

A

[
σxxεxx + +σzzεzz + σyyεyy + σxyεxy + σxzεxz + σyzεyz

]
dA dx +

∫ l

0
Mz′κz′ dx . (3)

Fig. 1 A deep cantilever beam subjected to a partially distributed lateral force and a chord-wise flow
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Assuming the deep cantilever beam to be long and slender, a uniaxial stress state can be imagined, i.e.,
σx = σy = σz = 0. Besides, the remaining stresses and strains can be expressed as follows [8]:

σxx = Eεxx ,
σxy = Gεxy,
σxz = Gεxz,

εxx = u′ − yv′′ − zw′′,
εxy = −zθ ′,
εxz = yθ ′.

(4)

Moreover, the induced bending moment due to the laterally exerted follower force and the beam curvature in
Eq. (3) can be presented as

Mz′ =
∑

i

(−1)i+1 p̄

2

{
(xi − x)2 H (xi − x)

}
,

κ = v′′ + θw′′. (5)

After some manipulations, assuming a linear equation of motion and ignoring terms of higher orders, the first
variation of strain energy can be expressed as

δU =
l∫

0

{
G Jθ ′δθ ′ +

(∑
i

(−1)i
p̄

2

{
(xi − x)2 H (xi − x)

})
δv′′ + E Iy′w′′δw′′

+
(∑

i

(−1)i
p̄

2

{
(xi − x)2 H (xi − x)

})
w′′δθ +

(∑
i

(−1)i
p̄

2

{
(xi − x)2 H (xi − x)

})
θδw′′

}
dx .

(6)

The virtual work done by the partially distributed follower force, δWA and the induced lift and moment by
free stream, δWF in moving through virtual displacements is given by

δW = δWA + δWF ,

δWA = p̄

l∫

0

{(∑
i

(−1)i+1 H (xi − x)

)
j′ · [δu (x, t) i + δv (x, t) j + δw (x, t)k]

}
dx

= p̄

l∫

0

{(∑
i

(−1)i+1 H (xi − x)

) (−v′δu + δv + θδw
)}

dx,

δWF =
l∫

0

(Lδw + Mδθ) dx, (7)

where the lift and moment equations according to the Peters’ finite state theory [17] and Qin and Librescu [18]
are defined as:

L = πρ∞b2
(−ẅ + U∞θ̇

) + CLθ ρU∞b

(
−ẇ + U∞θ + b

2

(
CLθ

π
− 1

)
θ̇ − λ0

)
,

M = −πρ∞b3
(

1

2

(
CLθ

π
− 1

)
U∞θ̇ + b

8
θ̈

)
− 1

2
CLθ ρ∞U∞b2

(
ẇ − U∞θ − b

2

(
CLθ

π
− 1

)
θ̇ − λ0

)
,

(8)

where CLθ can be found in [19]. Also, the induced flow velocity in terms of cross section motion in accordance
with Peters’ theory can be expressed as

λ0 ≈ 1

2

N∑
1

bnλn . (9)
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Herein, the induced flow velocities, λ1, . . . , λN , are obtained by solving the following first-order differential
equations:

[A]
{
λ̇

} + U∞
b

{λ} = {c}
[
−ẇ + U∞θ̇ + b

2

(
CLθ

π
− 1

)
θ̈

]
, (10)

where the matrix [A] and vectors {b} and {c}can be found in [17]. For the case of a deep cantilever beam
subjected to a partially distributed lateral follower force, the following boundary conditions are applicable:

v(0) = v′(0) = w(0) = w′(0) = θ(0) = 0. (11)

Substituting the above work and energy terms in Eq. (1) and integrating by parts, results in the weak form of
the equation of motion. Applying the above boundary conditions and collecting the coefficients of δw and δθ ,
the torsional-flexural equation of motion of a deep cantilever beam subjected to a lateral follower force with
partial distribution when exposed to a chord-wise flow can be presented as

ρAẅ + ρAcθ̈ + E Iy′w′′′′ − CLθ ρ∞U∞b

(
−ẇ + U∞θ + b

2

(
CLθ

π
− 1

)
θ̇ − λ0

)

−πρ∞b2 (−ẅ + U∞θ̇
) +

∑
i

(−1)i+1 p̄

{[
1

2
(xi − x)2 H (xi − x)

]
θ ′′

− [2 (xi − x) H (xi − x)] θ ′
}

= 0,

ρAk2
m θ̈ + ρAcẅ − G Jθ ′′ +

(∑
i

(−1)i+1
[

1

2
p̄ (xi − x)2 H (xi − x)

])
w′′

+πρ∞b3
(

1

2

(
CLθ

π
− 1

)
U∞θ̇ + b

8
θ̈

)

+1

2
CLθ ρ∞U∞b2

(
ẇ − U∞θ − b

2

(
CLθ

π
− 1

)
θ̇ + λ0

)
= 0. (12)

2.3 Stability methodology

Due to the intricacy of the coupled structural and aerodynamic governing equations, the solution of this problem
is sought among the approximate solution methods. Here, the Galerkin approach is utilized with two distinct
approximation functions, one for bending and the other for torsional dynamics:

w(x, t) = ϕT (x)ξw(t), θ(x, t) = ψT (x)ξθ (t), (13)

in which ξw (t) and ξθ (t) are time-dependent vectors of the generalized coordinates. Besides, ϕ and ψ are
the free vibration natural modes of bending and torsion, respectively, which satisfy the boundary conditions
as shown below [20]:

φi (x) = cosh(α̇i x)− cos (αi x)− βi [sinh(αi x)− sin(αi x)], cosh(αi L) cos(αi L)+ 1 = 0, (14)

ψi (x) = sin(γi x), γi = (2i − 1)π

2L
. (15)

Discretizing the governing equations using the Galerkin procedure, a set of second-order differential equations

of motion is obtained. Defining the state variables Z = {
ξw, ξ θ , ξ̇w, ξ̇ θ ,λ

}T
, the second-order differential

equations can be transformed into the first-order state space representation of the governing equations:{
Ż

} = [A] {Z} . (16)

As a result of the non-conservative nature of system, the eigenproblem of Eq. (16) is non-self-adjoint and
hence the eigenvalues of the state matrix, [A], are generally complex quantities, i.e., ω = Re(ω) + i Im(ω).
The stability and instability regions and type of instability can be analyzed based on the sign and magnitude
of the real and imaginary parts of the eigenvalues [21].
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3 Numerical results and discussions

In order to verify the accuracy of the proposed model, the results of the simulations are compared for the case
of fully distributed follower force when the effect of free stream is disregarded. Figure 2 shows that a good
agreement exists between the current modeling and the results of Fazelzadeh and Kazemi-Lari [15], for the
variations of frequency versus the follower force. It should be noted that more modes (six modes for bending
and six modes for torsion) are used in the present study to improve the accuracy, in comparison with [15]
which used four modes. Also, for simplicity of numerical simulations, the following dimensionless parameters
are introduced:

X = x

l
, c̄ = c

l
, σ = km

l
, ν∞ = U∞

bωθ
,

τ = t

l2

√
E Iy′
ρA

, P̄ = p̄l3

σ E Iy′
, r2 = E Iy′σ 2

G J

α4
1

γ 2
1

.

(17)

Herein, r is the ratio of fundamental bending and torsion frequencies of the unloaded beam with c = 0.

3.1 Eigenvalue analysis

In this section, variations of the imaginary parts of the eigenvalues or frequency of vibrations and the real
parts of the eigenvalues, or the amplitude decaying rate, for different locations of the follower force along
the beam’s span are examined. The effect of the free stream is ignored, and the force distribution length is
assumed to be 0.25l. As it is seen in Fig. 3a, for r = 3/2, the first bending and torsion modes coalesce around
P̄ = 11.75, 23.25, 82.50 for 0.75 ≤ Xi ≤ 1.00, 0.50 ≤ Xi ≤ 0.75, and 0.25 ≤ Xi ≤ 0.50, respectively, with
the corresponding flutter frequency of Im(ω) = 2.88, 2.90, and 2.97. As it is observed, the force distribution
location remarkably affects the dynamic instability load but the flutter frequencies are nearly identical for these
cases. Moreover, the beam undergoes a divergence instability type for P̄ = 94.25 when 0.75 ≤ Xi ≤ 1.00.
Variations of the real parts of the eigenvalues are depicted in Fig. 3b. A bifurcation in values is observed at
the critical forces. Also, a second bifurcation happens for 0.75 ≤ Xi ≤ 1.00 corresponding to divergence
instability load.

3.2 Force distribution models

The cantilever beam might be subjected to the distributed follower force in different configurations. Table 1
shows the proposed models for load distribution. For all these four patterns, the stability boundaries are derived

Fig. 2 Model validation against the results of Fazelzadeh and Kazemi-Lari [15] for r = 2/3 and c̄ = 0.000
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Fig. 3 Variations of a imaginary and b real parts of the eigenvalues versus P̄ for different loading conditions

with respect to changes in follower force magnitude and for different fundamental frequencies ratios, mass
centroid offsets, and radii of gyration.

Figure 4a demonstrates the variations of the critical follower force for different values for the fundamental
frequencies ratio, r = 0.6, 1.4, and 2.0. For this analysis, it is assumed that the mass centroid is coincident
with the elastic axis. According to this figure, up to X1 = 0.375, the flutter force is approximately constant for
all these values. As X1 increases, i.e., the length of the force distribution decreases, the critical follower force
increases. This increase is much more considerable for r < 1. Figure 4b displays the variations for different
values of mass centroid offset, c̄ = −0.005, 0.000, and 0.005 assuming r = 2/3 and σ = 0.025. It is observed
that as the mass centroid is further displaced in the +y direction, the critical force decreases. For this case
again, the critical force is approximately unvarying up to X1 = 0.375. The stability boundary for different
values of non-dimensionalized radius of gyration, σ = 0.005, 0.010, and 0.020, is depicted in Fig. 4c with
r = 2/3 and c̄ = 0.005. As the radius of gyration increases, i.e., increase in mass distribution relative to the
elastic axis, the critical load decreases. Also, for all values of σ , the critical force increase for X1 > 0.375 and
this increase is much more noticeable for smaller radius of gyration.

Figure 5 presents the flutter boundary for the second force distribution model. It can be seen again that
the flutter boundary is much higher for smaller values of r and σ . Also, it can be found from Fig. 5b that the
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Table 1 Different types of load distribution models

Distribution model Description

Model 1 X2 = 1 and 0.000 < X1 < 0.750

Model 2 X1 = 0 and 0.500 < X2 < 1.000

Model 3 0.125 < χ < 0.500

Model 4 0.125 < ψ < 0.500

negative values of mass centroid offset have a considerable influence on the critical load, while the positive
values of c̄ causes a slight decrease in the flutter load when compared to c̄ = 0.000.

Variations of the critical force with respect to the changes in load distribution length of model 3 are plotted
in Fig. 6. In this model, the load distribution length increases from the mid-span toward the ends. As it is
indicated, the stability region extenuates as the distribution length increases and this reduction is much more
significant for χ < 0.3125.

Finally in Fig. 7, the stability boundary is plotted versus the load increment of model 4. In this model,
the cantilever beam is subjected to the lateral force in two segments. In this case, again the flutter force
monotonically declines as the total length of the force increases and this decrease is more considerable for
ψ < 0.3125.

From the above results, it can be inferred that for the same load distribution length and physical parameters,
the magnitude of the critical force can be sorted by model 2 > model 3 > model 4 > model 1.

3.3 Free stream effect

In this section, the influence of a free stream with chord-wise flow velocity is considered on the dynamic
instability of the deep cantilever. The flutter boundary for different load distribution models has been plotted
with respect to changes in non-dimensionalized flow velocity, v∞. In order to draw a better comparison between
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Fig. 4 Flutter boundary versus load distribution length increment of model 1 for different values of a r , b σ , and c c̄
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Fig. 5 Flutter boundary versus load distribution length increment of model 2 for different values of a r , b σ , and c c̄
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Fig. 6 Flutter boundary versus load distribution length increment of model 3 for different values of a r , b σ , and c c̄
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Fig. 7 Flutter boundary versus load distribution length increment of model 4 for different values of a r , b σ , and c c̄
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Fig. 8 Variations of the critical load with respect to free stream velocity increment for different load distribution conditions

Fig. 9 Variations of the critical load with respect to free stream velocity increment for various values of r

the loading conditions, the total length of the follower force is assumed to be 0.5l for all the models. The values
of other parameters are set to be r = 3/2 and c̄ = 0.000. According to Fig. 8, the stable region is much greater
when the load is applied in the first half of the beam span near the root. This is because the beam obtains less-
positive work from the distributed force when compared with other models. Moreover, the flutter boundary
for all models converges at v∞ = 1.2, in which the beam flutters merely due to the free stream velocity.

Figure 9 represents the variations of the critical load versus the increase in free stream velocity for different
frequency ratios and c̄ = 0.000. It is seen that for all values of r , the required force for dynamic instability rises
uniformly as the free stream velocity increases. The critical load reaches a maximum value and then suddenly
declines as the flow velocity increases. It is observed that this maximum value is greater for smaller frequency
ratios but the flutter boundaries come together at v∞ = 1.2 for all values of r .

Changes in the flutter boundary versus the free stream velocity for different values of non-dimensionalized
mass centroid offset are shown in Fig. 10. It can be found that the stable region gets smaller as the mass centroid
is moved toward the +y direction. Moreover, it is shown again that increasing the free stream velocity has a
stabilizing effect up to some certain values and has a destabilizing effect after that.

Increasing the radius of gyration is shown to have two distinct influences on the beam’s vibration as shown
in Fig. 11. First, it can be inferred that as the radius of gyration is increased, the critical load decreases regardless
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Fig. 10 Variations of the critical load with respect to free stream velocity increment for various values of c̄

Fig. 11 Variations of the critical load with respect to free stream velocity increment for various values of σ

of the free stream velocity. In addition, the stable region is shown to have a greater area for smaller radii of
gyration as the velocity increases. Also, the critical flow velocity, for which the beam flutters regardless of the
magnitude of the follower force, increases as the radius of gyration increases.

4 Conclusion

The coupled torsional-flexural instability analysis of deep cantilever beams considering the influence of a
partially distributed lateral force and free stream was investigated. Considering a partial distribution for the
lateral follower force was the main contribution of the present study. It was demonstrated that the force
distribution location remarkably affects the critical load but the flutter frequencies were nearly identical for
the different load distribution models. Besides, the flutter boundary was examined for these load distribution
models and system parameters like the ratio of flexural to torsional rigidities, radius of gyration, and mass
centroid offset. It was shown that for all models, the critical load increases when the mass centroid is moved
toward the −y direction and slightly decreases when moved in the +y direction. Also it was indicated that
the stable region shrinks when the radius of gyration is increased. Moreover, it was found that the required
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force for dynamic instability condition reaches its minimum value when the fundamental frequency ratio tends
toward unity.

The free stream was indicated to have a stabilizing effect on the beam’s vibration up to some specified
values. Further increase in the free stream velocity was shown to cause an abrupt decrease in the flutter load.
It was also observed that the flutter boundaries for all load distribution models and the selected values of r
converge at a critical flow velocity in which the dynamic instability takes place regardless of the applied force.
Moreover, it was found that the stable region got smaller as the mass centroid moved toward the +y direction.
Furthermore, it was demonstrated that the flutter boundary was much higher and the stable region was much
smaller for smaller values of radius of gyration as the free stream velocity increased.
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