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Abstract The size effect on orthotropic Kirchhoff-type skew micro-plates is investigated based on a modified
couple stress theory. For a three-dimensional orthotropic body, three additional material length scale parameters
should be involved in the modified couple stress theory (with respect to the three shear moduli). However, in
this study and without restricting the generality, we assume that the 2D couple stress state of the orthotropic
micro-plate is described solely by only one material length scale parameter in accordance with the in-plane
shear modulus. Furthermore, this reasonable assumption allows us to compare qualitatively the results with
those obtained by the nonlocal elasticity theory, which also uses only one material length scale parameter to
capture the size effect. Using Hamilton’s principle, the governing equilibrium equation of the micro-plate and
the associated general boundary conditions are derived in terms of the deflection. The resulting initial boundary
value problem is of fourth order, and it is solved employing the analog equation method. Example problems
are presented for orthotropic skew micro-plates, and useful conclusions are drawn from the investigation of
their micron-scale response. Some of the findings detected in studying the microstructure vibratory response of
orthotropic skew micro-plates, based on the modified couple stress theory, are also verified by those obtained
by the nonlocal elasticity theory. Nevertheless, a new important finding is that both the frequency and critical
load parameters increase by increasing the material length scale parameter of the modified couple stress theory,
which is in direct contradiction to that of the nonlocal elasticity theory where these parameters decrease by
increasing the nonlocal parameter.

1 Introduction

Thin plates are structural components, which have been widely used in micro and nanotechnology. The behavior
of such structures has been proven experimentally to be size dependent (e.g., see [1]) leading to the insufficiency
of the classical theories. Thus, the recourse to higher-order theories containing internal material length scale
parameters is inevitable. In the present study, we focus on materials which exhibit orthotropy (e.g., silicon,
graphene sheets, honeycomb), a case that is frequently encountered in the analysis of nanoplates [2].

Although many scholars have studied the micron-response of thin isotropic micro-plates, employing various
higher-order elasticity theories [3–9], the work that has been reported on the subject of orthotropic micro-plates
is limited only to analytical approaches for free vibration and buckling analysis of nanoplates of graphene sheet,
employing the nonlocal elasticity theory of Eringen [10]. More specifically, Sakhaee-Pour [11] studied the
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elastic buckling problem of a single-layered graphene sheet, while Pradhan and Phadikar [12] carried out
the vibration analysis of embedded multilayered graphene sheets and Murmu and Pradhan [13] solved the
buckling problem of a single-layered graphene sheet. Furthermore, Pouresmaeeli et al. [14] presented an
analytical approach for free vibration of all edges simply supported double-orthotropic nanoplates, Satish et
al. [15] investigated the free vibrations of orthotropic nanoplates using the two variable refined plate theory
and nonlocal continuum mechanics for small-scale effects and Pouresmaeeli et al. [16] studied the vibration
characteristics of a simply supported viscoelastic nanoplate by including the effect of a viscoelastic foundation.
The only numerical methods that have been employed so far are the differential quadrature method (DQM)
[17–19] for the investigation of the vibration and buckling response of orthotropic single-layered graphene
sheet using the nonlocal elasticity theory, the finite element method (FEM) by Shahidi et al. [20] for the
vibration analysis of orthotropic nanoplates with arbitrary variation in thickness based also on the nonlocal
continuum theory, the finite strip method by Analooei et al. [21] for the buckling and vibration analyses
of orthotropic nanoplates using nonlocal continuum mechanics and the boundary element method (BEM) by
Tsiatas and Yiotis [22] for the static analysis of microstructure-dependent rectangular and elliptical orthotropic
plates based on the modified couple stress theory of Yang et al. [23,24].

To the best of the authors’ knowledge, the investigation of the microstructure response of orthotropic skew
plates is restricted only to the works of Malekzadeh et al. [25] and Alibeygi Beni and Malekzadeh [26] who
studied the nonlocal free vibrations of orthotropic arbitrary straight-sided quadrilateral and skew nanoplates
based on the first-order shear deformation theory (FSDT) in conjunction with DQM.

In this work, the size effect on orthotropic Kirchhoff-type skew micro-plates is studied based on the
modified couple stress theory developed by Yang et al. [23]. In this modified, couple stress theory, an additional
equilibrium relation (moments of couples) forces the couple stress tensor to be symmetric. Therefore, the strain
energy comprises the symmetric stress tensor (conjugate to strain tensor) and the deviatoric part of the couple
stress tensor (conjugate to curvature tensor) as it was already mentioned by Antoine [27]. Although, for a three-
dimensional (3D) orthotropic body, three additional length scale parameters should be involved in the couple
stress theory (with respect to the three shear moduli), in this study and without restricting the generality, we
assume that the 2D couple stress state of the orthotropic micro-plate is described solely by only one material
length scale parameter in accordance with the in-plane shear modulus [22]. Furthermore, this reasonable
assumption allows us to compare qualitatively the results with those obtained by the nonlocal elasticity theory,
which also uses only one material length scale parameter to capture the size effect [25,26]. However, in the
newly published article by Chen and Li [28], an anisotropic laminated Kirchhoff plate model with two material
length scale parameters is proposed—based on the modified couple stress theory of Yang et al. [23]—which
relates implausibly the symmetric couple stress moment tensor to the asymmetric curvature tensor. In their
work, Chen and Li [28] present constitutive relations for anisotropic elasticity, which are mistakenly presumed
to be published by Koiter [29].

In this paper, the governing equilibrium equation of an orthotropic skew micro-plate and the associated
general boundary conditions in terms of the deflection are derived using Hamilton’s principle. The resulting
initial boundary value problem of the micro-plate is of fourth order, and it is solved using the analog equation
method (AEM). Numerical results for orthotropic skew and rectangular plates of various aspect ratios subjected
to vibratory or compressive in-plane forces are presented, and useful conclusions are drawn from the investi-
gation of their micron-scale response. Some of the findings detected in studying the microstructure vibratory
response of orthotropic skew micro-plates, based on the modified couple stress theory, are also verified by those
obtained by the nonlocal elasticity theory. Nevertheless, a new important finding is that both the frequency and
critical load parameters increase with increasing the material length scale parameter of the modified couple
stress theory, which is in direct contradiction to that of the nonlocal elasticity theory where these parameters
decrease with increasing the nonlocal parameter [21,25,26]. As far as it concerns the vibration case, Santos
and Reddy [30] came to the same conclusion studying the vibration of Timoshenko beams using nonclassical
elasticity theories. They reported that the nonlocal natural frequencies are found to be lower than the classical
ones, while the natural frequencies estimated by the modified couple stress theory are higher.

2 Problem formulation

Without restricting the generality, we consider a thin elastic skew plate occupying the two-dimensional domain
� in the x, y plane bounded by the boundary � (see Fig. 1a) consisting of homogeneous orthotropic linearly
elastic material, having thickness h and surface mass density ρ (x) with x : (x, y) ∈ �. The plate is deflected
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Fig. 1 a Plate geometry and notation, b loads acting on the plate

under the combined action of the distributed transverse loading g(x) with x : (x, y) ∈ � and the edge loads
Ñn(x), Ñnt (x), M̃nn(x) and Ṽn(x)with x : (x, y) ∈ � (see Fig. 1b). The deformation state at any point through
the plate thickness is described by [31]

ū (x, y, z) = u (x, y)− zw,x , (1)

v̄ (x, y, z) = v (x, y)− zw,y , (2)

w̄ (x, y, z, t) = w (x, y, t) (3)

where u and v are the in-plane displacements, and w is the transverse deflection of the middle surface. Taking
into account the aforementioned displacement field and following Tsiatas [5], the displacement and rotation
vectors of the micro-plate become

u = (u − zw,x ) e1 + (
v − zw,y

)
e2 + we3, (4)

θ = w,y e1 − w,x e2 + 1
2

(
v,x −u,y

)
e3, (5)

respectively, while the nonzero components of the strain and curvature tensor take the following form:

εx = u,x −zw,xx , εy = v,y −zw,yy , γxy = u,y +v,x −2zw,xy , (6.1–3)

χx = w,xy , χy = −w,xy , χxy = 1

2

(
w,yy −w,xx

)
, (7.1–3)

χxz = 1

4

(
v,xx −u,xy

)
, χyz = 1

4

(
v,xy −u,yy

)
. (7.4,5)

In the general case of a three-dimensional (3D) orthotropic body, the constitutive relations contain nine
independent moduli. These materials have three orthogonal planes of elastic symmetry and are usually defined
by the constants: E1, E2, E3 (Young’s moduli), ν12, ν13, ν23 (Poisson’s ratios) and G12,G13,G23 (Shear
moduli) [32]. Nevertheless, many scholars (e.g., Kirchhoff, Mindlin, Reddy) have developed two-dimensional
(2D) theories for plate structures based on kinematic assumptions which take into consideration that the plate
thickness is very small compared to the other two dimensions.

In the orthotropic Kirchhoff-type plate theory, the linear constitutive equations for a 2D state of plane stress
have the following form [33]:

σx = C11εx + C12εy = E1

1 − ν12ν21
εx + ν12 E2

1 − ν12ν21
εy, (8.1)

σy = C12εx + C22εy = ν12 E2

1 − ν12ν21
εx + E2

1 − ν12ν21
εy, (8.2)

σxy = C66γxy = G12γxy (8.3)



1270 G. C. Tsiatas, A. J. Yiotis

with ν12 E2 = ν21 E1. Furthermore, in the modified couple stress theory, proposed by Yang et al. [23], the
constitutive equations are relations between the deviatoric part of the couple stress tensor and the curvature
tensor. In this study, without restricting the generality, we assume that the aforementioned relations have the
following form [22]:

mx = 2G12l2χx , my = 2G12l2χy, mxy = 2G12l2χxy, (9.1–3)

mxz = 2G12l2χxz, myz = 2G12l2χyz (9.4,5)

with l being the material length scale parameter. That is, the 2D couple stress state of the orthotropic micro-
plate is described solely by only one material length scale parameter in accordance with the in-plane shear
modulus G12 [22]. Furthermore, this reasonable assumption allows us to compare qualitatively the results with
those obtained by the nonlocal elasticity theory, which also uses only one material length scale parameter to
capture the size effect [25,26].

The strain energy of the orthotropic Kirchhoff-type micro-plate is written as

U = 1

2

∫

�

∫ h/2

−h/2

(
σxεx + σyεy + σxyγxy + mxχx + myχy + 2mxyχxy + 2mxzχxz + 2myzχyz

)
dzd�

= 1

2

∫

�

[
Nx u,x +Nyv,y +Nxy

(
u,y +v,x

) + Nx (w,x )
2 + 2Nxyw,x w,y +Ny

(
w,y

)2 − Mxw,xx

− Myw,yy +2Mxyw,xy +Yxw,xy −Yyw,xy +Yxy
(
w,yy −w,xx

) + Yxz
1

2

(
v,xx −u,xy

)

+ Yyz
1

2

(
v,xy −u,yy

)
]

d� (10)

where Nx , Ny, Nxy are the membrane forces, Mx ,My,Mxy are the bending moments, and Yx , Yy, Yxy, Yxz, Yyz
are the couple moments defined as

⎧
⎨

⎩

Nx
Ny
Nxy

⎫
⎬

⎭
=

∫ h/2

−h/2

⎧
⎨

⎩

σx
σy
σxy

⎫
⎬

⎭
dz,

⎧
⎨

⎩

Mx
My
Mxy

⎫
⎬

⎭
=

∫ h/2

−h/2

⎧
⎨

⎩

σx
σy

−σxy

⎫
⎬

⎭
zdz,

⎧
⎨

⎩

Yx
Yy

Yxy, Yxz, Yyz

⎫
⎬

⎭
=

∫ h/2

−h/2

⎧
⎨

⎩

mx
my

mxy,mxz,myz

⎫
⎬

⎭
dz. (11.1–3)

Substituting Eqs. (8) and (9) into Eqs. (11) the latter become

Nx = C11u,x +C12u,y , Ny = C12u,x +C22u,y , Nxy = C66
(
u,y +v,x

)
, (12.1–3)

Mx = −D11w,xx −D12w,yy , My = −D22w,yy −D12w,xx , Mxy = 2D66w,xy , (13.1–3)

Yx = 2Dlw,xy , Yy = −2Dlw,xy , Yxy = Dl (
w,yy −w,xx

)
, (13.4–6)

Yxz = 1

2
Dl (

v,xx −u,xy
)
, Yyz = 1

2
Dl (

v,xy −u,yy
)

(13.7,8)

where Di j = Ci j h3/12 are the orthotropic plate rigidities and Dl = l2G12h is the contribution of rotation
gradients to the bending rigidity [5].
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The kinetic energy, neglecting the in-plane inertia forces, is given by

K = 1

2

∫

�

ρ (x) ẇ2d�. (14)

Here, the dot designates differentiation with respect to time. The potential energy due to applied loads is

W = −
∫

�

g (x, t) wd�−
∫

�

(
Ñnun + Ñnt ut

)
ds +

∫

�

M̃nnw,n ds −
∫

�

Ṽnwds (15)

where un and ut are the normal and tangential displacements at the boundary �.
The Hamilton’s principle, which is a variational statement and a generalization of the principle of virtual

work to dynamics, is defined by [31]

0 =
∫ t2

t1
(δU + δW − δK ) dt (16)

which after substituting Eqs. (10), (14) and (15) becomes

0 =
∫ t2

t1

∫

�

[− (
Mx + Yxy

)
δw,xx + (

2Mxy + Yx − Yy
)
δw,xy − (

My − Yxy
)
δw,yy

+ (
Nxw,x +Nxyw,y

)
δw,x + (

Nxyw,x +Nyw,y
)
δw,y −ρ (x) ẇδẇ]

d�dt

+
∫

�

[
Nxδu,x +Nxyδu,y +Nxyδv,x +Nyδv,y +Yxz

1

2

(
δv,xx −δu,xy

) + Yyz
1

2

(
δv,xy −δu,yy

)]
d�

−
∫

�

(
Ñnun + Ñnt ut

)
ds +

∫ t2

t1

⎡

⎣−
∫

�

g (x, t) δwd�+
∫

�

M̃nnδw,n ds −
∫

�

Ṽnδwds

⎤

⎦dt. (17)

Using the algebra of calculus of variations [31], taking into account that the membrane forces are not
influenced by the stretching of the middle surface (linear plate theory) [34] and performing the necessary
integrations by parts, we obtain the following: (i) boundary value problem, for the plane stress problem of the
plate:

Nx ,x +Nxy,y +1

2

(
Yxz,xy +Yyz,yy

) = 0, (18.1)

Nxy,x +Ny,y −1

2

(
Yxz,xx +Yyz,xy

) = 0 (18.2)

in �, together with the boundary conditions

Nx n2
x + Nyn2

y + 2Nxynx ny + 1

2

(
Yxz,y n2

x − Yyz,x n2
y

)
+ 1

2

(
Yyz,y −Yxz,x

)
nx ny = Ñn or

un = ũn on �, (19.1)
(
Ny − Nx

)
nx ny + Nxy

(
n2

x − n2
y

)
− 1

2

(
Yyz,x +Yxz,y

)
nx ny − 1

2

(
Yxz,x n2

x + Yyz,y n2
y

)
= Ñnt or

ut = ũt on �, (19.2)
1

2
Yyzn2

y + 1

2
Yxznx ny = 0 or u,n = 0 on �, (19.3)

1

2
Yxzn2

x + 1

2
Yyznx ny = 0 or v,n = 0 on �, (19.4)

1

2
Yxzn2

y − 1

2
Yyznx ny = 0 or u,t = 0 on �, (19.5)

1

2
Yyzn2

x − 1

2
Yxznx ny = 0 or v,t = 0 on �; (19.6)



1272 G. C. Tsiatas, A. J. Yiotis

(ii) initial boundary value problem, for the bending vibration problem of the plate:

ρ (x) w,t t − (
Mx + Yxy

)
,xx + (

2Mxy + Yx − Yy
)
,xy − (

My − Yxy
)
,yy

− (
Nxw,x +Nxyw,y

)
,x − (

Nxyw,x +Nyw,y
)
,y −g(x, t) = 0 (20)

in �, together with the boundary conditions

Qn − Mnt,s + Nnw,n +Nntw,t = Ṽn or w = w̃, (21.1)

Mnn = M̃nn or w,n = w̃,n (21.2)

on � and the corner condition

[[Mnt ]]k = R̃k or wk = w̃k (22)

at the k-th corner and the initial conditions

w (x, 0) = w̃ (x) , ẇ (x, 0) = ˙̃w (x) . (23.1,2)

The tilde over a symbol designates a prescribed quantity.
In the above relations, Nn , Nnt and Mnn , Mnt , Qn are boundary stress resultants defined by

Nn = Nx n2
x + Nyn2

y + 2Nxynx ny, (24.1)

Nnt = (
Ny − Nx

)
nx ny + Nxy

(
n2

x − n2
y

)
, (24.2)

Mnn = (
Mx + Yxy

)
n2

x + (
My − Yxy

)
n2

y − 2

(
Mxy + Yx − Yy

2

)
nx ny, (25.1)

Mnt =
(

Mxy + Yx − Yy

2

) (
n2

x − n2
y

)
+ (

Mx − My + 2Yxy
)

nx ny, (25.2)

Qn = ∂Mnn

∂n
− ∂Mnt

∂t
(25.3)

where n, t denote the directions normal and tangent to the plate, respectively, w,n ,w,t the derivatives of the
deflection w along the aforementioned directions, and nx , ny are the direction cosines of the outward normal
vector. Equations (25) using Equations (13) become

Mnn = f1∇2w + f2w,nt + ( f3 − f1) w,t t , (26.1)

Mnt = g1∇2w + g2w,nt + (g3 − g1) w,t t , (26.2)

Qn = f1
(∇2w

)
,n + ( f3 − f1 − g2) w,ntt + ( f2 − g1)

(∇2w
)
,t + (g1 − g3 − f2) w,t t t (26.3)

where f1, f2, f3 and g1, g2, g3 are given in the “Appendix”.
Since we treat the linear buckling problem, the in-plane forces Nx , Ny , Nxy are known a priori as they are

established by solving independently the plane stress problem of the plate described by Eqs. (18) and (19).
This problem is solved using the AEM [31] after writing Eqs. (18) and (19) in terms of the displacements using
Eqs. (12) and (13).

Introducing Eqs. (12) and (13) into Eq. (20) yields the following equation of motion in terms of the
deflection:

ρw,t t +
(

D11 + Dl
)
w,xxxx +2

(
D3 + Dl

)
w,xxyy +

(
D22 + Dl

)
w,yyyy

− (
Nxw,x +Nxyw,y

)
,x − (

Nxyw,x +Nyw,y
)
,y = g(x, t) (27)

in �, where D3 = D12 + 2D66. The boundary conditions (21) can be rewritten in the most general form,
including elastic support or restraint, as

β1w + β2 (Vn + Nnw,n +Nntw,t ) = β3, (28.1)

γ1w,n + γ2 Mnn = γ3 (28.2)
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where βi and γi are functions specified on � and Vn = Qn − Mnt,s is the effective shear force which for
straight sides (Mnt,s = Mnt,t ) is given by

Vn = f1
(∇2w

)
,n + ( f3 − f1 − 2g2) w,ntt + ( f2 − 2g1)

(∇2w
)
,t + (2g1 − 2g3 − f2) w,t t t . (29)

Note that all conventional boundary conditions can be derived from Eqs. (28) by specifying appropriately
the βi and γi functions. When the boundary � is nonsmooth, the following corner condition:

a1kwk + a2k[[Mnt ]]k = a3k, a2k �= 0 (30)

must be added to Eqs. (28), in which aik are constants specified at the k-th corner. One can observe that setting
Dl = 0, Eqs. (27), (28) and (30) yield the governing equation and the boundary conditions of the orthotropic
Kirchhoff plate theory [35].

2.1 Free vibrations of orthotropic micro-plates

The equation of motion for the free vibration problem of an orthotropic micro-plate is derived from Eq. (27)
in the absence of external transverse loading g(x, t) = 0, that is

ρw,t t +
(

D11 + Dl
)
w,xxxx +2

(
D3 + Dl

)
w,xxyy +

(
D22 + Dl

)
w,yyyy

− (
Nxw,x +Nxyw,y

)
,x − (

Nxyw,x +Nyw,y
)
,y = 0 (31)

in �, together with the homogeneous boundary conditions (28)

β1w + β2 (Vn + Nnw,n +Nntw,t ) = 0, (32.1)

γ1w,n +γ2 Mnn = 0 (32.2)

on the boundary �.

2.2 Buckling of orthotropic micro-plates

The differential equation for linear buckling of an orthotropic micro-plate is derived also from Eq. (27) by
setting the external transverse loading g(x, t) = 0 and considering homogeneous boundary conditions. Thus,
if the in-plane membrane forces are expressed in terms of a parameter λ, namely

Nx = λÑx , Ny = λÑy, Nxy = λÑxy (33)

the buckling problem for constant membrane forces is described by the following equation:
(

D11 + Dl
)
w,xxxx +2

(
D3 + Dl

)
w,xxyy +

(
D22 + Dl

)
w,yyyy

−λ
(

Ñxw,xx +2Ñxyw,xy +Ñyw,yy

)
= 0 (34)

in �, together with the boundary conditions

β1w + β2 (Vn + Nnw,n +Nntw,t ) = 0, (35.1)

γ1w,n +γ2 Mnn = 0 (35.2)

on the boundary �.

2.3 Bending of orthotropic micro-plates

Finally, the differential equation for linear bending of orthotropic micro-plates is deduced from Eq. (27).
Neglecting the inertia terms, in the absence of in-plane membrane forces, yields the equation [22]

(
D11 + Dl

)
w,xxxx +2

(
D3 + Dl

)
w,xxyy +

(
D22 + Dl

)
w,yyyy = g(x) (36)

in �, together with the boundary conditions (28).
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3 The AEM solution

Several BEM techniques have been reported in the literature, treating the bending problem of thin orthotropic
and anisotropic plates [36–38]. In this paper, the AEM is employed to solve the initial boundary value problem
described by Eqs. (27), (28) and (23). Let w be the sought solution to Eq. (27). This function is four times
continuously differentiable with respect to the co-ordinates x , y in � and three times on its boundary �.
According to the AEM of Katsikadelis [39], as it was developed for plates [40–42], Eq. (27) can be replaced
by the biharmonic equation

∇4w = b (x, t) (37)

where b (x, t) is the unknown fictitious load. Eq. (37) is quasi-static, that is, the time variable appears as a
parameter. It indicates that the solution of Eq.(27) can be obtained as the deflection surface of an isotropic
plate with unit stiffness subjected to the fictitious time-dependent load b (x, t) under the given boundary and
initial conditions.

According to the AEM, the unknown fictitious load b (x, t) can be established using BEM as following.
For the function w satisfying Eq. (37), the following two integral representations are obtained [41]:

cw(x, t) =
∫

�

�4b (x, t) d�−
∫

�

[
�1w +�2w,n +�3∇2w +�4(∇2w),n

]
ds, (38)

c∇2w(x, t) =
∫

�

�2b (x, t) d�−
∫

�

[
�1∇2w +�2(∇2w),n

]
ds (39)

where c = 2π, π, 0 depending on if x ∈ �, x ∈ �, x /∈ � ∪ �, respectively. Note that the boundary has been
assumed to be smooth at the point x. The kernels �i = �i (r), with r = |x − ξ | being the distance between
the field point x ∈ � ∪ � and source point ξ ∈ �, corresponding to the fundamental solution of Eq. (37) are
given as [41]

�1 (r) = −cosϕ

r
, �2 (r) = lnr + 1, (40.1,2)

�3 (r) = −1

4
(2r ln r + r) cosϕ, �4 (r) = 1

4
r2lnr (40.3,4)

where ϕ = �r,n.
The derivatives of the deflection up to the third order for points x ∈ � are obtained by direct differentiation

of Eq. (38). Thus, for the sake of conciseness, we can write the integral representations of the deflection and
its derivatives at a point x ∈ � as

2 πw,pqr (x, t) =
∫

�

�4,pqr b (x, t) d�

−
∫

�

[
�1,pqr w +�2,pqr w,n +�3,pqr ∇2w +�4,pqr (∇2w),n

]
ds (41)

where p, q, r = 0, x, y. The derivatives of the kernels are given in [41].
On the basis of Eqs. (21.1), (26) and (29), the boundary conditions (28) are written as

β1w + β2
[

f1
(∇2w

)
,n + ( f3 − f1 − 2g2) w,ntt + ( f2 − 2g1)

(∇2w
)
,t

+ (2g1 − 2g3 − f2) w,t t t +Ñnw,n +Ñntw,t

]
= β3, (42.1)

γ1w,n +γ2
[

f1∇2w + f2w,nt + ( f3 − f1) w,t t
] = γ3. (42.2)

The integral representations (38) and (39) for x ∈ � together with the boundary conditions (42) constitute
a set of four equations (two integral and two differential) with respect to the four boundary quantities w, w,n ,
∇2w and (∇2w),n . The system is solved numerically using the BEM for the integral equations and the finite
difference method for the differential equations [40–42]. Thus, the boundary of the plate is divided into N
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Fig. 2 Boundary and domain discretization

constant boundary elements and the domain into M quadrilateral elements on which the unknown quantities
are assumed constant (see Fig. 2). Subsequently, the four boundary quantities can be eliminated from the
discretized part of Eqs. (41), which yields

w = W0b + w0, (43.1)

w,pqr = W0pqr b + w0pqr (43.2)

where W0, W0pqr are known M × M matrices and w0, w0pqr are known M × 1 vectors emanating when
nonhomogeneous boundary conditions exist (i.e., β3 �= 0, γ3 �= 0).

The regular domain integrals in Eq. (41) are computed using the Gauss method with nine internal integration
points. Domain singular and hyper-singular integrals in Eq. (41) arise when the domain source (collocation)
point coincides with the domain field point. This computation can be effectively done by converting the domain
singular integrals over a domain cell into regular integrals along its boundary using Green’s reciprocal identity
as in [41,42].

Furthermore, the derivatives of the deflection with respect to time can be obtained by direct differentiation
of Eq. (43.1). That is,

ẇ = W0ḃ + ẇ0, (44.1)

ẅ = W0b̈ + ẅ0. (44.2)

Note that the time derivatives of w0 appear only when the functions β3, γ3 depend on time as well.
The final step of AEM is to apply Eq. (27) to M domain nodal points inside � (see Fig. 2) and substitute

the deflection and its derivatives on the basis of Eqs. (43) and (44). Thus, we obtain

Mb̈ + Kb − (
Nxw,xx +2Nxyw,xy +Nyw,yy

) = g (45)

where M and K are known square matrices having dimension M × M ; Nx, Ny, Nxy are known diagonal
M × M matrices containing the values of the constant membrane forces Nx , Ny , Nxy ; g is a vector including
the M values of the external load g(x, t) and b is the vector of the M values of the fictitious load b (x, t) to
be determined. Subsequently, using Eq. (43.2) to replace the derivatives w,xx,w,xy , w,yy , an equation of the
following form is obtained:

Mb̈ + (K − F)b = g (46)

with

F = NxW0xx + 2NxyW0xy + NyW0yy . (47)

Equation (46) is the semi-discretized equation of motion of the orthotropic plate with M, K representing
the generalized mass and stiffness matrices, respectively. It can be solved numerically, using any time-step
integration technique to establish the time-dependent unknown fictitious load b. The initial conditions of Eq.
(46) are obtained from Eqs. (43.1) and (44.1) on the basis of Eqs. (23) as follows:

b(0) = W−1
0 (w̃ − w0), (48.1)

ḃ(0) = W−1
0 ( ˙̃w − ẇ0). (48.2)
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3.1 Free vibrations of orthotropic plates

In this case, the equation of motion (46) takes the form

Mb̈ + (K − F) b = 0, (49)

and by setting

b(x, t) = B(x)eiωt (50)

Eq. (49) becomes
[
(K − F)− ω2M

]
B = 0, (51)

from which the eigenfrequencies and the mode shapes are established numerically by solving a typical eigen-
value problem of linear algebra.

3.2 Buckling of orthotropic plates

In this case, Eq. (34) takes the form

Kb − λ
(
Nxw,xx +2Nxyw,xy +Nyw,yy

) = 0. (52)

Further, using Eq. (43.2) to replace the derivatives, the following equation is obtained:

(K − λF)b = 0 (53)

where F is the known square M × M matrix given by Eq. (47).
The requirement that Eq. (53) has a nontrivial solution yields the buckling equation

det(K − λF) = 0. (54)

3.3 Bending of orthotropic micro-plates
In this case, Eq. (36) takes the form

Kb = g (55)

where K is a known M × M matrix, g is also a known M × 1 vector including the M values of the external
load g(x), and b is the vector of the M values of the fictitious load b (x) to be determined.

4 Numerical examples

On the basis of the numerical procedure presented in the previous section, a FORTRAN code has been
written and numerical results for certain micro-plates have been obtained, which illustrate the applicability,
effectiveness and accuracy of the proposed model.

4.1 Vibrations of an orthotropic skew micro-plate

As a first example, we consider a clamped orthotropic skew micro-plate with various aspect ratios (b/a) of the
skew sides (N = 100, M = 225). In order to validate the proposed method, an orthotropic plate (l = Dl = 0)
was first investigated. The data in this case are as follows: D11 = 1, D22 = 0.25 and D12 + 2D66 = 1. In
Table 1, numerical results for the dimensionless frequency parameter K f = ωa2√ρh/D11 of the plate are
presented, which are in very good agreement as compared with those obtained by Sakata and Hayashi [43].
Subsequently, the response of the same plate was investigated taking into account the microstructural effect,
as measured by the material length scale parameter l. Results for the frequency parameter are also presented in
Table 1 and Fig. 3. It is apparent that the frequency parameter increases with increasing the value of the skew
angle. This was also reported in [25,26] using the nonlocal elasticity theory. However, an important finding
is that the frequency parameter increases nonlinearly by increasing the material length scale parameter of the
modified couple stress theory, which is in direct contradiction to that of the nonlocal elasticity theory where the
frequency parameter decreases by increasing the nonlocal parameter [25,26]. Finally, it is worth mentioning
that the slope of the frequency parameter curve depends on the skew angle ψ , and particularly, the larger the
skew angle, the steeper the slope.
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Table 1 Frequency parameter K f of the orthotropic skew micro-plates of Example 4.1

(b/a) cosϕ/ϕ [43] l/h = 0 l/h = 0.1 l/h = 0.2 l/h = 0.3 l/h = 0.4

0.5/80 23.7746 23.7348 24.2423 25.7037 27.9682 30.8591
1.0/70 25.8101 25.8881 26.4438 28.0443 30.5252 33.6962
1.5/60 29.5859 29.7017 30.3646 32.2702 35.2152 38.9639
2.0/50 35.9342 35.8078 36.6966 39.2414 43.1485 48.0861
2.5/40 46.8856 47.1281 48.4700 52.2862 58.0855 65.3389
3.0/30 68.2991 68.8298 71.3064 78.2598 88.6309 101.3700
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Fig. 3 Frequency parameter K f versus the skew angle ψ

Table 2 Eigenfrequencies ωi of the orthotropic square micro-plate of Example 4.2

ωi [44] l/h = 0 l/h = 0.1 l/h = 0.2 l/h = 0.3 l/h = 0.4

1 17.860 17.543 18.432 20.697 23.745 27.258
2 36.295 36.034 37.326 40.921 46.228 52.708
3 45.683 45.660 47.920 53.832 62.111 71.983
4 67.071 68.191 70.600 77.118 86.421 97.517
5 74.466 76.023 77.802 82.873 90.612 100.347

4.2 Vibrations of an orthotropic square micro-plate

In order to demonstrate the efficacy of the method to treat plates with complex boundary conditions, the
vibration of an orthotropic square micro-plate with a free edge, while the others are clamped, has been analyzed
(N = 100, M = 225). The data in this case are as follows: D11 = 2, D22 = 1, D12 = 0.6 and D66 = 2/3.
In Table 2, the first five eigenfrequencies ωi of the plate are presented and compared favorably with those
obtained by Rossi et al. [44] (l = Dl = 0). Afterward, the same plate was investigated taking into account
the microstructural effect, as measured by the material length scale parameter l. Results for the first five
eigenfrequencies ωi of the plate are also presented in Table 2. As it was anticipated, all the eigenfrequencies
increase with the increase of the material length scale parameter l.

4.3 Buckling of an orthotropic skew micro-plate

The third example is devoted to the buckling of a simply supported orthotropic skew micro-plate with equal
length sides (a = b, N = 100, M = 225). The plate is subjected to a uniform compressive load Ñx as
depicted in Fig. 4. In this case, the data are as follows: D11 = 1 = D, D22 = 5.6025D, D12 = 0.375D and
D66 = 0.9375D. In Table 3 and Fig. 5, results for the critical load parameter Kb = Ncr b2/π2 D11 are presented
taking into account the microstructural effect. It can be observed that the critical load parameter increases also
nonlinearly with increasing the material length scale parameter. This is also in direct contradiction to that of
the nonlocal elasticity theory where the critical load parameter decreases by increasing the nonlocal parameter
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Fig. 4 Skew plate under uniform uniaxial compression

Table 3 Critical load parameter Kb of the orthotropic skew micro-plates of Example 4.3

ϕ l/h = 0 l/h = 0.1 l/h = 0.2 l/h = 0.3 l/h = 0.4

90 10.2421 10.9518 13.0806 15.3761 18.5385
75 11.4186 12.1943 14.5136 17.1068 20.6160
60 15.5549 16.5713 19.4618 23.0961 27.9851
45 25.6315 27.0121 31.0003 37.3069 45.7409
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Fig. 5 Critical load parameter Kb versus the skew angle ψ

[21]. From Fig. 5, it can be pointed out that the rate of change of the critical load parameter also increases by
increasing the skew angle ψ .

4.4 Bending of a clamped orthotropic skew micro-plate

In this final example, the bending of a clamped with equal length sides (a = b) orthotropic skew micro-plate is
considered (N = 100, M = 225). First, an orthotropic plate (l = Dl = 0)was investigated in order to compare
the results with those available in the literature obtained by Hadid and Bashir [45]. The data in this case are as
follows: D11 = 4, D22 = 1, D12 = 0.30 and D66 = 0.35. By comparing from Table 4, the evaluated normalized
central deflection w̄ = wD22103/[g(a/2)4] and maximum positive moment M̄ = M × 10/[g × (a/2)2] with
the available ones, it can be pointed out that the results are in very good agreement. Further, the influence of
the microstructural effect on the same plate was investigated. The normalized central deflection and maximum
positive moment for various values of the l/h ratio are also presented in Table 4 and Figs. 6 and 7. It can be
easily detected that both the normalized central deflection and maximum positive moment of the micro-plate
decrease nonlinearly with increasing the material length scale parameter.
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Table 4 Normalized central deflection and maximum positive moment of the orthotropic skew micro-plates of Example 4.4

ϕ [45] l/h = 0 l/h = 0.1 l/h = 0.2 l/h = 0.3 l/h = 0.4

w̄ M̄ w̄ M̄ w̄ M̄ w̄ M̄ w̄ M̄ w̄ M̄

75 8.656 1.435 8.619 1.427 8.452 1.400 7.984 1.325 7.309 1.215 6.533 1.086
60 6.854 1.177 6.987 1.195 6.822 1.164 6.371 1.081 5.740 0.964 5.042 0.835
45 4.086 0.775 3.998 0.759 3.885 0.733 3.583 0.662 3.173 0.566 2.737 0.464
30 1.390 0.343 1.336 0.337 1.344 0.344 1.192 0.289 1.001 0.222 0.811 0.158
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Fig. 6 Normalized central deflection w̄ versus the skew angle ψ
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Fig. 7 Normalized maximum positive moment M̄ versus the skew angle ψ

5 Conclusions

In this paper the response of an orthotropic skew micro-plate was studied based on a modified couple stress
theory containing only one material length scale parameter. Using Hamilton’s principle, the governing equi-
librium equation of the micro-plate and the associated general boundary conditions are derived in terms of the
deflection. The resulting initial boundary value problem is solved employing the AEM. The main conclusions
that can be drawn from this investigation are as follows:

(i) The present formulation is capable of capturing the size effect on the investigation of orthotropic Kirchhoff-
type skew micro-plates and is alleviated from fundamental flaws in existing micro-plate models, which
contain more than one material length scale parameter.

(ii) In the vibration case, the frequency parameter increases with an increase of the value of the skew angle.
This finding was also verified using the nonlocal elasticity theory. In addition, the frequency parameter of
the micro-plate increases nonlinearly with increasing the material length scale parameter. Moreover, the
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slope of the frequency parameter curve depends on the skew angle�, and particularly, the larger the skew
angle, the steeper the slope.

(iii) In the buckling case, the critical load parameter of the micro-plate increases nonlinearly with a linear
increase of the value of the material length scale parameter. Further, the rate of change of the critical load
parameter also increases with increasing the skew angle.

(iv) In the bending case, both the central deflection and maximum positive moment of the micro-plate decrease
nonlinearly with the increase of the material length scale parameter.

(v) A new important finding is that both the frequency and critical load parameters increase with increasing the
material length scale parameter of the modified couple stress theory, which is in direct contradiction to that
of the nonlocal elasticity theory where these parameters decrease with increasing the nonlocal parameter.

6 Appendix

The values of the parameters f1, f2, f3 and g1, g2, g3 are given as:

f1 = −
(

D11 + Dl
)

n4
x − 2

(
D3 + Dl

)
n2

x n2
y −

(
D22 + Dl

)
n4

y, (A1)

f2 = 2
[

D11n2
x − D22n2

y − D3

(
n2

x − n2
y

)]
nx ny, (A2)

f3 = −D12 + Dl − (D11 + D22 − 2D3) n2
x n2

y, (A3)

g1 =
[
−D11n2

x + D22n2
y + D3

(
n2

x − n2
y

)]
nx ny = −1

2
f2, (A5)

g2 = 2
(

D66 + Dl
)

+ 2 (D11 − D22 − 2D3) n2
x n2

y, (A6)

g3 =
[
−D11n2

y + D22n2
x − D3

(
n2

x − n2
y

)]
nx ny . (A7)
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