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Abstract Material heterogeneity induced by a surface or interface may be neglected at macroscale since the
surface-to-volume ratio is usually small. However, its effect can become significant for structures at nanoscale
with a large surface-to-volume ratio. In this paper, we incorporate such surface material heterogeneity into
wave propagation analysis of a nanosized transversely isotropic cylinder. This is achieved by using the concept
of surface elasticity. Instead of directly using the well-known Gurtin–Murdoch (GM) surface elasticity, we
develop here another general framework based on a thin layer model. A novel approach based on state-space
formalism is used to derive the approximate governing equations. Three different sources of surface effect can
be identified in the first-order surface elasticity, i.e., the elasticity effect, the inertia effect and the thickness
effect. It is found that the derived theory becomes identical to the GM surface elasticity if the thickness effect
is dropped and when the material is isotropic. The axisymmetric wave propagation in a transversely isotropic
cylinder with surface effect is then studied, and an exact solution is presented. Numerical results are finally
given to show that the surface effect will play a very pronounced role in wave propagation in cylinders at
nanoscale.

1 Introduction

Nanosized structures such as extremely thin films, nanobeams, nanotubes and nanowires have attracted much
attention due to their applications in high-sensitive and high-frequency nanodevices such as MEMS/NEMS [1–
3]. Understanding the mechanical behavior of these structures and devices is very important both in the design
stage and in the application stage. In contrast to the macroscopic case, evidences from experiments and
simulations have clearly indicated that the properties and responses of nanosized structures are mostly size-
dependent [4–9]. One logical reasoning for this exotic characteristic is the surface effect, which accounts for
the difference between the properties of a surface and its bulk. Physically, such material heterogeneity can be
easily understood that atoms at or near a surface or interface usually sense different environments than their
bulk counterparts [10–12].

Developing continuum mechanics models to account for the surface effect is very important since
both experiment and numerical simulation down to the molecular and atomic levels are very expensive and
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Fig. 1 a Solid cylinder and cylindrical coordinates, b cross section and thin surface material layer

time-consuming. A rigorous nonlinear framework of surface elasticity is already available, which was pro-
posed by Gurtin and Murdoch [13] for a deformable material surface. We will refer to this theory as the
GM theory, which can be seen as a generalization of the classical Young–Laplace equation [14] by taking
the surface elasticity, in addition to the surface tension, into consideration. The GM theory has become very
popular in recent years in the study of size-dependent properties and responses of nanosized materials and
structures [15–21]. A further development of the GM theory can be found in Ref. [22], where a new energy
functional was introduced to facilitate the derivation of all field equations at finite deformation.

The material surface in the GM theory has no thickness and is an idealization of the actual situation, which
usually consists of several atomic layers. Historically and interestingly, Mindlin [23] derived the approximate
governing equations for a very thin layer attached to a plate by following a systematic procedure for developing
plate theories. It has been shown that Mindlin’s equations will be identical to those in the GM theory when the
residual surface tension is absent, provided the elastic properties are properly defined [24]. Later, Tiersten [25]
investigated the elastic surface wave propagation in an elastic substrate guided by surface thin films using
Mindlin’s treatment to approximate the effect of thin films. We will refer to this treatment as the MT model
later in this paper. The research along this line is also very fruitful. In particular, a different derivation technique
based on the simple Taylor’s series expansion has been proposed [26–30]. By this technique, the approximate
governing equations of a surface or interface material layer of small thickness h can be obtained by truncating
the series at an arbitrary order, say O(hn) with n being an integer. However, the derivation will become
extremely tedious and tangly if more complexities (e.g., material anisotropy, multi-field coupling, etc.) are
involved. Recently, a novel approach was suggested to overcome the difficulty by employing the state-space
formalism [31,32].

In this paper, we will extend our previous works for plane boundary [31,32] to cylindrical boundary and
explore the wave propagation behavior in a transversely isotropic elastic cylinder with surface effect. Waves
in nanosized structures are a hot topic of current research [33–37]. Note that most available studies employ the
GM theory to develop one-dimensional approximate rod or beam theories with surface effect for nanowires
(or nanofibers or nanotubes) except the recent study by Huang and Kang [37], who presented an exact three-
dimensional wave solution involving surface effect. None are concerned with material anisotropy. Here, we will
pay our attention to: (i) deriving the governing equations of a material surface in cylindrical coordinates based
on the MT model by virtue of the state-space formalism; (ii) obtaining the analytical solution of axisymmetric
wave propagation in a transversely isotropic cylinder with surface effect; and (iii) numerically studying the
thickness effect and anisotropy effect, both included in the developed surface elasticity theory, on the wave
propagation behavior.

2 State-space formalism in cylindrical coordinates

Consider a transversely isotropic elastic solid cylinder with constant cross section. The material isotropic
plane is perpendicular to the axis of the cylinder, which is taken to be identical to the z-axis of the cylindrical
coordinate system (r, θ, z), see Fig. 1a.

The stress (σi j )-displacement (ui ) constitutive relations for materials with transverse isotropy are [38]
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where c66 = (c11 − c12)/2 and ci j are the elastic constants.
The equations of motion in cylindrical coordinates are
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where ρ is the density, and t is the time variable.
In contrast to the conventional displacement method [39] which eliminates the six stress variables σi j from

Eqs. (1) and (2) to obtain three coupled second-order partial differential equations about the three displace-
ment components ui , the state-space approach usually keeps three stress components and three displacement
components and transforms the governing equations into a set of first-order ordinary differential equations
with respect to one particular coordinate variable. The state-space approach has particular advantages over the
displacement method in solving certain kinds of problems in mechanics and engineering, and the interested
reader is referred to Refs. [38,40] for more details and references.

In this paper, we will derive the surface elasticity using the state-space formalism. In fact, from Eqs. (1)
and (2), we can derive the following state equation [38]:

∂Y
∂r

= M(ci j , ρ; r; ∂θ , ∂z, ∂t )Y (3)

where Y = [ur , uθ , uz, σrr , σrθ , σr z]T is the state vector (the superscript T signifies transpose), ∂η =
∂/∂η (η = θ, z, t), and M is the 6 × 6 system matrix, with its four partitioned 3 × 3 sub-matrices being
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with a1 = c11 − c2
12/c11, a2 = c13 − c12c13/c11 and a3 = c33 − c2

13/c11.
In addition to the state equation in Eq. (3), a set of output equations is usually needed for the determination

of other stress components. However, for our purpose in this paper, these are not necessary and hence are
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omitted for simplicity. It is also noted here that the state equation in Eq. (3) for transversely isotropic materials
can be easily generalized to the full anisotropy case [41], and even to cases when multi-field coupling is
present [42].

3 Surface elasticity for a cylindrical material boundary

In this section, we will adopt the MT model to establish surface elasticity for a cylindrical material boundary.
Thus, the cylindrical boundary is seen as a thin elastic cylindrical shell of thickness h = r1 − r0, with r0 and
r1 being the inner and outer radii of the shell, respectively, see Fig. 1b. For clarity, a superscript s will be used
in the following to indicate the quantities that are associated with the cylindrical shell.

Applying Eq. (3) to the cylindrical shell, we get

∂Ys

∂r
= Ms

(
cs

i j , ρ
s; r; ∂θ , ∂z, ∂t

)
Ys (4)

where Ms is the system matrix of the cylindrical shell, which contains three partial differential operators
∂θ , ∂z, ∂t . In addition, in contrast to the plane boundary [31,32], it depends obviously on the radial coordinate
r . Thus, even if we treat the three partial differential operators as parameters [43], it is still difficult to write out
the analytical solution (in the operator sense) to Eq. (4) in a simple form directly. Considering the fact that the
material boundary layer is very thin (i.e., h is very small), we can make the approximation by taking r ≈ r0.
Thus, we have

∂Ys
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0

(
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)
Ys (5)

where Ms
0 = Ms |r=r0 . Now, all coefficients in Eq. (5) are constant and do not vary with the radial coordinate r .

Then, the solution to Eq. (5) can be formally written as

Ys(r) = exp
[
Ms

0(r − r0)
]

Ys(r0) (6)

where, as mentioned earlier, the three partial differential operators ∂θ , ∂z, ∂t have been seen as three usual
parameters [31,43].

Setting r = r1 in Eq. (6) leads to the following transfer relation between the state vectors at the outer and
inner surfaces of the cylindrical shell:

Ys(r1) = TYs(r0) (7)

where T = exp(Ms
0h) is the transfer matrix, a matrix exponential in the operator sense. By the definition of

matrix exponential, we know that
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Thus, to the first order, we get from Eq. (7)

Ys(r1) = (I + Ms
0h)Ys(r0) + O(h2) ≈ (I + Ms

0h)Ys(r0). (9)

At the interface r = r0, the state variables at the inner surface of the cylindrical shell should be equal to
those of the bulk material, i.e.,

Ys(r0) = Y(r0) (10)

where Y (without the superscript s) denotes the state vector associated with the bulk material.
If the outer surface of the shell is free from tractions, we get from Eqs. (9) and (10)
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where Ms
0i j are the 3 × 3 partitioned sub-matrices of the system matrix Ms

0. Thus, we have
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Equation (11) presents the governing equations of the first-order surface elasticity theory or the O(h)
effective boundary conditions for a cylindrical material surface which takes account of material transverse
isotropy. We can identify three different sources of surface effect in this theory, i.e., the elasticity effect, the
inertia effect and the thickness effect. The thickness effect corresponds to the last term in Eq. (11), the inertia
effect corresponds to the second-order time-derivatives in the first term, while the rest in the first term is
attributed to the elasticity of the material surface.

4 Comparison with the GM theory

The GM theory assumes zero-thickness of the material surface. If we neglect the thickness effect in Eq. (11),
we have
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Assuming the cylindrical shell is isotropic, we have
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where λs and μs are the Lamé constants of the surface material. In view of Eqs. (12) and (14), we get from
Eq. (13)
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By defining the following surface material constants:
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Then, Eq. (15) can be rewritten as(
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It is easily found that Eq. (19) is the same as Eq. (A8) in “Appendix 1”, which corresponds to the GM surface
elasticity when the surface tension is absent. Thus, we can conclude that the MT model, along with the proposed
efficient derivation using the state-space formalism, can lead to the same equations as the GM theory, provided
that the thickness effect in the first-order approximation is omitted and the surface material properties are
properly defined. Interestingly, as seen from Eq. (17), the surface material constants ρ0 and μ0 are merely the
scaled versions of their bulk counterparts, while λ0 is more involved. This fact has also been noticed by Gurtin
and Murdoch for a plane material surface [24].

5 Axisymmetric waves in cylinders with surface effect

5.1 Axisymmetric wave solution

Consider linear elastic waves propagating in an infinitely long transversely isotropic cylinder. For illustration
purpose, we consider only axisymmetric torsionless waves in which the motion is independent of the circum-
ferential coordinate θ and uθ = 0. The harmonic traveling wave solution may be sought in the following
form:

ur = Ur (r) sin (kz − ωt) ,

uz = Uz(r) cos (kz − ωt)
(20)

where k denotes the axial wave number, ω the circular frequency, and Ur (r) and Uz(r) the unknown mode
distribution functions along the radial direction. Substituting Eq. (20) into Eq. (1) yields the following stress
components:

σrr ≡ Trr sin(kz − ωt), σθθ ≡ Tθθ sin(kz − ωt), σzz ≡ Tzz sin(kz − ωt),

σr z ≡ Trz cos(kz − ωt), σθ z = σrθ = 0
(21)

where
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By substituting Eq. (21) into Eq. (2), we obtain
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The solution to Eq. (23) takes the following form:

Ur = AJ1(αr), Uz = B J0(αr) (24)
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where A and B are constants to be determined, Jn(·) is the Bessel function of first kind and n-th order, and α
is the wave number in the radial direction. Upon substituting Eq. (24) into Eq. (23), we find

(ρω2 − c11α
2 − c44k2)A + (c13 + c44)kαB = 0,

(c13 + c44)kαA + (
ρω2 − c44α

2 − c33k2) B = 0.
(25)

The compatibility of Eq. (25) requires that∣∣∣∣∣
ρω2 − c11α

2 − c44k2 (c13 + c44)kα

(c13 + c44)kα ρω2 − c44α
2 − c33k2

∣∣∣∣∣ = 0 (26)

which results in a characteristic equation. It is a quadratic algebraic equation of α2, from which we can obtain
four roots of α. Without loss of generality, we assume Re[αi ] > 0 or Re[αi ] = 0 and Im[αi ] > 0 (i = 1, 2). It
is noted that if the first-kind Bessel functions in Eq. (24) are replaced with the second-kind ones, the solution
still satisfies Eq. (23), but it becomes unbounded at r = 0 and hence is omitted here.

Therefore, the complete wave solution to Eq. (23) can be written as

Ur (r) =
2∑

i=1

Ai J1(αi r), Uz(r) =
2∑

i=1

pi Ai J0(αi r) (27)

where Ai (i = 1, 2) are undetermined constants, pi (i = 1, 2) are the modal ratios that can be determined
from any one of the following two equations:

(ρω2 − c11α
2
i − c44k2) + (c13 + c44) kαi pi = 0,

(28)
(c13 + c44)kαi + (

ρω2 − c44α
2
i − c33k2) pi = 0.

5.2 Dispersion relation

In the following, we use Eq. (13) instead of Eq. (11) to derive the wave dispersion equation for cylinders with
surface effect. This is because the associated formulae become simpler, while the integrality of derivation
remains the same as that when the thickness effect is involved. For axisymmetric waves, Eq. (13) becomes(

ρsh
∂2

∂t2 + as
1h

r2
0

)
ur + as

2h

r0

∂uz

∂z
+ σrr = 0,

−as
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∂z
+

(
ρsh
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3h

∂2

∂z2

)
uz + σr z = 0

(29)

which can be seen as the effective boundary conditions at the cylindrical surface r = r0. Making use of the
wave solution presented above, we obtain from Eq. (29)

2∑
i=1

f j i Ai = 0 ( j = 1, 2) (30)

where

f1i =
(

−ρshω2 + as
1h

r2
0

− 2c66

r0

)
J1(αi r0) +

(
c11αi − c13kpi − as

2hk

r0

)
pi J0(αi r0),

f2i = (−ρsω2 + as
3k2)pi h J0(αi r0) +

[
c44(k − αi pi ) − as

2hk

r0

]
J1(αi r0).

(31)

Equation (30) is a set of two linear homogeneous algebraic equations about Ai (i = 1, 2). For nontrivial
solutions, we get

f11 f22 − f12 f21 = 0 (32)
which gives the dispersion relation for axisymmetric torsionless waves in a cylinder with surface effect.

Again, we emphasize here that the characteristic dispersion equation in the case that the thickness effect is
kept can be similarly derived, and the final result is given in “Appendix 2”. We shall study the thickness effect
numerically in the following section.
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Fig. 2 Axisymmetric wave dispersion curves for an isotropic iron cylinder (rh = 0.1, rρ = 0.5, rc = 8)

6 Numerical results and discussion

In this section, we will conduct numerical simulations of axisymmetric wave propagation in elastic cylinders
of different sizes by adopting the proposed surface elasticity theory to study the surface effect on wave
characteristics. An isotropic crystal cylinder made of iron is first considered to investigate the thickness effect,
which is not included in the GM theory. Then, two anisotropic materials, i.e., the cubic and hexagonal crystals,
are chosen to show the effect of material anisotropy on the wave propagation behavior. We shall use the
dimensionless frequency and wave number defined by Ω = r0ω

√
ρ/c44 and ξ = kr0, respectively, in the

following discussion.
On one hand, there are very few accurate data available in the literature regarding surface elastic properties.

Those calculated from molecular dynamics are more qualitative than quantitative. On the other hand, our model
clearly reveals the physical nature of these properties, as already noticed by Gurtin and Murdoch [24]. Thus,
it is more direct and convenient to assign the bulk material constants (with superscript s) to the surface layer.
In addition, we will adopt the following dimensionless quantities:

rρ = ρs/ρ, rc = cs
i j/ci j , rh = h/r0 (33)

to study the surface effect for different surface properties.
For simplicity, three abbreviations, namely classical, GM and PTE, will be used below, which denote

the classical elasticity without surface effect, the GM surface theory without thickness effect and the present
surface theory with thickness effect, respectively.

6.1 Thickness effect

The material constants of iron are taken to be: λ = 80 GPa, μ = 70 GPa and ρ = 7,000 kg/m3 [24]. The lowest
three branches of the axisymmetric wave dispersion relations are depicted in Fig. 2 for rh = 0.1, rρ = 0.5
and rc = 8. These three branches generally correspond to the extensional (longitudinal), radial and axial-shear
motions, respectively, at least dominating at a low wave number [44]. The results from three different theories
(i.e., classical, GM, and PTE) are all compared in the figure. It is found that, while the predictions from GM
and PTE agree quite well for this example, the surface effect plays an important role in the wave propagation
even at a relatively low wave number.

The nonzero cutoff frequencies at k = 0 can be determined analytically from the dispersion equation, as
shown in “Appendix 2” for PTE. The results for classical and GM can be obtained by a simple degenerate
analysis. It is noted that the two cutoff frequencies, corresponding to the first radial mode (Ω(1)

r ) and the first
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Fig. 3 Normalized cutoff frequency versus r0/h for different surface parameters for a axial-shear mode, and b radial mode

axial-shear mode (Ω(1)
s ), can be clearly identified. Interestingly, when no surface effect is involved, the cutoff

frequency for the first radial mode (Ω(1)
r ) is lower than that for the first axial-shear mode (Ω(1)

s ), but if the
surface effect is included, Ω(1)

r becomes larger than Ω
(1)
s . According to Eq. (B3), Ω(1)

s is independent of rc, and
once rh and rρ are given, Ω

(1)
s will keep unchanged. On the other hand, Ω

(1)
r depends on rc, and hence, when

the material parameters are properly chosen, the relative magnitude between Ω
(1)
s and Ω

(1)
r can be switched.

In order to clearly show the thickness effect on the wave propagation behavior, the curves of normalized
cutoff frequencies ΩNs and ΩNr (for the axial-shear mode and radial mode, respectively) versus r0/h are
shown in Fig. 3a, b for different combinations of rρ and rc. The normalization is made with respect to the

classical ones. Since Ω
(1)
s is independent of rc, only rρ is varied to modulate the thickness effect as shown in

Fig. 3a, while different combinations of rc and rρ are considered in the calculation of ΩNr as shown in Fig. 3b.
It is seen that both ΩNs and ΩNr approach 1 when r0/h becomes infinitely large. This is expected since the
surface effect becomes trivial at macroscale. It is also seen that the inclusion of the thickness effect in PTE
will generally make the deviation from classical results more obvious than GM. This can be clearly seen from
Fig. 3, especially for r0/h < 5.
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Fig. 4 Normalized cutoff frequency ΩNs versus rρ(rh = 0.1)

Figure 3a also indicates that, for positive rρ , the surface effect lowers the cutoff frequency of the first
axial-shear mode, while for negative rρ , the situation reverses accordingly. Note that the negative surface mass
density was considered and discussed by Huang and Kang [37]; there are certain practical cases where negative
macroscopic mass may be encountered [45]. The surface effect on the cutoff frequency of the first radial mode
is more complicated, because it depends on both rc and rρ . Figure 3b shows that, for positive rρ, Ω

(1)
r increases

with rc, but decreases with rρ . In fact, the larger the surface elastic constants, the stiffer the surface layer and
the higher the natural frequency. On the contrary, the larger the positive surface mass density, the lower the
frequency. It is thus clear that the surface effect on the cutoff frequencies can be quite different if different
surface properties are involved.

The curves of the normalized cutoff frequency ΩNs for the axial-shear mode versus rρ are shown in Fig. 4
for rh = 0.1. Both GM and PTE results are given. As is anticipated, ΩNs = 1 when rρ = 0. It is seen that,

due to the presence of surface effect, for positive rρ, Ω
(1)
s decreases with rρ , and Ω

(1)
s of PTE is lower than

that of GM. However, for negative rρ , the situation changes. What’s more, when rρ decreases approximately
to a certain value (−2.2 and −2.6 for GM and PTE, respectively), a new branch will emerge with the cutoff
frequency even lower than the continuous extension on the negative rρ side of the first axial-shear mode for
positive rρ .

6.2 Anisotropy effect

It is interesting and also important to study the material anisotropy effect since quite a lot of materials exhibit
strong anisotropy at nanoscale. Here, we take cubic crystals and hexagonal crystals as examples. For cubic
crystals, we have three independent elastic constants and can define the following anisotropy ratio [46]:

A = 2c44

c11 − c12
. (34)

Clearly, A = 1 corresponds to an isotropic material, and the degree of anisotropy is measured by the deviation
of A from 1. In the numerical calculation, we assume c11 = λ + 2μ and c12 = λ and calculate c44 by
c44 = A(c11 − c12)/2 for the cubic crystals. We will take λ = 52.4 and μ = 68.1 GPa, the Voigt average
elastic constants for the cubic crystal Si [46].

For hexagonal crystals, we have five independent elastic constants. In accordance with Eq. (34), we may
define the following three anisotropy ratios:

A1 = 2c44

c11 − c12
, A2 = 2c44

c11 − c13
, A3 = 2c44

c33 − c13
. (35)



On wave propagation in anisotropic elastic cylinders at nanoscale 2753

Fig. 5 Axisymmetric wave dispersion curves for cubic crystal cylinders (rh = 0.01, rρ = rc = 1)

When A1 = A2 = A3 = 1, we have an isotropic material. In the numerical calculation, we assume c11 = λ+2μ
and c12 = λ, and calculate the other three constants for the hexagonal crystals according to

c44 = (c11 − c12)A1/2, c13 = c11 − 2c44/A2, c33 = c13 + 2c44/A3. (36)

We will take E = 113.8 GPa and ν = 0.357, which are the averaged bulk Young’s modulus and Poisson’s
ratio for the hexagonal crystal ZnO predicted by the first-principles DFT method [47]. Note that the two Lamé
constants can be calculated from Young’s modulus and Poisson’s ratio via λ = νE/[(1 + ν)(1 − 2ν)] and
μ = E/[2(1 + ν)].

The first three lowest branches of the axisymmetric wave dispersion curves for cubic crystal cylinders are
given in Fig. 5 for rh = 0.01 and rρ = rc = 1. Different anisotropy ratios have been assumed, and the results
are obtained with PTE. It is seen that the material anisotropy of the bulk and the surface has a significant
influence on the wave propagation behavior, except the cutoff frequency Ω

(1)
s , which is independent of A.

In particular, we notice that Ω
(1)
s is higher than Ω

(1)
r when A = 1 (i.e., the material is isotropic), but when

A = 0.8, Ω
(1)
s becomes lower than Ω

(1)
r . Therefore, if an anisotropy effect is involved, the relative magnitude

between these two cutoff frequencies may be changed.
Unlike Ωs, Ωr varies with the anisotropy ratio, which is shown in Fig. 6 for rh = 0.1 and rρ = rc = 1.

All three results (classical, GM and PTE) are presented and compared in the figure. The GM and PTE results
agree well and are lower than the classical ones. Generally, Ωr changes rapidly when A deviates from 1 (i.e.,
the isotropic case), indicating a strong effect of material anisotropy. It is also of interest to note that when A
reaches about 2.5, the curve of the originally first radial mode stops, while the curve of the originally second
radial mode continues and turns to be the first radial mode, as long as a real frequency only is considered.

The curves of the cutoff frequency for the radial mode, Ω(1)
r , versus r0/h are shown in Fig. 7 for rρ = rc = 1

and different anisotropy ratios. Just like Fig. 2, the surface effect is significant when the radius of the cylinder
is small, and both the GM and PTE predictions approach the classical ones when r0 becomes infinitely large.
It is noted that the classical predictions are affected by the material anisotropy, as clearly seen from Fig. 7.

The first three lowest branches of the axisymmetric wave dispersion curves for hexagonal crystal cylinders
are given in Fig. 8 for rh = 0.01, rρ = 1 and rc = 1. Different combinations of the three anisotropy ratios
are considered. The results are calculated using PTE. Just as the cubic cylinder, material anisotropy has an
obvious effect on the dispersion curves. The cutoff frequencies of the axial-shear mode again keep unchanged
when the three anisotropy ratios take different values. It is also observed that the curves for A1 = 1, A2 = 0.8
and A3 = 1.2 are closest to the isotropic ones (A1 = A2 = A3 = 1), indicating that the frequency is more
sensitive to the anisotropy ratio A1 than the other two anisotropy ratios A2 and A3.

It can be shown from “Appendix 2” that Ωr depends on the anisotropy ratio A1 only. This dependence is
depicted in Fig. 9 for the cutoff frequency of the first radial mode Ω

(1)
r for rh = 0.1 and rρ = rc = 1. To
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Fig. 6 Cutoff frequency Ωr versus anisotropy ratio A (rh = 0.1 and rρ = rc = 1)

Fig. 7 Cutoff frequency versus r0/h for different anisotropy ratios (rρ = rc = 1)

ensure the positive definiteness of the elastic constant matrix, the anisotropy ratio A1 must satisfy 0.2657 <
A1 < 4.2308 for A2 = A3 = 1. The results of GM and PTE are almost the same, both deviating from the
classical ones to a certain degree.

To check the accuracy of the proposed surface elasticity theory for anisotropic materials, we finally make a
numerical comparison with the exact solution, which is obtained by treating the cylinder as a composite core-
shell structure, with both the core and the shell modeled directly with the exact three-dimensional elasticity
theory [38]. The material is hexagonal crystal ZnO, for which the material properties can be found in Ref. [38].
We take rh = 0.2, rρ = 2 and rc = 5. Figure 10 compares the first three lowest branches for the axisymmetric
wave dispersion curves among GM, PTE and the exact solution. It is seen that PTE is closer to the exact
theory than GM, indicating that the thickness effect may be important in certain situations involving material
anisotropy.
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Fig. 8 Axisymmetric wave dispersion curves for hexagonal crystal cylinders (rh = 0.01, rρ = rc = 1)

Fig. 9 Cutoff frequency Ω
(1)
r versus anisotropy ratio A1(rh = 0.1, rρ = rc = 1)

7 Conclusions

In this study, the surface elasticity theory for a cylindrical material boundary is established, which can account
for material anisotropy. In contrast to the GM surface theory which assumes zero-thickness of the surface, we
here treat the cylindrical surface as a thin cylindrical shell with very small thickness. This is known as the MT
model proposed by Mindlin and Tiersten. A simple and convenient method is employed to derive the governing
equations of the surface elasticity based on the state-space formalism. The obtained first-order approximate
surface elasticity theory or the O(h) effective boundary conditions includes three different contributions,
corresponding to the elasticity effect, the inertia effect and the thickness effect, respectively. When the thickness
effect is neglected, we obtain the same governing equations as the GM surface elasticity for isotropic materials
and in absence of surface tension.

Numerical examples are particularly designed to show the thickness effect, which is omitted in the GM
surface elasticity, and the material anisotropy effect, which has not been fully explored in wave analysis of
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Fig. 10 Axisymmetric wave dispersion curves for a hexagonal crystal cylinder (rh = 0.2, rρ = 2 and rc = 5)

nanosized structures. The results have shown that both effects may become significant. Therefore, it is possible
to modulate the waves in the cylinder (and other structures as well) by surface engineering.

It is strengthened that our method clearly indicates the physical nature of the surface material properties
defined in the GM theory. Furthermore, this method is very convenient to be used in multi-field coupling cases
even at finite deformation. It can also be adopted to develop accurate interface elasticity theories.

Finally, we would like to point out that the theory of surface elasticity is only one possible candidate, within
the framework of (generalized) continuum mechanics, for interpreting various size-dependent phenomena
associated with nanosized structures. Other generalized continuum mechanics theories, including the nonlocal
elasticity theory and gradient elasticity theory in particular, have also been widely employed in the literature to
study the size effects in the mechanical behavior of these very tiny structures [33,49–52]. A validation study
and a comprehensive comparison among these theories should be very interesting from both theoretical and
practical points of view, which however is beyond the scope of this study.
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Appendix 1: Equations for Gurtin–Murdoch surface elasticity in cylindrical coordinates

In tensor form, the geometric, constitutive and equilibrium equations in the GM surface elasticity for isotropic
elastic materials are respectively:

E = (
DSu + DT

Su
)
/2, (A1.1)

� = τ0I + 2(μ0 − τ0)E + (λ0 + τ0)(trE)I + τ0(gradSu), (A1.2)

divS� = σ n + ρ0ü (A1.3)

where ρ0, λ0 and μ0 are the surface mass density and the surface Lamé constants, respectively; � and E
denote the surface stress and surface strain fields; τ0 is the residual surface tension; n the outward unit normal
to the surface; and I, tr, gradS, divS and DS are all operators that are well defined in Ref. [13].

The displacement vector in cylindrical coordinates (r, θ, z) can be written as:

u = ur er + uθeθ + uzez (A2)

with ei being the unit vector along the i-axis. In accordance with Ref. [29], by setting v1 = θ, v2 = z, and
v3 = r , the corresponding metric coefficients are h1 = r , h2 = h3 = 1. Thus, the nonzero components of the
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surface displacement gradient tensor gradSu are

(gradSu)11 = (gradu)11 = 1

r

(
∂uθ

∂θ
+ ur

)
, (gradSu)12 = (gradu)12 = ∂uθ

∂z
,

(gradSu)21 = (gradu)21 = 1

r

∂uz

∂θ
, (gradSu)22 = (gradu)22 = ∂uz

∂z
, (A3)

(gradSu)31 = (gradu)31 = 1

r

(
∂ur

∂θ
− uθ

)
, (gradSu)32 = (gradu)32 = ∂ur

∂z
.

The projection tensor onto the tangent space is

P = I − er er = eθ eθ + ezez . (A4)

The tangential derivative tensor DSu of the displacement vector is obtained as

DSu = P(gradSu) = (gradu)11eθeθ + (gradu)21ezeθ

+ (gradu)12eθez + (gradu)22ezez . (A5)

Thus, the first one in Eq. (A1) gives the following components of the surface strain tensor:

E11 = 1

r

(
∂uθ

∂θ
+ ur

)
, E12 = E21 = 1

2

(
∂uz

r ∂θ
+ ∂uθ

∂z

)

E22 = ∂uz

∂z
, E13 = E31 = E23 = E32 = E33 = 0

(A6)

Upon substituting Eq. (A6) into Eq. (A1.2), we obtain the following surface stress components:

�11 = τ0 + λ0 + 2μ0

r

(
∂uθ

∂θ
+ ur

)
+ (λ0 + τ0)

∂uz

∂z
, �12 = μ0 − τ0

r

∂uz

∂θ
+ μ0

∂uθ

∂z
,

�21 = (μ0 − τ0)
∂uθ

∂z
+ μ0

r

∂uz

∂θ
, �22 = τ0 + (λ0 + 2μ0)

∂uz

∂z
+ λ0 + τ0

r

(
∂uθ

∂θ
+ ur

)
, (A7)

�31 = τ0

r

(
∂ur

∂θ
− uθ

)
, �32 = τ0

∂ur

∂z
, �13 = �23 = �33 = 0.

Finally, by making use of the formulas in the Appendix of Ref. [29], we obtain for a cylindrical surface
(

ρ0
∂2

∂t2 + λ0 + 2μ0

r2
0

− τ0

r2
0

∂2

∂θ2 − τ0
∂2

∂z2

)
ur

+ λ0 + 2μ0 + τ0

r2
0

∂uθ

∂θ
+ λ0 + τ0

r0

∂uz

∂z
+ σrr + τ0

r0
= 0,

− λ0 + 2μ0 + τ0

r2
0

∂ur

∂θ
+

(
ρ0

∂2

∂t2 − λ0 + 2μ0

r2
0

∂2

∂θ2 − μ0
∂2

∂z2 + τ0

r2
0

)
uθ

− λ0 + μ0

r0

∂2uz

∂θ∂z
+ σrθ = 0,

− λ0 + τ0

r0

∂ur

∂z
− λ0 + μ0

r0

∂2uθ

∂θ∂z
+

[
ρ0

∂2

∂t2 − μ0

r2
0

∂2

∂θ2 − (λ0 + 2μ0)
∂2

∂z2

]
uz

+ σr z = 0 (A8)

where r0 is the finite radius of the cylindrical surface.
Equation (A8) gives the governing equations of the GM theory for an isotropic elastic material surface in

the cylindrical coordinate system. It is clear that, when the surface tension vanishes, i.e., τ0 = 0, Eq. (A8)
becomes identical to Eq. (19) in the text.
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Appendix 2: Dispersion relation corresponding to the present first-order surface elasticity and the cutoff
frequencies

If we retain the thickness effect in Eq. (11), then we obtain the dispersion relation governing the axisymmetric
torsionless waves in a cylinder with surface effect as

g11g22 − g12g21 = 0 (B1)

where

g1i =
(

−ρshω2 + as
1h

r2
0

− 2c66

r0

)
J1(αi r0) +

(
c11αi − c13kpi − as

2hk

r0

)
pi J0(αi r0)

+ δh

{[
c44k(k − αi pi ) − 2c66

r2
0

(
cs

12

cs
11

− 1

)]
J1(αi r0)

+
[

c11αi − c13kpi

r0

(
cs

12

cs
11

− 1

)
− as

2k

r0
pi

]
J0(αi r0)

}
, (B2)

g2i = (−ρsω2 + as
3k2)pi h J0(αi r0) +

[
c44(k − αi pi ) − as

2hk

r0

]
J1(αi r0)

+ δh

{[
2cs

13c66k

cs
11r0

− c44

r0
(k − αi pi )

]
J1(αi r0) − cs

13k

cs
11

(c11αi − c13kpi )J0(αi r0)

}
.

For clarity, we have introduced a parameter δ such that δ = 1 corresponds to the proposed surface elasticity
with thickness effect, and δ = 0 gives that without thickness effect, i.e., the GM surface elasticity theory.

For k = 0, the axial-shear motion is decoupled from the radial motion. The transcendental equation
governing the cutoff frequencies for the axial-shear motion can be obtained as

(1 − δrh)J1(Ωs) = −rρrhΩs J0(Ωs), (B3)

and that governing the cutoff frequencies for the radial motion is

{
as

1

c44
rh − 2

c66

c44

[
1 + δ

(
cs

12

cs
11

− 1

)
rh

]
− rρrhΩ2

r

}
J1(Ωr )

= −c11

c44

[
1 + δ

(
cs

12

cs
11

− 1

)
rh

]
Ωr J0(Ωr ) (B4)

where rρ and rh are defined in Eq. (33), and

Ωs = r0ω
√

ρ/c44, Ωr = r0ω
√

ρ/c11. (B5)

When neglecting the thickness effect, Eqs. (B3) and (B4) become, respectively,

J1(Ωs) = −rρrhΩs J0(Ωs), (B6)(
as

1

c44
rh − 2

c66

c44
− rρrhΩ2

r

)
J1(Ωr ) = −c11

c44
Ωr J0(Ωr ). (B7)

In view of Eq. (17), we can find that Eq. (B7) is the same as Eq. (10) in Ref. [37] when the material is isotropic.
However, Eq. (B6) differs from Eq. (11) in Ref. [37] by a minus sign. We note that, when the surface effect is
discarded, Eqs. (B6) and (B7) degenerate identically into the classical ones [48].
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