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Abstract In this paper, the static and stability stiffness matrices of a gradient elastic flexural Bernoulli–Euler
beam finite element are analytically constructed with the aid of the basic and governing equations of equilibrium
for that element. The flexural element has one node at every end with three degrees of freedom per node, i.e.,
the displacement, the slope and the curvature. The stability stiffness matrix incorporates the effect of axial
compressive force on bending. Use of these stiffness matrices for a plane system of beams enables one through
a finite element analysis to determine its response to static loading and its buckling load. Because the exact
solution of the governing equation of the problem is used as the displacement function, the resulting stiffness
matrices and the obtained structural responses are also exact. Examples are presented to illustrate the method
and demonstrate its merits.

1 Introduction

Linear elastic bars, beams, plates and shells used in nanomechanical and nanoelectronic devices have extremely
small dimensions, which are comparable to their microstructural internal lengths, and thus, their response to
static or dynamic loads depends on their material microstructure (Senturia [1]). When these microstructural
effects are important and since classical theory of elasticity is incapable of taking them into account, resort
should be made to generalized or higher-order elasticity theories, which due to their nonlocal character and
the inclusion of internal length parameters can adequately model them in a macroscopic manner. Among those
theories, Mindlin’s [2] general theory of elasticity with microstructure in its various forms and simplifications
has found many applications in structural analysis of microstructures. In particular, the form II theory of
Mindlin [2] associated with the second gradient of strain and consisting of just one constant (internal length)
for the static case in addition to the other two classical elastic moduli, usually mentioned as the gradient theory
of elasticity, has been extensively used during the last 15 years or so. Comprehensive literature reviews on
the gradient elasticity theory and its applications in the solution of static and dynamic problems by analytical
and numerical methods are those of Exadaktylos and Vardoulakis [3], Askes and Aifantis [4] and Tsinopoulos
et al. [5].

Among the plethora of works on the subject of gradient elasticity as applied to static and dynamic problems,
one can mention a few as representative cases of dealing with manifestations of microstructural effects modeled
by gradient elasticity. Microstructural effects appear in the form of increased stiffness [6], size effects [7],
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elimination of singularities [8], increase of buckling loads and natural frequencies [9] and wave dispersion
[10].

For the particular case of the static and dynamic analysis of flexural gradient elastic beams, the structures
considered in this paper, one can mention the works of Papargyri-Beskou et al. [11,12], Lam et al. [13],
Giannakopoulos and Stamoulis [14], Kong et al. [15] and Papargyri-Beskou and Beskos [6] on gradient
elastic Bernoulli–Euler beams and Papargyri-Beskou et al. [10], Wang et al. [16], Akgoz and Civalek [17] and
Triantafyllou and Giannakopoulos [18] on gradient elastic Timoshenko beams. In all these works, the analysis
was done by analytic methods and the beams were simple, statically determinate and under simple type of
loading.

However, for statically indeterminate beams with complex type of loading and/or variable cross-section
and especially for structures composed of beams, such as frames or gridworks, analytic methods become
complicated, inefficient and hence impractical. For all the above cases, resort should be made to numerical
methods of solution, such as the finite element method (FEM) [19]. Triantafyllou and Giannakopoulos [18],
recognizing the problem, tried to provide analysis aids for simple gradient elastic statically determinate and
indeterminate Timoshenko beams but they did not develop any numerical method of solution. It is really
surprising that as reported in [5], various finite element and boundary element methods have been developed
for the much more involved two- and three-dimensional gradient elastic solids and structures up to this year
and none for beam structures consisting of very simple one-dimensional members. Artan and Batra [20] and
Artan and Toksoz [21] employed the method of initial values (also known as the matrix transfer method) to
determine the eigenfrequencies and buckling loads, respectively, of simple gradient elastic Bernoulli–Euler
beams under various boundary conditions at their two ends. Their method is able to treat more complicated
cases than purely analytical methods, e.g., indeterminate beams or beams composed of more than one member
but is very complicated and lacks the generality, versatility and efficiency of the FEM, and for this reason,
even though an old method, its use is very limited.

In this work, the static and stability stiffness matrices of a gradient elastic flexural Bernoulli–Euler beam
finite element are analytically constructed with the aid of the basic and governing equations of equilibrium
of that element and its associated possible boundary conditions as described in Papargyri-Beskou et al. [11].
Use of these stiffness matrices for a plane system of beams enables one through a finite element analysis to
determine its response to static loading and its buckling load. Because the exact solution of the governing
equation of the problem is used as the displacement function, the resulting stiffness matrices and the obtained
structural response are also exact. Asiminas and Koumousis [22] have very recently constructed stiffness
matrices for finite element analysis of gradient elastic Bernoulli–Euler plane beam structures on the basis of
the theory in [11]. However, their displacement function is the usual cubic polynomial solution of the classical
beam bending problem and as a result of that the resulting matrices are approximate. This implies that every
physical member of the structure has to be discretized into a number of 2–3 finite elements for acceptable
accuracy solutions. In contrast, because the stiffness matrices of the present work are exact, one can assign
only one finite element per physical member and still obtain the exact solution. Of course, the expressions of
the stiffness coefficients here are more complicated than those in [22] but they are in closed form, and hence,
the additional computational effort is small.

Seven examples are presented to illustrate the method and demonstrate its merits. Five examples deal with
static analysis of statically determinate and indeterminate beams of uniform and nonuniform cross-section
and two examples with the determination of the buckling load of a beam under different types of nonclassical
boundary conditions.

2 Gradient elastic beam theory

The basic and governing equations of a gradient elastic Bernoulli–Euler beam in bending under static lateral
loading as well as the associated classical and nonclassical boundary conditions derived in Papargyri-Beskou
et al. [11] are reproduced in this section for reasons of completeness and easy reference.

Consider a straight prismatic beam under a static lateral load q(x) distributed along the longitudinal axis
of the beam, as shown in Fig. 1. Thus, the loading plane is x–y, and the cross-section A of the beam is
characterized by the two axes y and z with the former one being its axis of symmetry. Under the lateral load
q(x), the beam experiences bending in the x–y plane measured by its lateral deflection v(x) along the x axis.
Axial deformation of the beam is considered to be negligible. Assuming gradient elastic material behavior,
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Fig. 1 Geometry and loading of a prismatic beam in bending

Fig. 2 Mechanics convention for generalized nodal forces and displacements of a gradient elastic flexural beam element

one has that the normal to the cross-section bending stress σx has the form

σx = E

(
εx − g2 d2εx

dx2

)
, (1)

where E is the modulus of elasticity, g is the gradient coefficient with dimensions of length (internal length
representing the microstructural effects macroscopically) and εx is the normal bending strain expressed as

εx = −y
d2v

dx2 . (2)

Utilizing the kinematics of the Bernoulli–Euler theory, the constitutive relation (1) and the equilibrium of axial
forces and bending moments, one can finally obtain the governing equations of equilibrium for the gradient
elastic beam in terms of the lateral deflection v(x) as [11]

EI

(
d4v

dx4 − g2 d6v

dx6

)
= −q(x), (3)

where I is the cross-sectional moment of inertia about the z axis. The above equation, which is of the sixth
degree, reduces to the classical one of the fourth degree for g = 0.

If one considers a beam element of length L with its two ends defined by x = 0 and x = L , as shown in
Fig. 2, and makes use of a variational statement, he can recover the governing equation (3) and all possible
classical and nonclassical boundary conditions so as to satisfy the following equations [11]:

[
V (L) − EI[v′′′(L) − g2vv(L)]] δv(L) − [

V (0) − EI[v′′′(0) − g2vv(0)]] δv(0) = 0,[
M(L) − EI[v′′(L) − g2vIV(L)]] δv′(L) − [

M(0) − EI[v′′(0) − g2vIV(0)]] δv′(0) = 0, (4)[
m(L) − EIg2v′′′(L)

]
δv′′(L) − [

m(0) − EIg2v′′′(0)
]
δv′′(0) = 0.

In the above, primes denote derivatives with respect to x, V is the shear force, M is the bending moment
and m is the double bending moment due to the microstructure. This double moment m consists of two self-
equilibrating moment vectors that do not contribute to the equilibrium equations but to the strain energy, as
depicted in Fig. 2, where the positive directions of all forces and moments are also shown. It is observed that for
g = 0, Eq. (4) reduces to the corresponding ones for the classical case. The term classical boundary conditions
for the first two of Eqs. (4), used in this work and in most works of the pertinent literature, may not be correct in
the sense that these two equations contain not only classical but also nonclassical terms as well. However, for



748 I. P. Pegios et al.

Fig. 3 Matrix convention for generalized nodal forces and displacements of a gradient elastic flexural beam element

g = 0, these equations reduce to the classical ones, while the third of Eqs. (4), consisting of only nonclassical
terms, disappears.

If one assumes the four classical boundary conditions to be v(0), v(L), v′(0) and v′(L) prescribed and
the nonclassical ones to be v′′(0) and v′′(L) prescribed, then δv(0) = δv(L) =0, δv′(0) = δv′(L) = 0,
δv′′(0)=δv′′(L) = 0 and Eq. (4) are all satisfied. In view of Eq. (4), one can observe that, when dealing with the
classical boundary conditions, either the deflections v or the shear forces V = EI(v′′′ − g2vV) and the strains
(slopes) v′ or the bending moments M = EI(v′′ − g2vIV) at the boundary of the beam have to be specified.
For the case of the nonclassical boundary conditions, one has to specify either the boundary strain gradients
(curvatures) v′′ or the boundary double moments m = EIg2v′′′.

Consider now the previous beam of Figs. 1 and 2 without the lateral load q(x) subjected to an axial
compressive constant load P , which can cause flexural buckling for a certain value Pcr called the critical load
or buckling load to be determined.

The governing equation of a beam in buckling as well as all possible boundary conditions can be obtained
with the aid of a variational statement as described in detail in [11]. Thus, the governing equation of a beam
in buckling is of the form

EI
(
vIV − g2vVI) + Pv′′ = 0, (5)

while the boundary conditions satisfy the equations[
V (L)−[Pv′(L)+EI

[
v′′′(L) − g2vV(L)

]]] δv(L)−[
V (0)− [

Pv′(0)+ EI
[
v′′′(0)−g2vV(0)

]]]
δv(0) = 0,[

M(L) − EI[v′′(L) − g2vIV(L)]] δv′(L) − [
M(0) − EI[v′′(0) − g2vIV(0)]] δv′(0) = 0, (6)[

m(L) − EIg2v′′′ (L)]] δv′′(L) − [
m(0) − EIg2v′′′(0)]] δv′′(0) = 0.

It is easy to see that if g = 0 in Eqs. (5) and (6), the classical versions of these equations are recovered.

3 Gradient elastic flexural stiffness matrix

This section deals with the development of the stiffness matrix of a gradient elastic flexural beam element
with two nodes 1 and 2 at its two ends, as shown in Fig. 3. On the basis of Eq. (4) describing the boundary
conditions of the problem, one concludes that there are three nodal generalized displacements (v, v′, v′′) and
three nodal generalized forces (V, M, m) associated with those displacements at every node, as shown in Fig. 3.
In other words, every node has three degrees of freedom (d.o.f.): displacement, slope and curvature. These
nodal generalized displacements and forces of Fig. 3 are considered to be positive. One can observe that the
positive nodal quantities of Fig. 3 (matrix convention) are not the same with the corresponding ones of Fig. 2
(mechanics convention), and this fact has to be taken into account when transferring information from one
figure to the other.

For the construction of the stiffness matrix of the finite element of Fig. 3, one needs to select a displacement
function and adopt a definition of that matrix. In this work, the displacement function is selected to be the
exact solution of the homogeneous part of Eq. (3), which has the form [11]

v(x) = C1x3 + C2x2 + C3x + C4 + C5g4sinh (x/g) + C6g4cosh (x/g) , (7)

where C1, C2, . . ., C6 are constants of integration to be determined. It is observed that in the limit as g → 0, the
above displacement function reduces to the cubic polynomial used in classical finite element analysis. Because
use is made of the exact solution of the governing equation of the problem as the displacement function, it is
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expected that the stiffness matrix to be constructed will be exact, and hence, the response of a beam structure to
static loading analyzed on the basis of the FEM with that element stiffness matrix for every physical member
will be also exact.

The stiffness matrix of the finite element of Fig. 3 will be constructed here on the basis of the displacement
function (7) and the basic definition of any coefficient of that matrix. Thus, for a stiffness matrix [K ] connecting
the vector of generalized nodal forces {F} with the vector {U} of the corresponding nodal displacements as

{F} = [K ] {U } , (8)

the stiffness coefficient Ki j is defined as the nodal generalized force at the degree of freedom i due to a unit
nodal generalized displacement of the degree of freedom j , while all the other displacements are zero. In this
work, since every node has 3 d.o.f., the finite element of Fig. 3 has 2 × 3 = 6 d.o.f., and hence, the size of
the stiffness matrix [K ] will be 6 × 6, while the indices i, j will take the values 1, 2, . . ., 6. Thus, the stiffness
matrix will be constructed here column by column on the basis of six generalized displacements states, the
displacement function (7) and the expressions for V, M, m in terms of that displacement and its derivatives as
defined in Eq. (4).

Thus, the derivatives of v = v(x) of Eq. (7) are evaluated and listed as

v′(x) = 3C1x2 + 2C2x + C3 + C5g3cosh (x/g) + C6g3sinh (x/g) ,

v′′(x) = 6C1x + 2C2 + C5g2sinh (x/g) + C6g2cosh (x/g) ,

v′′′(x) = 6C1 + C5gcosh (x/g) + C6gsinh (x/g) ,

vIV(x) = C5sinh (x/g) + C6cosh (x/g) ,

vV(x) = C5 (1/g) cosh (x/g) + C6 (1/g) sinh (x/g) , (9)

while the generalized forces V, M and m are expressed in terms of the above derivatives with the aid of Eq. (4)
as

V (x) = EI
(
v′′ − g2vV) ,

M(x) = EI
(
v′′ − g2vIV) , (10)

m(x) = EIg2v′′′.

Consider the first displacement state defined as

v(0) = v1 = 1, v′(0) = v′
1 = 0, v′′(0) = v′′

1 = 0,

v(L) = v2 = 0, v′(L) = v′
2 = 0, v′′(L) = v′′

2 = 0,
(11)

where v1, v′
1, v′′

1 , v2, v′
2, v′′

2 are the generalized nodal displacements of the finite element of Fig. 3. The above
Eq. (11) in view of the expressions (9) can be written in the form

C4 + C6g4 = 1, C3 + C5g3 = 0, 2C2 + C6g2 = 0,

C1L3 + C2L2 + C3L + C4 + C5g4sinh (L/g) + C6g4cosh (L/g) = 0,

3C1L2 + 2C2L + C3 + C5g3cosh (L/g) + C6g3sinh (L/g) = 0, (12)

6C1L + 2C2 + C5g2sinh (L/g) + C6g2cosh (L/g) = 0.

The above Eq. (12) can be thought of as a system of six equations with six unknowns, the constants Ci (i =
1, 2, . . ., 6) and easily solved to provide

C1 = 2

12g2L + L3 − 6gL2 coth[ L
2g ] ,

C2 = − 3

12g2 + L2 − 6gL coth[ L
2g ] ,

C3 = 6g

−6gL + (12g2 + L2)tanh[ L
2g ] , (13)
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C4 = 1 − 6g2

12g2 + L2 − 6gL coth[ L
2g ] ,

C5 = 1

g3L − 1
6 g2(12g2 + L2)tanh[ L

2g ] ,

C6 = 6

g2
(

12g2 + L2 − 6gL coth
[

L
2g

]) .

Using the definition of the stiffness coefficients Ki j and the different sign convention of Fig. 2 (mechanics
convention) and Fig. 3 (matrix convention), one can obtain the Ki j stiffness coefficients for the first column
of [K ] corresponding to displacement state (11) in the form

K11 = V (0), K21 = M(0), K31 = m(0),

K41 = −V (L), K51 = −M(L), K61 = −m(L),
(14)

where the right-hand sides of Eq. (14) can be computed by using Eqs. (10) and (9) with values for the constants
Ci(i = 1, 2, . . ., 6) those of Eq. (13). Thus, the above stiffness coefficients Ki j of Eq. (14) can be written
explicitly in the form:

K11 = 12EI

12g2L + L3 − 6gL2 coth
[

L
2g

] ,

K21 = − 6EI

12g2 + L2 − 6gL coth
[

L
2g

] ,

K31 = EI

⎛
⎝ 1

L
− L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠ ,

K41 = − 12EI

12g2L + L3 − 6gL2 coth
[

L
2g

] ,

K51 = − 6EI

12g2 + L2 − 6gL coth
[

L
2g

] ,

K61 = EI

⎛
⎝− 1

L
+ L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠ .

(15)

Consider now the second displacement state defined as

v′(0) = v′
1 = 1, v(0) = v1 = 0, v′′(0) = v′′

1 = 0,

v(L) = v2 = 0, v′(L) = v′
2 = 0, v′′(L) = v′′

2 = 0. (16)

The above Eq. (16) in view of the expressions (9) can be written as a system of six linear equations with
six unknown coefficients Ci (i = 1, 2, . . ., 6), which can be solved and provide explicit expressions for the
six coefficients Ci . Using the definition of the stiffness coefficients Ki j and the different sign convention in
Figs. 2 and 3, one can obtain the Ki j stiffness coefficients for the second column of [K ] corresponding to the
displacement state (16) in the form

K12 = V (0), K22 = M(0), K32 = m(0),

K42 = −V (L), K52 = −M(L), K62 = −m(L),
(17)

where the right-hand sides of Eq. (17) can be computed by using Eqs. (10) and (9) with values for the constants
Ci (i = 1, 2, …, 6) those obtained for the present second displacement state.

The above procedure is repeated in exactly the same way for the other four remaining displacement states
identified by v′′(0) = v′′

1 = 1, v(L) = v2 = 1, v′(L) = v′
2(L) = 1, v′′(L) = v′′

2 = 1, and the four remaining
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columns of the stiffness matrix [K ] are explicitly derived in closed form. Due to the symmetry of the matrix
[K ], the satisfaction of the relation Ki j = K ji serves as a verification of the exactness of these expressions
for Ki j . Thus, the stiffness equation (8) connecting the vectors {F} and {U } through the stiffness matrix [K ]
for the finite element of Fig. 3 can be explicitly written down with

{F} = {V1, M1, m1, V2, M2, m2}T ,

{U } = {
v1, v

′
1, v′′

1 , v2, v′
2, v′′

2

}T
,

(18)

and the various elements Ki j of the matrix [K ] given in Appendix 1. One can prove through a limiting process
that for g = 0, the expressions for the Ki j stiffness coefficients reduce to the classical ones found, e.g., in [19].

Figure 4a–f depicts the deflection v = v(ξ) versus ξ = x/L for four values of g/L(0.001, 0.03, 0.06, 0.1)
for the six displacement states (v1 = 1, v′

1 = 1, v′′
1 = 1, v2 = 1, v′

2 = 1, v′′
2 =1) used to derive the six columns

of the stiffness matrix [K ], respectively. It is observed that Fig. 4a and d, b and e, c and f are mirror images of
each other, as expected. Furthermore, it is observed that in Fig. 4a and d, v increases for increasing g/L up to
ξ = 0.5, while this behavior is reversed for 0.5 < ξ < 1.0. A similar behavior is observed in Fig. 4b and e but
with the inflection point being now ξ = 0.65 (for Fig. 4b) and ξ = 0.45 (for Fig. 4e). Finally, it is observed
that Fig. 4c and f shows an increase of v for increasing g/L without any clearly visible inflection point.

4 The case of distributed loading

In the FEM, the load on any element is assumed to be nodal. Thus, in case the load is distributed, it has to be
replaced by equivalent nodal load. An approximate way of determining this equivalent load is to divide the
element into a number of subelements and substitute the distributed load of every subelement by two vertical
nodal forces, which are equal and opposite to the reactions of the corresponding, to this subelement, simply
supported beam under that distributed load. However, this approximate method requires a large number of
subelements for acceptable accuracy and is not compatible with the “exact” FEM presented in the previous
section.

For this reason, the equivalent to the distributed load nodal loads are determined so as to produce the same
deformation as the distributed load. This implies that these equivalent nodal loads are equal and opposite to
the end reactions of the beam element fixed at both of its ends under the distributed load. This approach is an
“exact” one. In the following, these equivalent nodal loads will be determined for the simple case of uniformly
distributed load, which is the most frequently occurred case in practice.

Consider the fixed–fixed uniform beam of length L, flexural rigidity EI and gradient coefficient g under
the action of a uniformly distributed vertical load q, as shown in Fig. 5. The solution of Eq. (3), which governs
the behavior of this beam, is given as the sum of the solution of its homogeneous part provided by Eq. (7),
plus the particular solution –qx4/24EI, i.e., as

v(x) = C1x3 + C2x2 + C3x + C4 + C5g4sinh (x/g) + C6g4cosh (x/g) − (qx4/24EI). (19)

On the basis of Eq. (19), one can obtain the derivatives

v′(x) = 3C1x2 + 2C2x + C3 + C5g3cosh (x/g) + C6g3sinh (x/g) − (
qx3/6EI

)
,

v′′(x) = 6C1x + 2C2 + C5g2sinh (x/g) + C6g2cosh (x/g) − (
qx2/2EI

)
,

v′′′(x) = 6C1 + C5gcosh (x/g) + C6gsinh (x/g) − (qx/EI) ,

vIV(x) = C5sinh (x/g) + C6cosh (x/g) − (q/EI) ,

vV(x) = C5 (1/g) cosh (x/g) + C6 (1/g) sinh (x/g) .

(20)

Because of symmetry with respect to geometry and loading, one can consider only half of the beam and write
the boundary conditions in the form

v(0) = v′(0) = v′′(0) = 0,

v′ (L/2) = v′′ (L/2) = V (L/2) = 0,
(21)
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Fig. 4 Deflection v(ξ) versus ξ = x/L for various values of g/L for the six displacement states of a gradient elastic beam element

where V (x) is expressed in terms of v′′′(x) and vv(x) as shown in Eq. (10)1. Using Eq. (20), one can write
Eq. (21) in the form

C4 + C6g4 = 0, C3 + C5g3 = 0, 2C2 + C6g2 = 0,

3C1 (L/2)2 + 2C2 (L/2) + C3 + C5g3cosh (L/2g) + C6g3sinh (L/2g) = q (L/2)3 /6EI, (22)

6C1 (L/2) + 2C2 + C5g2sinh (L/2g) + C6g2cosh (L/2g) = q L2/8EI,

6C1 = q L/2EI.

The above system of equations is analytically solved with the aid of Mathematica [23] and yields
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Fig. 5 A fixed–fixed gradient elastic beam under uniformly distributed vertical load q

C1 = Lq

12EI
,

C2 =
q L2

(
3gsinh

[
L
4g

]
− Lcosh

[
L
4g

])

24EI
(

Lcosh
[

L
4g

]
− 4gsinh

[
L
4g

]) ,

C3 =
gL2qcsch

[
L
4g

] (
−L − 2Lcosh

[
L
2g

]
+ 6sinh

[
L
2g

])
48EI(−Lcosh[ L

4g ] + 4gsinh[ L
4g ]) ,

C4 =
g2L2q

(
−Lcosh

[
L
4g

]
+ 3gsinh

[
L
4g

])

12EI
(

Lcosh
[

L
4g

]
− 4gsinh

[
L
4g

]) ,

C5 =qcsch

[
L

2g

]2
(
−6gL2cosh

[
L
4g

]
+3gL2cosh

[
3L
4g

]
+3gL2cosh

[
5L
4g

]
−L3sinh

[
L
4g

]
−2L3sinh

[
3L
4g

])

48g2EI
(
−Lcosh

[
L
4g

]
+ 4gsinh

[
L
4g

]) ,

C6 =
L3qcosh

[
L
4g

]
− 3gL2qsinh

[
L
4g

]

12Eg2 I Lcosh
[

L
4g

]
− 48Eg3 I sinh

[
L

4g

]
.

(23)

Use of Eq. (10) in conjunction with Eqs. (20) and (23) enables one to obtain the reactions at x=0 in the form

V (0) = Lq

2
,

M(0) = 1

48
q

⎛
⎝48g2 + L2

⎛
⎝−3 − L

L − 4gtanh
[

L
4g

]
⎞
⎠
⎞
⎠ ,

m(0) = 1

48
gLq

⎛
⎝24g − 3Lcoth

[
L

4g

]
+ L2

4g − Lcoth
[

L
4g

]
⎞
⎠ .

(24)

It is observed that for g = 0, one can recover from (24) the classical values of V = q L/2, M(0) =
−q L2/12, m(0) = 0. The above expressions (24) together with V (L) = V (0), M(L) = −M(0), m(L) =
m(0) and with the opposite signs can be used as nodal loads equivalent to a uniformly distributed load q on a
beam element.

5 Gradient elastic stability stiffness matrix

This section deals with the development of the stiffness matrix of a gradient elastic flexural beam element
subjected to a constant compressive axial load P and having two nodes 1 and 2 at its two ends, as shown in
Fig. 6. The generalized nodal forces and nodal displacements shown in Fig. 6 are the same as those in Fig. 3
for the simple flexural beam element. However, in this case, the axial load P creates second-order moments
and the governing equation is Eq. (5) instead of Eq. (3).
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Fig. 6 Matrix convention for generalized nodal forces and displacements of a gradient elastic flexural beam element with a
constant compressive axial force

For the construction of the stability stiffness matrix [S] of the finite element of Fig. 6, the displacement
function is selected to be the exact solution of Eq. (5), which has the form [11]

v(x) = C1x + C2 + C3sinξ x + C4cosξ x + C5sinhθx + C6coshθx, (25)

where

ξ =
(

1√
2g

)√√
1 + 4g2k2 − 1,

θ =
(

1√
2g

)√
1 +

√
1 + 4g2k2,

k2 = P

EI
, (26)

and C1, C2, . . ., C6 are constants of integration to be determined. It is observed that in the limit as P → 0,
the above displacement function reduces to that of Eq. (7) and as P → 0 and g → 0 to the classical cubic
polynomial. Because use is made of the exact solution of the governing equation of the problem as the
displacement function, as in the previous section, it is expected that the matrix [S] to be exact and the buckling
load of the beam structure obtained by using this matrix to be also exact.

Following exactly the same procedure as in the previous section, one can obtain the stability stiffness
equation

{F} = [S] {U } , (27)

where the vectors {F} and {U } are given again by Eq. (18), while the elements Si j of the stability stiffness
matrix [S] are given in Appendix 2. It should be noticed that all the entries of matrix [S] are complicated
functions of P , which in the limit, as P → 0, reduce to the flexural stiffness coefficients Ki j of Appendix 1.
In case the axial load P is tensile, one can use the aforementioned coefficients Si j but with −P instead of P .
This creates minus signs under square roots and use should be made of complex arithmetic. Of course, one
could also modify analytically the expressions for Si j of Appendix 2 for this case of tensile load and derive
real-valued expressions as in the classical case but this would be very complicated and is not recommended.

6 Numerical examples

Seven examples are presented in this section to illustrate the use of the previously developed stiffness matrices in
the framework of the FEM and demonstrate the advantages of the whole procedure when one has to determine
the response of gradient elastic beam structures to static loading. Five examples deal with the analysis of
statically determinate and indeterminate beams of uniform and nonuniform cross-section and two examples
with determination of the buckling load of a beam under different types of nonclassical boundary conditions.

Example 1 Consider a gradient elastic uniform cantilever beam of length L and flexural rigidity EI subjected
to a vertical lateral concentrated load P at its free end, as shown in Fig. 7. The vertical deflection at the loaded
free end of this beam will be determined by the FEM.

The whole beam is considered to be one finite element with nodes 1 and 2 at the fixed and free ends,
respectively, as shown in Fig. 7. The static behavior of a beam element 1–2 is described by the stiffness
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Fig. 7 Geometry and loading of a cantilever gradient elastic flexural beam

equation (8) with the force and displacements vectors {F} and {U } as given by Eq. (18) and the entries of the
stiffness matrix [K ] as given in Appendix 1.

The boundary conditions of the problem in terms of generalized nodal displacements are

v1 = v′
1 = v′′

1 = 0 (28)

with the first two conditions in (28) being the classical and the third condition the nonclassical ones. These
conditions, on account of Eq. (10), indicate large V and very small M and m. On the other hand, if one assumes
v1 = v′

1 = m = 0 instead of (28), which are acceptable boundary conditions in view of Eq. (4), M is large, V
is very small and m = 0. Thus, one can observe some peculiarities of the theory concerning the magnitudes
of M and V at the fixed end of the beam. On the basis of Eq. (28), the matrix equation (8) takes the form⎧⎨

⎩
P
0
0

⎫⎬
⎭ =

⎡
⎣ K44 K45 K46

K54 K55 K56
K64 K65 K66

⎤
⎦
⎧⎨
⎩

v2
v′

2
v′′

2

⎫⎬
⎭ . (29)

The above matrix equation with Ki j as explicitly given in Appendix 1 is solved analytically with the aid of
Mathematica [23], and the unknown nodal displacements v2, v

′
2 and v′′

2 are explicitly determined as

v2 = P L3

3EI

[
1 + 3

( g

L

)2 − 6
( g

L

)2
sech

(
L

g

)
+ 3

( g

L

)3
tanh

(
L

g

)
− 3

( g

L

)
tanh

(
L

g

)]
,

v′
2 =

P
(
−2g2 − L2 + 2gsech

(
L
g

) (
g + Lsinh

(
L
g

)))
2EI

, (30)

v′′
2 =

Psech
(

L
g

) (
L − gsinh

(
L
g

))
EI

.

Once these are known, the reactions V1, M1 and m1 at node 1, corresponding to zero generalized displacements,
are easily determined from Eq. (8).

The expression for the deflection v2 in (30), after some manipulations, can be written in the form

v2 = P L3

3EI

⎡
⎣1 − 3

( g

L

)2

⎡
⎣cosh

(
L

g

)
+ 1

cosh
(

L
g

) +
(

L

g

)
tanh

(
L

g

)
− 1

⎤
⎦
⎤
⎦

+ P L3

3EI

[
3
( g

L

)3
[

tanh

(
L

g

)
+
(

L

g

)
sinh

(
L

g

)
tanh

(
L

g

)]]
,

which is exactly the same as the deflection obtained in [14] by an analytic approach. Figure 8 depicts the
normalized deflection v2/v

c
2, where vc

2 = P L3/3EI is the classical one, versus g/L . From this figure, one can
easily observe the decrease of the deflection v2 for increasing values of the gradient coefficient g (stiffening
effect in gradient elasticity).

Example 2 Consider a simply supported gradient elastic beam of length 2L and flexural rigidity EI under a
lateral concentrated vertical load P at the middle of its span, as shown in Fig. 9. The above beam is considered
as a beam structure composed of two finite elements 1–2 and 2–3, as shown in Fig. 9. With 3 d.o.f. per node,
the whole beam has 3 × 3 = 9 d.o.f., and hence, the total structural stiffness matrix will be of the order of
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Fig. 8 Deflection versus g/L of the cantilever gradient elastic beam of Fig. 7

Fig. 9 Geometry and loading of a simply supported gradient elastic flexural beam

9 × 9. This stiffness matrix is obtained by a simple superposition of the stiffness matrices 6 × 6 of the finite
elements 1–2 and 2–3 as given by Eq. (8) by following standard procedures [19].

The classical boundary conditions of the problem in terms of generalized nodal displacements are

v1 = v3 = v′
2 = 0, (31)

where the third boundary condition in (31) comes from symmetry considerations. The nonclassical boundary
conditions are assumed to be

v′′
1 = v′′

3 = 0. (32)

Thus, the total structural stiffness matrix of order 9 × 9, due to the 5 boundary conditions (31) and (32),
becomes 4 × 4, and the stiffness equation takes the form (8) with

{F} = {0,−P, 0, 0}T ,

{U } = {
v′

1, v2, v
′′
2 , v′

3

}T
.

(33)

The above system of 4 equations with 4 unknowns is solved analytically with the aid of Mathematica [23],
and the result is

v′
1 =

(
P

4EI

)[
−2g2 + L2 + 2g2sech

(
L

g

)]
,

v2 =
(

− P

6EI

)[
−3g2L + L3 + 3g3 tanh

(
L

g

)]
,

v′′
2 =

(
− P

2EI

)[
L − g tanh

(
L

g

)]
,

v′
3 =

(
− P

4EI

)[
−2g2 + L2 + 2g2sech

(
L

g

)]
.

(34)
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Fig. 10 Deflection versus g/L of the simply supported gradient elastic beam of Fig. 9

With the known displacements in (34), one can easily determine the reactions V1, V3, m1 and m3 corresponding
to zero generalized displacements. Figure 10 depicts the normalized deflection v2/v

c
2, where vc

2 = −P L3/6EI
is the classical one, versus g/L . From this figure, one can easily observe the decrease of the deflection v2 for
increasing values of the gradient coefficient g (stiffening effect in gradient elasticity).

For verification reasons, the same problem was also solved analytically. To this end, half of the beam was
considered for the analysis by taking advantage of symmetry. For this structure, the deflection v(x) is given
by Eq. (7) and one essentially has to determine the integration constants C1, C2,…,C6. The classical boundary
conditions of the problem are

v(0) = 0, v′(L) = 0,

M(0) = 0, V (L) = −P/2,
(35)

while the nonclassical ones are assumed to be

v′′(0) = 0, m(L) = 0. (36)

The above 6 boundary conditions are written explicitly with the aid of Eq. (9) providing the derivatives of
v(x) and (10) providing expressions of V (x), M(x) and m(x) in terms of derivatives of v(x). Thus, a linear
system of 6 equations with 6 unknowns [the constants C1, C2,…, C6 in (7)] is created and solved with the aid
of Mathematica [22]. The explicit expressions for these constants are given as

C1 = −P/12EI, C2 = 0, C3 = − (P/4EI)
(
2g2 − L2) ,

C4 = 0, C5 = (P/2gEI) sech (L/g) , C6 = 0. (37)

Once these constants are known, v(x) and its derivatives become also known. Thus, v′(0), v(L) and v′′(L) can
be easily evaluated and take exactly the form of v′

1, v2 and v′′
2 , respectively, given in Eq. (34) thereby verifying

the results of the finite element analysis.

Example 3 Consider a gradient elastic beam structure composed of two members with different cross-sections
fixed at one end and on rollers at the other end and subjected to a vertical lateral concentrated load P at the
middle of its span, as shown in Fig. 11. The flexural rigidities of the two members I and II of Fig. 11 are EI1
and EI2, respectively, with I1 = 2I2 = 2I , while their lengths are equal to L. This structure is modeled by
two finite elements 1–2 and 2–3 and has 3 nodes with 3 d.o.f. per node, as shown in Fig. 11. Thus, the total
structural stiffness matrix resulting from the superposition of the stiffness matrices of its two elements is 9×9.
The classical boundary conditions of this problem in terms of generalized nodal displacements are

v1 = v′
1 = v3 = 0, (38)
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Fig. 11 Geometry and loading of a fixed-hinged gradient elastic beam composed of two members with different cross-sections

while it is assumed that there is only one nonclassical boundary condition of the form

v′′
1 = 0. (39)

Application of these 4 boundary conditions in the stiffness equation for the whole structure results in a
reduced in size stiffness equation, i.e., in a system of 5 equations with 5 unknown generalized displacements
v2, v

′
2, v

′′
2 , v′

3, v
′′
3 and a generalized force vector {F} = {−P, 0, 0, 0, 0}T.

This system of equations is solved analytically with the aid of Mathematica [23] and yields the unknowns
v2, v

′
2, v

′′
2 , v′

3andv′′
3 . The expressions for these unknowns are very lengthy, and for this reason, only v2 and v′

3
are given below for illustration purposes:

v2 = (
P
(
144g6 − 504g4L2 − 96g2L4 − 11L6 + 96g2L2 (−6g2 + 5L2) cosh[L/g]

−3
(
48g6 − 264g4L2 + 16g2L4 + 11L6) cosh[2L/g]

+24gL
(− (−60g4 + 8g2L2 + L4) sinh[L/g]

+ (−18g4 − 21g2L2 + 5L4) sinh[2L/g]))) /
(
72EI

(−8g2Lcosh[L/g] + 9L
(
g2 + L2) cosh[2L/g]

+L
(−13g2 + 3L2 − 8gLsinh[L/g]) + g

(
6g2 − 13L2) sinh[2L/g])) , (40)

v′
3 = (

P
(
44g2L3 − 7L5 + (

96g4L + 88g2L3) cosh[L/g]
−3L

(
32g4 + 28g2L2 + 7L4) cosh[2L/g] − 24g3 (8g2 + 5L2) sinh[L/g]

+4g
(
24g4 + 15g2L2 + 16L4) sinh[2L/g]))/ (24EI

(−8g2Lcosh[L/g]
+9L

(
g2 + L2) cosh[2L/g] + L

(−13g2 + 3L2 − 8gLsinh[L/g])
+g

(
6g2 − 13L2) sinh[2L/g])) . (41)

Once the nodal generalized displacements have been found, one can easily determine the generalized nodal
reaction forces V1, M1, V3, and m1 corresponding to zero generalized nodal displacements. Just as an example,
the reaction V1 has the explicit form

V1 = (
P
(−60g2L + 13L3 + 3L

(
4g2 + 13L2) cosh[2L/g]

− 12g
(
2g2 + 3L2) sinh[L/g] + 6g

(
6g2 − 7L2) sinh[2L/g])) /

(
6
(−8g2Lcosh[L/g]

+ 9L
(
g2 + L2) cosh[2L/g] + L

(−13g2 + 3L2 − 8gLsinh[L/g])
+ g

(
6g2 − 13L2) sinh[2L/g])) . (42)

For verification reasons, the same problem was also solved analytically but only for its classical version since
its gradient elastic version is very complicated to be solved analytically. This example clearly demonstrates
the usefulness of the FEM for solving complicated gradient elastic problems like the present one characterized
by static indeterminancy and variable cross-sections.

Consider the classical elastic structure of Fig. 12 under the load P and the reactions at its supports, MA,
RA and RC. The equilibrium equations for this structure read

RA + RC − P = 0,

MA − RC2L + P L = 0, (43)

while its boundary conditions have the form
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Fig. 12 Geometry, loading and reaction forces and moments of the elastic beam structure of Fig. 11

vI(0) = v′
I(0) = 0,

vII (2L) = 0, (44)

where the subscripts I and II refer to the members AB and BC, respectively. In addition, one has the compatibility
equations at B in the form

vI(L) = vII(L),

v′
I(L) = v′

II(L). (45)

For the parts I and II of the structure, one has the equations

EI1

(
∂2vI

∂x2

)
= MA + RAx 0 ≤ x ≤ L ,

EI2

(
∂2vI I

∂x2

)
= MA + RAx − P (x − L) L ≤ x ≤ 2L , (46)

which after integration yield

v′
I (x) = 1

EI1

(
MAx + RA

x2

2
+ G1

)
,

vI (x) = 1

EI1

(
MA

x2

2
+ RA

x3

6
+ G1x + G2

)
,

v′
I I (x) = 1

EI2

(
MAx + RA

x2

2
− P

x2

2
+ P Lx + G3

)
,

vI I (x) = 1

EI2

(
MA

x2

2
+ RA

x3

6
− P

x3

6
+ P L

x2

2
+ G3x + G4

)
.

(47)

Using the above expressions (47) in Eqs. (44) and (45), one obtains 5 equations which together with the 2
equations (43) and the relation I1 = 2 I2 = 2 I serve to compute all the 7 unknowns of the problem in the form

G1 = G2 = 0, G3 = −11L2 P/24, G4 = 19L3 P/108,

MA = −4P L/9, RA = 13P/18, RC = 5P/18. (48)

Thus, one can finally determine

v2 = vI (L) = − 11

216

P L3

EI
,

v′
3 = v′

I I (2L) = 7

72

P L2

EI
,

V1 = RA = 13

18
P, (49)

which coincide with those of (40)–(42) when g = 0 through a limiting process.
Figure 13 depicts the normalized deflection v2/v

c
2, where vc

2 = −11P L3/216EI is the classical one, versus
g/L . From this figure, one can easily observe the decrease of the deflection v2 for increasing values of the
gradient coefficient g (stiffening effect in gradient elasticity).
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Fig. 13 Deflection versus distance for various values of g/L of the beam structure of Fig. 11

Fig. 14 Simply supported beam under a double moment at its mid-span

Example 4 Consider a simply supported beam of flexural rigidity EI and length 2L under the action of a double
moment mo at its midspan, as shown in Fig. 14. This example is similar to example 2 (same geometry and
boundary conditions). The only difference has to do with the force vector {F} which is now of the form

{F} = {0, 0, mo, 0}T . (50)

The solution is obtained analytically with the aid of Mathematica [23] and has the form

v′
1 = −v′

3 = (mo/2EI) [1 − sech (L/g)] ,

v2 = (mo/2EI) [gtanh (L/g) − L] ,

v′′
2 = − (mo/2gEI) tanh (L/g) . (51)

The reactions at nodes 1 and 3 take the form

V1 = V3 = 0,

m1 = m3 = − (mo/2) sech (L/g) . (52)

It is observed that when the load is of a microstructural nature, the classical reactions are zero and there are
only microstructural reactions and microstructural deformation.

Example 5 Consider a simply supported gradient elastic beam of flexural rigidity EI and length L subjected
to a uniformly distributed load q, as shown in Fig. 15. The beam is considered to be one finite element 1–2
under the action of the equivalent nodal loads (24)—actually under M(0), M(L), m(0) and m(L), since V (0)
and V (L) are absorbed by the vertical reactions. In the finite element convention of Fig. 3, these equivalent
nodal loads have the form

M f (0) = M(0), M f (L) = −M(0),

m f (0) = m(0), m f (L) = m(0), (53)

where the superscript f denotes finite element convention.
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Fig. 15 Simply supported beam under a uniformly distributed load q

Fig. 16 Geometry of a simply supported gradient elastic beam under an axial compressive load

The boundary conditions of the problem read

v1 = v2 = 0 (54)

and in the stiffness equation (8), the matrix [K ] is of the order 4 × 4, while the vectors {F} and {U } have the
form

{F} =
{

M f (0), m f (0), M f(L), m f (L)
}T

,

{U } = {
v′

1, v
′′
1 , v′

2, v
′′
2

}T
. (55)

Thus, one solves the 4 × 4 matrix equation (8) with the aid of Mathematica [23] and obtains the unknown
vector {U } of Eq. (55) as

v′
1 = −v′

2 =
L2qcsch

[
L
4g

] (
2gL − 5gLcosh

[
L
2g

]
+ (6g2 + L2)sinh

[
L
2g

])

48EI
(

Lcosh
[

L
4g

]
− 4gsinh

[
L
4g

]) ,

v′′
1 = v′′

2

=
q
(

288g2 Lcosh
[

L
4g

]
+3L2

(
−12g+Lcoth

[
L
4g

])
csch

[
L
4g

]
−L

(
96g2+L2

)
sech

[
L
4g

]
− 48g

(
8g2+L2

)
sinh

[
L
4g

])

96EI
(

Lcosh
[

L
4g

]
− 4gsinh

[
L
4g

]) .

(56)

Example 6 Consider a simply supported gradient elastic uniform beam under the action of an axial compressive
force P , as shown in Fig. 16. The beam has length L and flexural rigidity EI. Use will be made of the FEM to
determine the critical or buckling load Pcr.

The beam of Fig. 16 is considered to be one finite element with nodes 1 and 2 and 3 d.o.f. per node. Thus,
the structural stiffness matrix [S] of this beam is of order 6 × 6 and connects generalized nodal forces to nodal
displacements by Eq. (27). The classical boundary conditions in terms of displacements are

v1 = v2 = 0, (57)

while the nonclassical ones in terms of generalized displacements are assumed to be

v′′
1 = v′′

2 = 0. (58)
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Fig. 17 Variation of the dimensionless buckling load Pcr/Pc
cr versus g/L for the beam of Fig. 16 under B.C. (57) and (58)

Application of the above 4 boundary conditions reduces Eq. (27) to
{

M1
M2

}
=
[

S22 S25
S52 S55

]{
v′

1
v′

2

}
, (59)

where the stability stiffness coefficients S22, S25 = S52, S55 are given in Appendix 2.
The critical load Pcr is found by solving the determinant equation

S22S55 − S2
25 = 0 (60)

for P and keeping the first root of the solution. Indeed, substitution in (60) of the coefficients S22, S55 and S25
with their expressions in Appendix 2 yields

Pcr = π2EI

L2

[
1 + π2

( g

L

)2
]

(61)

which is exactly the same with that found in [11] analytically. Figure 17 depicts the variation of Pcr/Pc
cr versus

g/L , where Pc
cr = π2EI/L2 is the classical value of Pcr, and clearly shows an increase of this dimensionless

buckling ratio for increasing values of the dimensionless gradient coefficient g/L with a constantly increasing
rate of increase.

Example 7 Consider the beam of the previous example with the same geometrical and physical properties and
the same loading. The problem is here to determine the Pcr under the same classical boundary conditions (57)
but different nonclassical boundary conditions than those of Eq. (58). The nonclassical boundary conditions
are assumed here to be

m1 = m2 = 0 (62)

or equivalently, in view of (10)3,
v′′′(0) = v′′′(L) = 0. (63)

Use of the classical boundary conditions (57) in the stiffness equation (27) reduces it to the explicit form

M1 = S22v
′
1 + S23v

′′
1 + S25v

′
2 + S26v

′′
2 ,

m1 = S32v
′
1 + S33v

′′
1 + S35v

′
2 + S36v

′′
2 ,

M2 = S52v
′
1 + S53v

′′
1 + S55v

′
2 + S56v

′′
2 ,

m2 = S62v
′
1 + S63v

′′
1 + S65v

′
2 + S66v

′′
2 .

(64)

In finite element analysis, boundary conditions are in terms of generalized nodal displacements. Unfortunately,
nonclassical conditions (63), which are in terms of generalized displacements, do not correspond to element
degrees of freedom even though they satisfy the variational boundary conditions (6)3 and hence are legitimate
boundary conditions. In this problem, the only way to impose those conditions in the finite element setting of
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Fig. 18 Variation of the dimensionless buckling load Pcr/Pc
cr versus g/L for the beam of Fig. 16 under B.C. (57) and (62) or (63)

Eq. (64) is by using them in the form of Eq. (62) and letting m1 = m2 = 0 in Eq. (64). Thus, by solving Eq. (64)2
and (64)4 with m1 = m2 = 0 for v′

2 and v′′
2 in terms of v′

1 and v′′
1 , one can eliminate v′

2 and v′′
2 from Eq. (64)1

and (64)3 and obtain the matrix equation
{

M1
M2

}
=
[

Sα Sγ

Sγ Sβ

]{
v′

1
v′′

1

}
, (65)

where Sα , Sβ and Sγ are stiffness coefficients in the form of complicated algebraic expressions involving the
coefficients Si j in Eq. (64) and obtained with the aid of Mathematica [23].

In order to determine the critical load of the beam in this example, the determinant of the stiffness matrix in
Eq. (65) is set equal to zero and the numerically obtained first root of the resulting equation is the critical load
Pcr. Figure 18 shows the Pcr/Pc

cr dimensionless buckling ratio versus the dimensionless gradient coefficient
g/L and exhibits an increase of this buckling ratio for increasing values of the gradient ratio as in Fig. 18.
However, the rate of increase here constantly decreases in contrast to the previous case of Fig. 17 with different
nonclassical boundary conditions. This is in agreement with recent results in two-dimensional gradient elasticity
[24] indicating the significant effect of nonclassical boundary conditions on the structural response to static
loading.

For verification reasons, the same problem was also solved analytically by imposing the boundary conditions
(57), (63) and

M(0) = M(L) = 0 (66)

implying due to Eq. (10)2

v′′(0) − g2vIV(0) = v′′(L) − g2vIV(L) = 0. (67)

For the implementation of these 6 boundary conditions, one needs to compute from v(x) of Eq. (25) the
derivatives

v′′(x) = −ξ2C3sinξ x − ξ2C4cosξ x + θ2C5sinhθx + θ2C6coshθx,

v′′′(x) = −ξ3C3cosξ x + ξ3C4sinξ x + θ3C5coshθx + θ3C6sinhθx,

vIV(x) = −ξ4C3sinξ x + ξ4C4cosξ x + θ4C5sinhθx + θ4C6coshθx .

(68)

Imposing conditions (57), (63) and (67) on Eqs. (25) and (68) results in a system of 6 linear equations with 6
unknowns (C1, C2, . . . , C6) reading as

C2 + C4 + C6 = 0,

−ξ3C3 + θ3C5 = 0,

LC1 + C2 + (sinξ L)C3 + (cosξ L)C4 + (sinhθ L)C5 + (coshθ L)C6 = 0,

(−ξ3cosξ L)C3 + (ξ3sinξ L)C4 + (θ3coshθ L)C5 + (θ3sinhθ L)C6 = 0,

−ξ2(1 + g2ξ2)C4 + θ2(1 − g2θ2)C6 = 0,
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−ξ2(1 + g2ξ2)(sinξ L)C3 + ξ2(1 + g2ξ2)(cosξ L)C4 + θ2(1 − g2θ2)(sinhθ L)C5

+ θ2(1 − g2θ2)(coshθ L)C6 = 0. (69)

For the above homogeneous system of linear equations to have non zero solutions, the determinant of the
coefficients of the unknowns C1, C2, . . ., C6 is set equal to zero. Thus, one can numerically obtain the first
root of the resulting equation, which is the critical load Pcr. The results of this method were found to be exactly
the same as those obtained by the FEM and depicted in Fig. 18.

7 Conclusions

On the basis of the results presented in the previous sections, the following conclusions can be stated:

1. A finite element for a gradient elastic Bernoulli–Euler beam in bending under static loading has been devel-
oped with two nodes (at the ends of the element) and three degrees of freedom per node, the displacement,
the slope and the curvature.

2. The displacement function of this formulation was selected to be the exact solution of the governing
equation of equilibrium of the beam resulting in the exact element stiffness matrix with all its entries
expressed in closed form. As a result, use of this matrix in a finite element analysis provides the exact
response of a beam structure to static loading.

3. When the effect of an axial compressive load on bending is taken into account in the development of the
stiffness matrix of the flexural beam element and use is made of the exact solution of the buckling governing
equation as the displacement function, the exact stability stiffness matrix of an element is obtained. This
leads to the exact value of the critical or buckling load.

4. Seven examples are presented in detail to illustrate the method and demonstrate its advantages when applied
to problems of static and stability analysis of plane gradient elastic beam structures. In almost all cases,
the results are verified by analytic solutions obtained here or taken from the literature.

5. The advantages of the FEM presented here are generality, versatility, easy and systematic way of treatment,
computational efficiency and obtaining of the exact structural response or buckling load.

6. It was observed, at least in all the examples considered here, a decrease of deflections and an increase
of the buckling loads for increasing values of the gradient coefficient, in agreement with the well-known
stiffening effect in gradient elasticity. It was also observed, at least in the buckling examples considered
here, the significant effect of the nonclassical boundary conditions on the response, which dictate the rate
of increase of the buckling loads for increasing values of the gradient coefficient.

Appendix 1

Explicit expressions for the stiffness coefficients Kij of the stiffness matrix [K] for a gradient elastic flexural
beam element:

K11 = 12EI

12g2L + L3 − 6gL2 coth
[

L
2g

]

K21 = − 6EI

12g2 + L2 − 6gL coth
[

L
2g

]

K22 = −
4EI

(
−3gL cosh

[
L
g

]
+ (3g2 + L2) sinh

[
L
g

])

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

]

K31 = EI

⎛
⎝ 1

L
− L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠

K32 = −
2EIg

(
−12g2 + L2 + 2(6g2 + L2) cosh

[
L
g

]
− 9gL sinh

[
L
g

])

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

]
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K33 =
EIg

(
(24g4 − L4) cosh

[
L
g

]
+ 4g

(
−6g3 + 3gL2 + (−6g2L + L3) sinh

[
L
g

]))

L(24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L

(
24g2 + L2) sinh

[
L
g

])

K41 = − 12EI

12g2L + L3 − 6gL2 coth
[

L
2g

]

K42 = − 6EI

12g2 + L2 − 6gL coth
[

L
2g

]

K43 = EI

⎛
⎝ 1

L
− L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠

K44 = 12EI

12g2L + L3 − 6gL2 coth
[

L
2g

]

K51 = − 6EI

12g2 + L2 − 6gL coth
[

L
2g

]

K52 =
2EI

(
6gL + (−6g2 + L2) sinh

[
L
g

])

4g(−6g2 + L2) + 8g(3g2 + L2) cosh
[

L
g

]
− L(24g2 + L2) sinh

[
L
g

]

K53 =
2EIgL

(
L
(

2 + cosh
[

L
g

])
− 3g sinh

[
L
g

])

4g(−6g2 + L2) + 8g(3g2 + L2) cosh
[

L
g

]
− L(24g2 + L2) sinh

[
L
g

]

K54 = 6EI

12g2 + L2 − 6gL coth
[

L
2g

]

K55 = −
4EI

(
−3gL cosh

[
L
g

]
+ (3g2 + L2) sinh

[
L
g

])

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

]

K61 = EI

⎛
⎝− 1

L
+ L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠

K62 =
2EgIL

(
L
(

2 + cosh
[

L
g

])
− 3g sinh

[
L
g

])

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

]

K63 =
EgI

(
24g4 + L4 + 2g

(
−6g(2g2 + L2) cosh

[
L
g

]
+ L(12g2 + L2) sinh

[
L
g

]))

L
(

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

])

K64 = EI

⎛
⎝ 1

L
− L

12g2 + L2 − 6gL coth
[

L
2g

]
⎞
⎠

K65 =
2EgI

(
−12g2 + L2 + 2(6g2 + L2) cosh

[
L
g

]
− 9gL sinh

[
L
g

])

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

]

K66 =
EgI

(
(24g4 − L4) cosh

[
L
g

]
+ 4g

(
−6g3 + 3gL2 + (−6g2L + L3) sinh

[
L
g

]))

L
(

24g3 − 4gL2 − 8g(3g2 + L2) cosh
[

L
g

]
+ L(24g2 + L2) sinh

[
L
g

])
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Appendix 2

Explicit expressions for the stiffness coefficients Sij of the stability stiffness matrix [S] for a gradient elastic
flexural beam element with a compressive axial force:

S11 = −
θ2ξ2

(
θ(−1 + cθ2) cosh

[
θ
2

]
sin

[
ξ
2

]
+ ξ(1 + cξ2) cos

[
ξ
2

]
sinh

[
θ
2

])

θξ2 cosh
[

θ
2

]
sin

[
ξ
2

]
+
(
θ2ξ cos

[
ξ
2

]
− 2(θ2 + ξ2) sin

[
ξ
2

])
sinh

[
θ
2

]
S21 = −((cθ2ξ2(θ2 + ξ2)(−ξ sin[ξ ] + ξ cosh[θ ] sin[ξ ]

+θ(−1 + cos[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ])
+θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S22 = −((cθξ(θ2 + ξ2)(θξ2 cosh[θ ] sin[ξ ] + (θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2

+ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S31 = ((cθ2ξ2(θ2 − ξ2 − θ2 cos[ξ ] − ξ2 cos[ξ ] + (θ2 + ξ2 + (−θ2 + ξ2) cos[ξ ]) cosh[θ ]

−2θξ sin[ξ ] sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ])
+θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S32 = ((cθξ(−θ(−θ2ξ + ξ3 + (θ2 + ξ2) sin[ξ ]) + cosh[θ ]((−θ3ξ + θξ3) cos[ξ ] + θ(θ2 + ξ2) sin[ξ ])
+ξ(θ2 + ξ2 − (θ2 + ξ2) cos[ξ ] − 2θ2ξ sin[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ]
+ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S33 = ((c(−cosh[θ ](2(θ4 + θ2ξ2 + ξ4) cos[ξ ] + θ2(θ2 + ξ2)(−2 + ξ sin[ξ ]))
+ξ(2ξ(−θ2 + (θ2 + ξ2) cos[ξ ]) + θ(ξ(θ2 + ξ2) cos[ξ ]
+(−θ2 + ξ2) sin[ξ ]) sinh[θ ]))))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ])
−2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S41 =
θ2ξ2(θ(−1 + cθ2) cosh

[
θ
2

]
sin

[
ξ
2

]
+ ξ(1 + cξ2) cos

[
ξ
2

]
sinh

[
θ
2

]
)

θξ2 cosh
[

θ
2

]
sin

[
ξ
2

]
+ (θ2ξ cos

[
ξ
2

]
− 2(θ2 + ξ2) sin

[
ξ
2

]
) sinh

[
θ
2

]
S42 = −((θξ(θ2 + ξ2)(θ(−ξ(1 − cθ2 + cξ2) cos[ξ ]

+sin[ξ ] − cθ2 sin[ξ ]) + θ cosh[θ ](ξ − cθ2ξ + cξ3 + (−1 + cθ2) sin[ξ ])
−2ξ

(
1 + cξ2) sin

[
ξ

2

]2

sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ])
−2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S43 = ((−2θ4 + 2cθ6 − 2θ2ξ2 + cθ4ξ2 − 2ξ4

−cθ2ξ4 − 2cξ6 + 2θ4 cos[ξ ] − 2cθ6 cos[ξ ] + 2θ2ξ2 cos[ξ ] − cθ4ξ2 cos[ξ ] + cθ2ξ4 cos[ξ ]
+ξ2(−(θ2 + ξ2)(−2 + cθ2 − 2cξ2) + θ2(−2 + cθ2 − cξ2) cos[ξ ]) cosh[θ ] + θ4ξ sin[ξ ]
−cθ6ξ sin[ξ ]
+θ2ξ3 sin[ξ ] + cθ2ξ5 sin[ξ ] − θξ(ξ(θ2 − cθ4 + ξ2 + cξ4) + (−θ2 + cθ4

+ξ2 + cξ4) sin[ξ ]) sinh[θ ]))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ])
−2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S44 = −
θ2ξ2(θ(−1 + cθ2) cosh

[
θ
2

]
sin

[
ξ
2

]
+ ξ(1 + cξ2) cos

[
ξ
2

]
sinh

[
θ
2

]
)

θξ2 cosh
[

θ
2

]
sin

[
ξ
2

]
+ (θ2ξ cos

[
ξ
2

]
− 2(θ2 + ξ2) sin

[
ξ
2

]
) sinh

[
θ
2

]
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S51 = −((cθ2ξ2(θ2 + ξ2)(−ξ sin[ξ ] + ξ cosh[θ ] sin[ξ ]
+θ(−1 + cos[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
− (

θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2)

+2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S52 = ((cθξ(θ2 + ξ2)(θξ2 sin[ξ ] − (−θ2ξ + (θ2 + ξ2) sin[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]

−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ]
+ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S53 = −((cθξ(θ2 + ξ2)(θ(ξ cos[ξ ] − sin[ξ ]) + θ cosh[θ ](−ξ + sin[ξ ])
+(ξ − ξ cos[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ

+(θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S54 = ((cθ2ξ2(θ2 + ξ2)(−ξ sin[ξ ] + ξ cosh[θ ] sin[ξ ]

+θ(−1 + cos[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2)

+2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S55 = −((cθξ(θ2 + ξ2)(θξ2 cosh[θ ] sin[ξ ] + (θ2ξ cos[ξ ]

−(θ2 + ξ2) sin[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ]
−(θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2)

+2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S61 = (cθ2ξ2(−θ2 + ξ2 + θ2 cos[ξ ] + ξ2 cos[ξ ] + (−θ2 − ξ2 + (θ2 − ξ2) cos[ξ ]) cosh[θ ]

+2θξ sin[ξ ] sinh[θ ]))/(−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ])
+θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ])

S62 = ((cθξ(θ2 + ξ2)(θ(ξ cos[ξ ] − sin[ξ ]) + θ cosh[θ ](−ξ + sin[ξ ])
+(ξ − ξ cos[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ])
−2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ])
+θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S63 = (c(−2θ4 − 2θ2ξ2 − 2ξ4 + 2θ4 cos[ξ ] + 2θ2ξ2 cos[ξ ] + 2ξ2(θ2 + ξ2 − θ2 cos[ξ ]) cosh[θ ]
+θ4ξ sin[ξ ] + θ2ξ3 sin[ξ ] − θξ(θ2ξ + ξ3

−θ2 sin[ξ ] + ξ2 sin[ξ ]) sinh[θ ]))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ])
−2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))

S64 = ((cθ2ξ2(θ2 − ξ2 − θ2 cos[ξ ] − ξ2 cos[ξ ] + (θ2 + ξ2 + (−θ2 + ξ2) cos[ξ ]) cosh[θ ]
−2θξ sin[ξ ] sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ

+(θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S65 = ((cθξ(θ cosh[θ ](ξ(θ2 − ξ2) cos[ξ ] − (θ2

+ξ2) sin[ξ ]) + θ(−θ2ξ + ξ3 + (θ2 + ξ2) sin[ξ ]) + ξ(−θ2 − ξ2 + (θ2 + ξ2) cos[ξ ]
+2θ2ξ sin[ξ ]) sinh[θ ])))/((−2ξ cosh[θ ](θ2ξ cos[ξ ] − (θ2 + ξ2) sin[ξ ]) − 2ξ(−θ2ξ

+(θ2 + ξ2) sin[ξ ]) + θ(−2(θ2 + ξ2) + 2(θ2 + ξ2) cos[ξ ] + ξ(θ2 − ξ2) sin[ξ ]) sinh[θ ]))
S66 = ((c(θ4ξ2 + θ2ξ4 − θ4ξ2 cos [ξ ] − θ2ξ4 cos [ξ ] − θ4ξ sin [ξ ]

−7θ2ξ3 sin [ξ ] + θ4ξ cos [ξ ] sin [ξ ] + 7θ2ξ3 cos [ξ ] sin [ξ ] + 6ξ5 cos [ξ ] sin [ξ ]

+ξ cosh [θ ]2 (−θ2 (ξ (θ2 + ξ2) cos [2ξ ] + (
3θ2 + ξ2) sin [ξ ]

)
+cos [ξ ]

(
θ2ξ

(
θ2 + ξ2) + (

3θ4 + θ2ξ2 + 2ξ4) sin [ξ ]
)

+θξ2(4 (−3θ2 + ξ2 + (
θ2 + 3ξ2) cos [ξ ]

)
sin

[
ξ

2

]2

+ ξ
(
θ2 + ξ2) sin [2ξ ]

)
sinh [θ ]

+ξ
(−θ2 (ξ (θ2 + ξ2) cos [2ξ ] + (

3θ2 + ξ2) sin [ξ ]
)
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+cos [ξ ]
(
θ2ξ

(
θ2 + ξ2) + (

3θ4 + θ2ξ2 + 2ξ4) sin [ξ ]
))

sinh [θ ]2

+cosh [θ ] (−2ξ sin [ξ ]
(
2
(
θ4 + 2θ2ξ2 + 2ξ4) cos [ξ ]

+θ2 (−2
(
θ2 + 2ξ2) + ξ

(
θ2 + ξ2) sin [ξ ]

))
+θ(5θ4 + 7θ2ξ2 + ξ4 − 4

(
2θ4 + 2θ2ξ2 + ξ4) cos [ξ ] + (

θ4 + θ2ξ2 + 3ξ4) cos [2ξ ]

−2θ4ξ sin [ξ ] − 2θ2ξ3 sin [ξ ] + θ4ξ sin [2ξ ] − ξ5 sin [2ξ ]
)

sinh
[
θ
])

+θ5 cos [ξ ]2 sinh[2θ ])))/((2(−ξ sin[ξ ] + ξ cosh[θ ] sin[ξ ] + θ(−1

+cos[ξ ]) sinh[θ ])(2ξ(−θ2ξ + (θ2 + ξ2) sin[ξ ]) − 2ξ cosh[θ ](−θ2ξ cos[ξ ]
+(θ2 + ξ2) sin[ξ ]) + θ(2(θ2 + ξ2) − 2(θ2 + ξ2) cos[ξ ] + (−θ2ξ + ξ3) sin[ξ ]) sinh[θ ])))
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