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Abstract This paper addresses the development of a novel updated Lagrangian variational formulation and its
associated finite element model for the geometrically nonlinear quasi-static analysis of cantilever beams. The
formulation is based on an incremental complementary energy principle. The proposed finite element model
only contains nodal bending moments as degrees of freedom. The model is used for the analysis of problems
modeled by the so-called elastica theory. Numerical solutions satisfying all equilibrium equations in a strong
sense can be obtained for arbitrarily large displacements and rotations. A Newton–Raphson method is adopted
to trace the post-buckling response. Numerical results are presented and compared with those produced by the
standard total Lagrangian two-node displacement-based finite element model.

1 Introduction

The study of large deflections of thin beams has received a growing interest in many engineering and science
problems. Examples of these problems include: framed structures [27,34,35], compliant mechanisms [8,43],
biological (DNA molecules) and nanoscale structures [29,44,46], and computer vision [10,24,30].

The simplest geometrically nonlinear bending theory of thin beams is the so-called elastica theory (some-
times also called Euler–Bernoulli elastica theory) [17,28]. The formulation and solution of the elastica problem
date back to James Bernoulli, Daniel Bernoulli and Euler, and have a long and rich history [20,45]. In the
framework of this theory, a beam is thought of as an inextensible line of particles, which resists bending accord-
ing to a law given by a linear constitutive relation. Further, no restrictions on the magnitude of displacements
or angles of rotation are considered. Several variants to the elastica theory have been proposed in the literature,
in particular, theories including dynamical effects, extensibility [22], shear deformation [2,23], plasticity, and
follower loads, see e.g., also [1] and the references therein.

Different approaches have been proposed for the analysis of elastic thin beam problems: (i) the ellip-
tic integral approach, first proposed in [6,36], which gives closed-form solutions for simple loading cases
and boundary conditions, see e.g., [23,31] for more details on this approach, (ii) the numerical integration
approach with iterative shooting techniques, e.g., [11,26,32], and (iii) the incremental finite element method
with Newton–Raphson iteration techniques [18,19,42]. Of these approaches, the finite element method is
indeed the most popular approach, mainly due to its versatility to the analysis of problems with complex
topologies and geometries. As a result, numerous geometrically nonlinear finite thin beam elements have been
developed over the past few decades. Fairly recently, B-spline-based isogeometric methods have also been
proposed in the framework of elastic thin beam problems [16,25].
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The numerical implementation of structural mechanics problems by the finite element method has been
performed mostly by resorting to displacement-based variational formulations, such as the well-known Prin-
ciple of Stationary Total Potential Energy (PSTPE), or the Principle of Virtual Work [47]. A shortcoming of
these formulations is that their resulting finite element models lead, in general, to stress discontinuities across
interelement boundaries. As a result, and since for many engineering purposes, the stress distribution is, very
often, the paramount information needed, applications of these models usually involve an averaging procedure
to obtain piecewise-smooth stress distributions for design calculations.

Models that avoid the need for these averaging procedures are the so-called equilibrium models, introduced
in [13,14] for small deformation problems. These models are usually formulated on the basis of the so-called
Principle of Stationary Total Complementary Energy (PSTCE), or the Principle of Complementary Virtual
Work [47], and are capable of producing statically admissible solutions, i.e., solutions satisfying in strong
form the equilibrium differential equations, as well as the equilibrium boundary conditions.

When used in conjunction, and in the framework of small elastic deformation problems, displacement
and equilibrium models may be used to determine upper bounds of the error of an approximate solution with
respect to the theoretically exact solution [14,15]. This is essential for a reliable application of the models, as
it allows to assess the accuracy of the finite element approximations.

However, although displacement-based models have been developed for both small and large deformation
problems, equilibrium models have been developed, almost exclusively, for small deformation problems.

We believe this stems from the fact that, although for small deformation problems both the PSTPE and
the PSTCE are only expressed in terms of displacement-like and stress-like variables, respectively, when large
deformations are assumed to be dealt with, even though the PSTPE can still be expressed only in terms of
displacement variables, the PSTCE cannot, in general, be expressed only in terms of stress-like variables, due
to the nonlinear coupling between stresses and displacements in the equilibrium equations of large deformation
problems. This may engender technical complications, as it requires the use of mixed approximation schemes
in the framework of the equilibrium models.

Equilibrium models are particularly attractive for geometrically nonlinear one-dimensional models, such
as beams and cables, due to their ability to provide exact equilibrium satisfaction in a more straightforward
way than in other types of structural elements, such as plates or shells.

Nevertheless, only a few studies have been addressed to the development of equilibrium models from
which statically admissible solutions can be obtained for beam problems. The original ideas of geometrically
nonlinear mixed finite beam elements were proposed in [3,9]. Almost one decade later, an equilibrium model
for geometrically nonlinear Euler–Bernoulli beams with moderately large deflections was introduced in [33].
A variationally consistent finite element model for the geometrically nonlinear first-order analysis of Euler–
Bernoulli framed structures has recently been proposed in [38]. This model relies on a pure complementary
energy principle and only involves force-like variables as fundamental unknowns, being therefore a true force-
based finite element model. However, all these models are only valid for moderately large deflections.

Equilibrium models for the analysis of framed structures with arbitrarily large displacements and rotations
were proposed in [37,39,41]. However, these models rely on two-field complementary energy principles,
involving not only stress resultants, but also displacement variables as fundamental unknowns. An exception
is the recently introduced force-based equilibrium finite element model for nonlinear elastic cables with
arbitrarily large strains [40], which was derived from a complementary energy principle only involving force-
like quantities.

All of the aforementioned finite element models are based on total Lagrangian approaches, i.e., approaches
in which all static and kinematic variables are referred to the initial configuration at time 0 [12]. This is the
reason why such models need, in general, to be mixed models involving both force-like and displacement-
like variables. A possible strategy to build force-based equilibrium models for geometrically nonlinear one-
dimensional beam problems is to resort to updated Lagrangian schemes [4,5], in which all variables are referred
to the configuration at time t. In fact, from a numerical point of view, geometrically nonlinear problems need,
in general, to be addressed by resorting to series of linearized problems solved in an incremental/iterative
fashion. Hence, incremental updated Lagrangian models may be well suited for the development of force-
based equilibrium models, i.e., models that only involve force-like variables, for the analysis of geometrically
nonlinear problems.

It is the purpose of this paper to: (i) introduce an incremental complementary energy principle only
expressed in terms of incremental bending moments for the geometrically nonlinear quasi-static analysis
of plane cantilever beam problems of the Euler–Bernoulli elastica type; (ii) derive a novel variationally con-
sistent force-based updated Lagrangian equilibrium finite element beam formulation; (iii) develop a new
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Fig. 1 Elastica problem

two-node, rotation-free, finite element for the analysis of cantilever beam problems with arbitrarily large dis-
placements and rotations. The proposed model resembles the standard C0-continuous Lagrange (or two-node)
displacement-based model with piecewise-linear rotations.

The paper is organized as follows: The set of governing differential equations and boundary conditions is
first introduced in Sect. 2, followed by the total energy principles associated with the boundary-value problem
under analysis, given in Sect. 3. The incremental form of the complementary energy principle that will be used
as the basis for the derivation of the finite element model is then presented in Sect. 4. The updated Lagrangian
equilibrium force-based finite element model is afterward derived in Sect. 5. Some numerical tests are analyzed
in Sect. 6 and, finally, some conclusions are drawn in Sect. 7.

2 Boundary-value problem

Without loss of generality, let us consider an initially straight cantilever thin beam, or elastica, of length
L subjected to a pair of concentrated loads Px and P y , and also a bending moment M applied at its tip, as
illustrated in Fig. 1. Let also x ∈ [0, L] denote a point of the elastica in its undeformed reference configuration.

The governing differential equations of the elastica in a quasi-static regime are given as follows, see
e.g., [28]

EI M ′ + Px sin(θ) + P y cos(θ) = 0, (1.1)

κ − θ ′ = 0, (1.2)

M − EIκ = 0 (1.3)

which represent the equilibrium, kinematic, and constitutive equations, respectively, where M = M(x) repre-
sents the bending moment field, θ = θ(x) represents the rotation angle of the normal to the elastica, κ = κ(x)
is the curvature field, EI is the bending stiffness, assumed constant, with E the Young’s modulus and I the
cross-sectional moment of inertia. (·)′ represents differentiation of (·) with respect to x .

The equilibrium and kinematic boundary conditions are

M(L) − M = 0, (2.1)

θ(0) = 0. (2.2)

Additionally, the horizontal and vertical displacements of the elastica, herein denoted by u = u(x) and
w = w(x), respectively, see Fig. 1, must satisfy the following conditions:

1 + u′ − cos(θ) = 0, (3.1)

w′ − sin(θ) = 0, (3.2)

u(0) = w(0) = 0. (3.3)

As is well known, the boundary-value problem defined by (1–3) may exhibit multiple solutions, very
often referred to as elastica shapes. A number of alternative variational (or weak) formulations of the present
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boundary-value problem can be developed. Variational formulations are well suited for the development of
consistent numerical methods, such as the finite element method. We introduce in the following section the
one-field principle of total potential energy, the two-field principle of complementary Hellinger–Reissner
energy, and also a two-field principle of total complementary energy associated with the present boundary-
value problem. The latter will be used as a starting point for the development of a pure incremental principle of
complementary energy, which in turn will be used as the variational basis for the construction of the proposed
force-based finite element model for the elastica problem.

3 Total energy principles

As is well known, each elastica shape corresponds to a stationary point of the total potential energy functional,
�p(θ) : Uk → R, defined by

�p(θ) =
∫ L

0

(
1

2
EIθ ′2 dx + Px

(
cos(θ) − 1

) − P y sin(θ)

)
dx − Mθ(L) (4)

with Uk the kinematically admissible space defined as

Uk = {
θ ∈ H1 : θ(0) = 0

}
(5)

where H1 represents a standard Hilbert space.
It can be easily seen that, of all kinematically admissible rotation fields θ , those that satisfy the equilibrium

differential equations and equilibrium boundary conditions are the ones for which the total potential energy
assumes a stationary value. This result constitutes the so-called PSTPE for the elastica problem.

Departing from this variational principle, different energy principles can be formulated by means of the
so-called Lagrange multiplier method [47]. Examples of this include: three-field principles of Hu–Washizu
type, two-field principles of Hellinger–Reissner type, or the principle of complementary energy. Aiming at
developing a force-based finite element approach for the elastica problem, we are particularly interested in
the development of a complementary energy-based variational formulation of the boundary-value problem
presented in the preceding section.

There are three main steps one needs to take to derive the complementary energy functional from the
potential energy functional. First, the so-called Legendre transformation is needed to replace the strain energy
density by its counterpart complementary form. In the present case, the Legendre transformation may be
written as

1

2
EIθ ′2 = Mκ − 1

2

M2

EI
. (6)

Second, the kinematic equations (1.2) and (2.2) need to be relaxed in the framework of the total potential
energy. This can be accomplished by means of the Lagrange multiplier method, which, after multiplying the
total potential energy �p by −1, gives the following complementary Hellinger–Reissner energy, �H R(M, θ) :
H0 × H1 → R,

�H R(M, θ) =
∫ L

0

(
1

2

M2

EI
− Mθ ′ − Px

(
cos(θ) − 1

) + P y sin(θ)

)
dx + Mθ(L) − M(0)θ(0) (7)

with H0 and H1 the standard Sobolev spaces. Note that, in the variational setting of this principle, there are
no subsidiary conditions, i.e., a pair (M, θ) need not satisfy a priori either the equilibrium or the kinematic
equations.

Finally, the complementary energy functional may be derived from the complementary Hellinger–Reissner
energy �H R by introducing the equilibrium equations (1.1) and (2.1), into its variational framework. This
may again be accomplished using the Lagrange multiplier method. The result is the two-field functional,
�c(M, θ) : Us → R, defined by

�c(M, θ) =
∫ L

0

(
1

2

M2

EI
− Px

(
cos(θ) − 1 + θ sin(θ)

) + P y
(

sin(θ) − θ cos(θ)
))

dx (8)
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with Us the statically admissible space given by

Us = {
(M, θ) ∈ H1 × H0 : EI M ′ + Px sin(θ) + P y cos(θ) = 0, M(L) − M = 0

}
. (9)

As can be seen, among all statically admissible pairs (M, θ), those which render a stationary comple-
mentary energy satisfy the kinematic differential equations (1.2) and the kinematic boundary conditions (2.2),
corresponding therefore to a solution of the boundary-value problem. This result will hereafter be referred to
as the PSTCE for the elastica problem. To the author’s best knowledge, it is the first time that the PSTCE is
formulated in the framework of the elastica problem.

Note that the PSTCE plays the dual role of the PSTPE presented previously. It is also worth mentioning that,
in the present case, the total complementary energy appears as a two-field functional, involving not only the
bending moment field, but also the rotation field. Hence, unlike the small deformation case, a stationary point of
�c does not represent, in general, a maximum point but rather a saddle point. In the finite element context, this
may engender technical complications, as it requires the use of mixed-type numerical discretization schemes,
which may suffer from numerical stability issues. In contrast, numerical formulations relying on one-field
(or pure) variational approaches, such as the traditional displacement-based formulation, are unconditionally
stable. Therefore, one-field variational approaches are particularly well suited for the development of reliable
finite element approaches. One possible way to avoid the use of mixed (also called multi-field) variational
formulations is to resort to incremental-based variational approaches. We introduce in the next section a novel
incremental principle of complementary energy only involving force-like variables as fundamental unknowns.
This principle will later on be used for the development of a force-based updated Lagrangian finite element
model for the elastica problem.

4 Pure incremental principle of complementary energy

Let S0 be the initial known state of the elastica, and let Sn and Sn+1 be the states prior to and after the addition of
the (n +1)-th increment of applied loads, respectively. The states Sn and Sn+1 are assumed to be incrementally
close to one another, which allows all the governing equations to be linearized with respect to the incremental
quantities. Let (·)n denote the variable in Sn and �(·) the change in the corresponding variable from the known
state Sn to the incrementally close neighbouring state Sn+1.

Toward the development of the pure incremental principle of complementary energy, let us first derive the
incremental form of the complementary Hellinger–Reissner principle.

The complementary Hellinger–Reissner energies in states Sn and Sn+1 are

�H Rn =
∫ L

0

(
M2

n

2EI
− Mnθ

′
n − Pxn (cos(θn) − 1) + P yn sin(θn)

)
dx + Mnθn(L) − Mn(0)θn(0) (10)

and

�H Rn+1 =
∫ L

0

(
(Mn + �M)2

2EI
− (Mn + �M)(θ ′

n + �θ ′)

− (Pxn + �Px )

(
cos(θn) − sin(θn)�θ − 1

2
cos(θn)�θ2 − 1

)

+ (P yn + �P y)

(
sin(θn) + cos(θn)�θ − 1

2
sin(θn)�θ2

) )
dx

+ (
Mn + �M

)
(θn(L) + �θ(L)) − (Mn(0) + �M(0)) (θn(0) + �θ(0)) (11)

where the following relations were used in (11):

cos(θn+1) = cos(θn) − sin(θn)�θ − 1

2
cos(θn)�θ2, (12.1)

sin(θn+1) = sin(θn) + cos(θn)�θ − 1

2
sin(θn)�θ2. (12.2)

Note that these relations correspond to series expansions about θn in which only terms up to second-order are
retained, being therefore valid for moderately large rotations.
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Subtracting (10) from (11), the incremental form of the complementary Hellinger–Reissner energy comes
out as

��H R(�M,�θ)=
∫ L

0

(
Mn�M

EI
+ �M2

2EI
− Mn�θ ′ − �M(θ ′

n + �θ ′)+(
Pxn sin(θn) + P yn cos(θn)

)
�θ

− �Px (cos(θn) − sin(θn)�θ − 1) + �P y(sin(θn) + cos(θn)�θ)

+ 1

2

(
Pxn + �Px

)
cos(θn)�θ2 − 1

2

(
P yn + �P y

)
sin(θn)�θ2

)
dx

+ Mn�θ(L) + �M (θn(L) + �θ(L)) − Mn(0)�θ(0) − �M(0) (θn(0) + �θ(0)) .

(13)

It can be easily shown that the Euler–Lagrange equations of ��H R , i.e., the conditions for which
δ
(
��H R

) = 0 holds, are

M ′
n + �M ′ + (Pxn + �Px )(sin(θn) + cos(θn)�θ) + (P yn + �P y)(cos(θn) − sin(θn)�θ) = 0, (14.1)

Mn

EI
+ �M

EI
− θ ′

n − �θ ′ = 0 (14.2)

and

Mn(L) − Mn + �M(L) − �M = 0, (15.1)

θn(0) + �θ(0) = 0. (15.2)

Indeed, they represent the incremental form of the boundary-value problem given by (1) and (2). Note that
the incremental complementary Hellinger–Reissner functional is complete in that it makes no assumptions on
moment equilibrium or compatibility in the reference state Sn . Different functionals can be developed in a
similar fashion by assuming that different conditions are satisfied in the reference state.

Integrating by parts the terms containing derivatives of the rotations, and using the incremental equilibrium
equations (14.1) and (15.1), gives rise to the incremental complementary energy functional, ��c : H1 → R,

��c(�M) =
∫ L

0

(
1

2

�M2

EI
+ Mn�M

EI
+ θn�M ′

+ 1

2

(
M ′

n + �M ′ + (Pxn + �Px ) sin(θn) + (P yn + �P y) cos(θn)
)2

(P yn + �P y) sin(θn) − (Pxn + �Px ) cos(θn)

)
dx . (16)

As can be seen, this functional is only expressed in terms of incremental moments. Therefore, it can be regarded
as a pure incremental form of the total complementary energy (8). We note that the structure of this incremental
energy functional resembles that of the total complementary energy functional introduced in [38].

The stationarity of the incremental complementary energy provides the kinematic equations. Hence, as
long as the incremental equilibrium conditions are satisfied a priori, a stationary point of ��c corresponds to
a solution to the incremental form of the boundary-value problem.

It can be easily seen that, as expected, when both Px and P y are zero, the last integral term in (16) becomes
zero and, therefore, the problem becomes linear. As a result, the pure incremental complementary energy must
be reformulated in that case and expressed as

��c(�M) =
∫ L

0

(
1

2

�M2

EI
+ Mn�M

EI
+ θn�M ′

)
dx . (17)

This functional can be obtained in the same fashion as that of given in (16), with the incremental equilibrium
equations (14.1) and (15.1) being simplified to

M ′
n + �M ′ = 0, (18.1)

Mn(L) − Mn + �M(L) − �M = 0. (18.2)

Note also that, unlike the total complementary variational principle presented in the preceding section,
which corresponds, in general, to a saddle-point principle, the proposed incremental complementary variational



Force-based finite element model 1139

principle corresponds to a maximum or a minimum principle, depending on the sign of the denominator of the
last term in (16). Physically, the denominator of the last term in (16) represents the axial force on the beam.
This being said, the sign of the second variation of the total complementary energy depends only on the sign
of the axial force applied along the beam. Indeed, if the axial force is positive, then the principle corresponds
to a maximum principle.

As it only involves the bending moment field as fundamental unknown variables, this incremental principle
is well suited for the development of a force-based updated Lagrangian finite element model.

It is also worth mentioning that the complementary energy-based functionals presented above include
lower-order derivatives than their corresponding potential energy functionals. Hence, from a numerical point
of view, the complementary variational formulations require lower-order continuity approximations than the
standard displacement-based variational formulations. This is of utmost importance, since the lower the order
of continuity we require for the approximation functions, the larger the range of functions we can choose from.

An advantage of the present pure incremental complementary variational approach over the total Hellinger–
Reissner (mixed) variational approach developed in [39] is related to numerical stability. Indeed, the numerical
discretization of a mixed variational principle is very often trickier, as it may lead to formulations with
inherent numerical stability issues. In fact, certain choices of the individual approximation functions lead to
mixed formulations characterized by indefinite algebraic systems that cannot be used, in general, to provide
reliable numerical results [7]. On the contrary, numerical formulations relying on pure (one-field) variational
approaches are unconditionally stable. The proposed finite element formulation herein developed naturally
belongs to this category.

Before proceeding to the development of the finite element model, it should be emphasized that, although
this functional requires the incremental form of the equilibrium equations to be satisfied a priori, there is no
guarantee that equilibrium will be satisfied in the (n +1)-th state. This stems from the fact that the equilibrium
equations are nonlinear. As a result, approximate solutions may drift away from the true solution during the
incremental process, even with small increments. To avoid this, an equilibrium check might be appropriate.
This may be easily accomplished by resorting to an incremental/iterative solution technique, such as a Newton–
Raphson-type scheme [12]. This technique leads to more accurate solutions, regardless of the increment size,
and is more efficient as fewer solution steps are required. As for the incremental kinematic equations (14.2)
and (15.2), they are only enforced in a weak sense within an increment. However, as their total forms consist
of linear equations, no compatibility check is required for convergence purposes.

5 Force-based updated Lagrangian finite element model

As noted above, only the incremental bending moment field needs to be approximated. Let us consider the
case of piecewise-linear C0-continuous polynomial functions, defined at the element level as

�Mh
e = �M0

e
Le − xe

Le
+ �M1

e
xe

Le
(19)

with e = 1, 2, . . . , nel, where nel is the number of elements. �M0
e and �M1

e represent the incremental nodal
bending moments defined at xe = 0 and xe = Le, respectively, with Le the length of the elements. Local
coordinates to the element xe are used.

The discretized form of the incremental complementary energy (16) can be expressed as a sum of element
contributions as

��h
c =

nel∑
e=1

��h
ce

(20)

with ��h
ce

representing the incremental complementary energy associated with element e.

After placing (19) into (16), and considering a single finite element, differentiation of ��h
c with respect to

the incremental nodal bending moments �M0
e and �M1

e gives the following algebraic linear (Euler–Lagrange)
system of equations:
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�M0
e Le

3EI
+ �M1

e Le

6EI
+ Mne Le

2EI
− θne

+
(
�M1

e − �M0
e + Le(Pxn + �Px ) sin(θne) + Le(P yn + �P y) cos(θne)

)
Le(Pxn + �Px ) cos(θne) − Le(P yn + �P y) sin(θne)

= 0, (21.1)

�M0
e Le

6EI
+ �M1

e Le

3EI
+ Mne Le

2EI
+ θne

−
(
�M1

e − �M0
e + Le(Pxn + �Px ) sin(θne) + Le(P yn + �P y) cos(θne)

)
Le(Pxn + �Px ) cos(θne) − Le(P yn + �P y) sin(θne)

= 0. (21.2)

This system of equations can be recast in matrix form as

Fe�Me + θe = 0 (22)

where Fe is the element flexibility matrix given as

Fe = FMATe + FGEOe

with FMATe and FGEOe the material and geometric flexibility matrices, respectively, given by

FMATe = Le

EI

[
1
3

1
6

1
6

1
3

]
and FGEOe = − 1

Le(Pxn + �Px ) cos(θne) − Le(P yn + �P y) sin(θne)

[
1 −1

−1 1

]
.

(23)

�Me represents the element vector of incremental nodal bending moments, whereas θe represents the element
vector of equivalent nodal rotations defined as the independent terms in Eqs. (21), being given as

�Me =
[

�M0
e

�M1
e

]
and θe =

⎡
⎢⎢⎣

Mne Le
2EI − θne +

(
Le(Pxn +�Px ) sin(θne )+Le(P yn +�P y) cos(θne )

)
Le(Pxn +�Px ) cos(θne )−Le(P yn +�P y) sin(θne )

Mne Le
2EI + θne −

(
Le(Pxn +�Px ) sin(θne )+Le(P yn +�P y) cos(θne )

)
Le(Pxn +�Px ) cos(θne )−Le(P yn +�P y) sin(θne )

⎤
⎥⎥⎦ . (24)

After performing simple direct allocation operations on the elementary systems of equations, the assembled
(global) governing system of algebraic equations for the finite element mesh is obtained as

F�M = θ (25)

with F the assembled flexibility matrix, and �M and θ the assembled vectors of incremental nodal bending
moments and equivalent nodal rotations, respectively, defined as

�M =

⎡
⎢⎢⎢⎣

�M0

�M1
...

�Mnel

⎤
⎥⎥⎥⎦ and θ =

⎡
⎢⎢⎣

θ0
θ1
...

θnel

⎤
⎥⎥⎦ (26)

where �Mi , i = 0, 1, 2, . . . , nel represent the global incremental nodal bending moments, and θ j , j =
0, 1, 2, . . . , nel, represent the equivalent nodal rotations. The adopted assembly procedure is similar to the
standard one employed for displacement-based models, see e.g., [21].

Note that the proposed finite element model makes use of C0-continuous approximate bending moments,
with the nodal moments as the fundamental unknowns. Hence, moment continuity along the interelement
boundaries is automatic. This resembles indeed the traditional displacement-based Galerkin finite element
model with nodal displacement unknowns. As a result, the present formulation avoids the need to resort to
Lagrange multipliers to enforce interelement moment equilibrium, a procedure usually leading to (computa-
tionally more demanding and conditionally stable) hybrid finite element formulations.

Being an incremental approach, the total load is divided into increments. In each load increment, the
incremental complementary energy is defined from the last known solution and minimized/maximized to
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obtain the next solution increment. Since there is no guarantee that equilibrium will be satisfied in the (n + 1)-
th state, an iterative procedure based on the Newton–Raphson algorithm is then activated to correct the solution,
avoiding the so-called drift-off errors during the incremental process. This solution is used as an initial state,
and the load is incremented upward. This process is continued until the desired load level is reached.

The Newton–Raphson iterative algorithm is driven by the equilibrium differential equation (1.1). This
amounts to setting the residue at the (i)-th iteration as

R(i) := EI M ′(i)
n+1 + Pxn+1 sin(θ

(i)
n+1) + P yn+1 cos(θ(i)

n+1). (27)

The iterations are repeated until the following convergence criterion is satisfied:

|R(i)| ≤ tol (28)

where tol is a sufficiently small specified equilibrium absolute convergence tolerance. The corresponding
bending moment M (i)

n+1 is then accepted as sufficiently close to the solution of the discrete boundary-value

problem and used afterward to compute θ
(i)
n+1 from Eq. (14.1).

The displacements uh and wh can be computed in the end of the iterative process by integrating Eqs. (3.1)
and (3.2), respectively, along the elements. The constants of integration that arise can be uniquely determined
by enforcing the continuity conditions and boundary kinematic conditions (3.3), thus leading to a globally
C0-continuous displacement field (uh, wh).

6 Numerical examples

To validate and assess the accuracy of the proposed force-based finite element model (referred hereafter to as
the FB-model), some examples were solved and their solutions compared with those obtained using a standard
displacement-based two-node finite element model with piecewise C0-continuous rotations (referred hereafter
to as the DB-model). Note that, for a given mesh, both models employ the same number of degrees of freedom,
thus leading to numerical simulations with similar computational costs.

Numerical solutions computed using the FB-model are hereafter denoted with a subscript index c, whereas
those computed using the DB-model are hereafter denoted with a subscript index p.

All reference solutions were computed using the DB-model with uniform meshes of 256 elements.
An exact analytical integration scheme was used in both FB- and DB-models.
A consistent system of units has been used for all physical quantities that define the selected numerical

examples.
For all computations, the bending stiffness was set to EI = 1, and the length of the cantilever was set to

L = 1.
Finite element meshes of 2, 4, 8, 16 and 32 elements were adopted in all examples. However, only the

solutions computed using 2, 4, 8 and 16 elements were included in the plots. As for the tabular results, all
solutions corresponding to the five meshes were presented. Throughout the various examples, the plots in
red, green, blue and orange correspond to the approximate solutions obtained using 2, 4, 8 and 16 elements,
respectively.

6.1 Load case 1: Px = 0, P y = 0, M = 2π

The classical problem of a cantilever subject to a bending moment at the free end is first studied. The applied
bending moment was set to M = 2π . In this particular case, the problem is linear and the exact analytical
solution is known. The exact deformed shape of the cantilever is a perfect circle, and the bending curvature
and bending moment fields are constant along the cantilever, see e.g., [39]. The analyses were carried out in
10 load steps. Due to the linearity of the problem, no Newton–Raphson iterations were required.

The obtained equilibrium paths representing the evolution of the tip rotations with respect to the load steps
are depicted in Fig. 2.

The computed deflections of the cantilever are depicted in Fig. 3. We note that, contrarily to the DB-model,
the FB-model does not enforce compatibility in strong form. As a result, not only the approximate rotation
fields are discontinuous across interelement boundaries, but also the kinematic condition θ(0) = 0 is violated.
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Fig. 2 Tip rotation versus load step for Px = 0, P y = 0, M = 2π . 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

D
ef

le
ct

io
n

x

Fig. 3 Deflection of the cantilever for Px = 0, P y = 0, M = 2π . 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)
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Fig. 4 Bending moments of the cantilever for Px = 0, P y = 0, M = 2π . 2, 4, 8 and 16 finite element mesh solutions depicted
in red, green, blue, and orange, respectively (color figure online)

However, this lack of compatibility decreases as the number of finite elements increases, tending to zero in the
limit as the number of elements tends to infinity.

The obtained distributions of bending moments are depicted in Fig. 4. As it can be seen, all distributions
are coincident to one another and match the exact solution. In other words, both the FB and DB finite element
models are capable of producing the exact solution, given by M = 2π in this case.
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Table 1 Tip rotation for Px = 0, P y = 0, M = 2π ; reference solution is θref = 6.28319

nel 2 4 8 16 32

θh
c (L) 4.71239 5.49779 5.89048 6.08683 6.18501

θh
p (L) 6.28319 6.28319 6.28319 6.28319 6.28319
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Fig. 5 Tip rotation versus load step for Px = 6, P y = 0.04, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted in
red, green, blue, and orange, respectively (color figure online)

The obtained tip rotations are indicated in Table 1. As expected, only the DB-model is capable of capturing
the exact solution in this case, as it is based on piecewise-linear continuous rotations, contrarily to the FB-model,
which gives piecewise-constant discontinuous rotations.

The obtained total potential and total complementary energies of the DB- and FB-solutions all match the
exact one, given by �c = −�p = 19.73921 in this case. This confirms the capability of both the DB- and
FB-models to produce the exact solution in this specific problem.

6.2 Load case 2: Px = 6, P y = 0.04, M = 0

The cantilever is now assumed to be subject to Px = 6 and P y = 0.04. We are particularly interested in
studying the post-buckling behavior of the cantilever. The small vertical load P y was introduced to artificially
induce buckling instability of the cantilever. The analyses were carried out in 40 load steps. The absolute
convergence tolerance for the Newton–Raphson method was set to 10−9.

The obtained equilibrium paths are depicted in Fig. 5. As it can be observed, except for the mesh only with
2 elements, all the other meshes render solutions relatively close to one another.

The deflections of the cantilever are depicted in Fig. 6. Clearly, the cantilever is under truly large displace-
ments and rotations for the adopted applied load values.

The distributions of bending moments are depicted in Fig. 7. As expected, all distributions are continuous
along the interelement boundaries and satisfy the equilibrium boundary condition given by M(L) = 0. The
numerical values of the bending moments computed using the FB- and DB-models at x = 0 are indicated in
Table 2 along with the reference solution. As it can be seen, for a given discretization, the FB-model gives
bending moments that are more accurate than those produced by the DB-model. Further, we can see from
Table 2 that, while the DB-bending moments converge from below to the exact solution, the FB-bending
moments converge from above to the exact solution.

The computed tip rotations are indicated in Table 3. As expected, unlike the case of the bending moments,
the computed tip rotations obtained with the DB-model are more accurate than those rendered by the FB-model.
Further, analyzing Table 3, we observe that the convergence of the tip rotations to the exact solution is reversed
with respect to that of the bending moments defined at x = L .

The total potential and total complementary energies associated with the FB- and DB-solutions are dis-
played in Table 4. Analyzing Table 4, it can be observed that although for the two first meshes the errors of the
FB-solution with respect to the reference solution are smaller than those of the DB-solution, for the remaining
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Fig. 6 Deflection of the cantilever for Px = 6, P y = 0.04, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)
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Fig. 7 Bending moments of the cantilever for Px = 6, P y = 0.04, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted
in red, green, blue, and orange, respectively (color figure online)

Table 2 Bending moment at support for Px = 6, P y = 0.04, M = 0; reference solution is Mref = 4.56784

nel 2 4 8 16 32

Mh
c (0) 4.94002 4.64488 4.58643 4.57245 4.56898

Mh
p (0) 3.74611 4.30949 4.49669 4.54903 4.56279

Table 3 Tip rotation for Px = 6, P y = 0.04, M = 0; reference solution is θref = 2.39533

nel 2 4 8 16 32

θh
c (L) 2.22322 2.35439 2.38536 2.39285 2.39471

θh
p (L) 2.44579 2.40846 2.39860 2.39615 2.39553

discretizations the errors of the DB- and FB-solutions are almost identical. It is also worth mentioning that
both the total complementary and the total potential energies converge from below to the reference solution.

The convergence of the errors of the solutions measured in total energy as the difference between the
obtained energies and the reference one is shown in Fig. 8. As it can be seen, the convergence rates of the FB-
and DB-models are identical.
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Table 4 Total energies for Px = 6, P y = 0.04, M = 0; reference solution is �re f = 2.54136

nel 2 4 8 16 32

�h
c 2.33918 2.48401 2.52687 2.53776 2.54050

−�h
p 2.30784 2.48304 2.52672 2.53773 2.54049
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Fig. 8 Convergence of the errors in energy with respect to the number of elements for Px = 6, P y = 0.04. FB-solution errors
in red; DB-solution errors in blue (color figure online)
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Fig. 9 Tip rotation versus load step for Px = 0, P y = 50, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)

6.3 Load case 3: Px = 0, P y = 50, M = 0

In this problem, the cantilever is assumed to be subject only to P y = 50. The analyses were carried out in 40
load steps. The absolute convergence tolerance for the Newton–Raphson method was set to 10−9.

The obtained equilibrium paths depicting the tip rotation versus the load step are presented in Fig. 9. Given
the large value adopted for the vertical load, the equilibrium paths exhibit a vertical asymptote for a rotation
angle close to π/2.

The obtained deflections of the cantilever are depicted in Fig. 10.
The distributions of bending moments are depicted in Fig. 11. As in the preceding problem, all distributions

are continuous along the interelement boundaries and satisfy the equilibrium boundary condition given by
M(L) = 0. The numerical values of the bending moments at x = 0 computed using the FB- and DB-models
are indicated in Table 5 along with the reference solution. Once again, the FB-model proves to be more accurate
than the DB-model in predicting bending moment distributions.

The obtained tip rotations are indicated in Table 6. Indeed, although the DB-tip rotations come out as more
accurate than those rendered by the FB-model, the relative errors of the computed FB-rotations with respect to
the reference solution are smaller than those of the bending moments provided by the DB-model. This seems
to indicate that the FB-model is more accurate in overall than the DB-model.
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Fig. 10 Deflection of the cantilever for Px = 0, P y = 50, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)
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Fig. 11 Bending moments of the cantilever for Px = 0, P y = 50, M = 0. 2, 4, 8 and 16 finite element mesh solutions depicted
in red, green, blue, and orange, respectively (color figure online)

Table 5 Bending moment at support for Px = 0, P y = 50, M = 0; reference solution is Mref = 9.99998

nel 2 4 8 16 32

Mh
c (0) 7.73327 9.55828 9.96396 9.99780 9.99985

Mh
p (0) 3.41476 5.40669 7.25452 8.51518 9.23432

Table 6 Tip rotation for Px = 0, P y = 50, M = 0; reference solution is θref = 1.56798

nel 2 4 8 16 32

θh
c (L) 1.60255 1.56931 1.56824 1.56804 1.56780

θh
p (L) 1.54219 1.57006 1.56858 1.56814 1.56802

The total potential and total complementary energies associated with the FB- and DB-solutions are pre-
sented in Table 7. It can be seen that the total potential and total complementary energies converge from below
and from above, respectively, to the reference solution. This result indicates convexity/concavity of the total
potential/complementary energies at the computed solution and may be used to compute global upper bounds
of the error of the approximate solutions.

The convergence results are shown in Fig. 12. As in the previous load case, the convergence rates of the
FB- and DB-models are identical.
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Table 7 Total energies for Px = 0, P y = 50, M = 0; reference solution is �re f = 41.71586

nel 2 4 8 16 32

�h
c 43.91113 42.35838 41.85759 41.74853 41.72375

−�h
p 38.62877 40.89322 41.51398 41.66592 41.70333
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Fig. 12 Convergence of the errors in energy with respect to the number of elements for Px = 0, P y = 50, M = 0. FB-solution
errors in red; DB-solution errors in blue (color figure online)
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Fig. 13 Tip rotation versus load step for Px = 6, P y = 5, M = 10. 2, 4, 8 and 16 finite element mesh solutions depicted in red,
green, blue, and orange, respectively (color figure online)

6.4 Load case 4: Px = 6, P y = 5, M = 10

The cantilever is now assumed to be subject to Px = 6, P y = 5 and M = 10. The analyses were carried out
in 50 load steps. The absolute convergence tolerance for the Newton–Raphson method was set to 10−9.

The obtained equilibrium paths are depicted in Fig. 13. The relative distances between all these paths show
that the present problem exhibits a highly nonlinear behavior.

The computed deflections of the cantilever are plotted in Fig. 14. We observe that the mesh only with 2
elements is too coarse to give an approximate solution close enough to the exact one. A more detailed view of
the deflection shapes of the cantilever with 4, 8 and 16 element meshes can be seen in Fig. 15.

The distributions of bending moments are depicted in Fig. 16. As before, all distributions are statically
admissible. This is of utmost importance in engineering design, as it avoids the need for the so-called averaging
procedures required when using the traditional DB-model, as it produces discontinuous bending moment
distributions. The numerical values of the bending moments computed using the FB- and DB-models at x = 0
are indicated in Table 8 and compared to the reference solution. Similarly to all previous numerical examples,
for a given discretization, the FB-model renders more accurate bending moments than those produced by the
DB-model.
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Fig. 14 Deflection of the cantilever for Px = 6, P y = 5, M = 10—global view. 2, 4, 8 and 16 finite element mesh solutions
depicted in red, green, blue, and orange, respectively (color figure online)
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Fig. 15 Deflection of the cantilever for Px = 6, P y = 5, M = 10—view of the three last solutions. 2, 4, 8 and 16 finite element
mesh solutions depicted in red, green, blue, and orange, respectively (color figure online)
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Fig. 16 Bending moments of the cantilever for Px = 6, P y = 5, M = 10. 2, 4, 8 and 16 finite element mesh solutions depicted
in red, green, blue, and orange, respectively (color figure online)
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Table 8 Bending moment at support for Px = 6, P y = 5, M = 10; reference solution is Mref = 10.77342

nel 2 4 8 16 32

Mh
c (0) 10.54008 10.99356 10.82025 10.78476 10.77620

Mh
p (0) 9.99007 9.93803 10.35181 10.58196 10.68551

Table 9 Tip rotation for Px = 6, P y = 5, M = 10; reference solution is θref = 10.03755

nel 2 4 8 16 32

θh
c (L) 8.30540 8.88851 9.44027 9.73270 9.88328

θh
p (L) 10.05688 10.02607 10.03648 10.03729 10.03747

Table 10 Total energies for Px = 6, P y = 5, M = 10; reference solution is �re f = 57.38625

nel 2 4 8 16 32

�h
c 62.78616 57.76473 57.45632 57.40255 57.39021

−�h
p 57.25106 57.31614 57.36691 57.38120 57.38493
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Fig. 17 Convergence of the errors in energy with respect to the number of elements for Px = 6, P y = 5, M = 10. FB-solution
errors in red; DB-solution errors in blue (color figure online)

The obtained tip rotations are indicated in Table 9. As in the previous load case, the DB-tip rotations come
out as more accurate than those rendered by the FB-model.

The convergence of the total potential and total complementary energies associated with the FB- and DB-
solutions is presented in Table 10. As in the preceding problem, the total potential and total complementary
energies converge from below and from above, respectively, to the reference solution.

The convergence results are shown in Fig. 17. As in the previous load cases, the convergence rates of the
FB- and DB-models are similar.

7 Conclusions

We have introduced a variationally consistent force-based updated Lagrangian finite element formulation for
the geometrically nonlinear analysis of beams modeled by the Euler–Bernoulli version of the elastica theory.
This formulation relies on a pure incremental complementary energy principle only expressed in terms of
bending moment fields. Based on this formulation, a new two-node, rotation-free, finite beam element has been
developed for the analysis of problems with arbitrarily large displacements and rotations. The proposed model
resembles the standard C0-continuous Lagrange (or two-node) displacement-based model with piecewise-
linear rotations. To assess the accuracy of the proposed model, we have analyzed a cantilever beam problem with
different loading conditions. The numerical results show that the proposed FB-model produces more accurate
bending moment distributions than those rendered by the traditional two-node DB-model. In particular, the
obtained bending moments satisfy the equilibrium differential equation in strong form and are continuous across
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the interelement boundaries. The obtained numerical results also demonstrate that, for a given problem, both
the proposed FB- and DB-models are characterized by the same convergence rate. Further, it was numerically
shown that, in some cases, pairing the computed total potential and total complementary energies of the
DB- and FB-numerical solutions, respectively, allows to determine global upper bounds of the error of the
approximate solutions with respect to the exact solution. This is of utmost importance in engineering design.
The formulation can be extended to beams with other boundary conditions and/or loading conditions, as well
as to initially curved beams. The formulation can also be generalized to the case of planar framed structures.
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