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Abstract A so far unavailable quasi-3D trigonometric shear deformation theory for the bending analysis of
functionally graded plates is presented. This theory considers the thickness-stretching effect (εzz �= 0) by
modeling the displacement field with just four unknowns and rich trigonometric shear strain shape functions.
The principle of virtual works is used to derive the governing equations and boundary conditions. Results
from this theory are compared with the CPT, first-order shear deformation theory (FSDT), and other quasi-3D
HSDTs. In conclusion, this theory is more accurate than the CPT and FSDT and behaves as well as quasi-3D
HSDTs having much less number of unknowns.

1 Introduction

The concept of functionally graded materials (FGMs) is not new [1,2]. This kind of material can be found in
nature. FGMs are found in sea shells and bones, and the understanding of the high complexity of such materials
is contributing to the synthesizing of new kinds of materials. Currently, FGMs are alternative materials widely
used in the industry [3].

Mechanically, FGMs are both macroscopically and microscopically heterogeneous materials, which are
normally made, for example, from a mixture of ceramics and metals with continuous composition gradation
from pure ceramic on one surface to full metal on the other. Such gradation leads to smooth change in the
material profile as well as the effective physical properties to overcome the usual problems when classical
laminate composites are used.

Functionally graded materials (FGMs) can be used to build any kind of structures such as shells. For
example, representative research on the static response of functionally graded plates (FGPs) is available in
the literature, see, for example, the works by Jha et al. [3] and Birman and Byrd [4]. This paper deals with
the development of a shear deformation theory that is applied to study the bending response of FGPs, and
therefore, a review on the developments of theories for FGMs is described in the following.

Usually, when a shear deformation theory is developed, one can use either displacement-based theo-
ries (when the principle of virtual displacement is used), stress-based theories, or displacement–stress-based
theories (when Reissner mixed variational theorem is used), see [5–13] for details. The well-described
Carrera’s unified formulation (CUF) [14], which is extended by Demasi [5,6,10–13] in the so-called
generalized unified formulation (GUF), describes precisely and clearly the models, types, and classes of
theories.
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In the context of shear deformation theories, a significant number of theories for plates and shells have been
developed in the last and in the beginning of this century. These theories can be classified into different models,
such as equivalent single layer, quasi-layerwise, and layerwise models [5,6]. Within them, as is well known,
there are mainly three major theories, namely the classical lamination theory (CLT), which is based on the
assumptions of Kirchhoff’s plate theory that neglects the interlaminar shear deformation; the first-order shear
deformation theory (FSDT), which assumes constant transverse shear deformation through the entire thickness
of the laminate and violates stress-free boundary conditions at the top and bottom surfaces of the plate; and
more accurate theories such as higher-order theories (HSDTs) assuming quadratic, cubic, or non-polynomial
variations of surface-parallel displacements through the entire thickness of the laminates to model the behavior
of the structure for thick-to-thin regions.

The above-mentioned theories were applied to isotropic, classical, and advanced composite beams, plates,
and shells. The present paper will only consider the contributions on advanced composite structures such as
FGPs. In this context, in the last decade, several researchers investigated the static and dynamic behavior
of FGMs. For example, Reddy [15] presented Navier’s solutions and finite element models including geo-
metric nonlinearity based on the third-order shear deformation theory for the analysis of FGPs. Cheng and
Batra [16] derived the field equations for a FGP using both FSDT and HSDT. Kashtalyan [17] presented
a three-dimensional elasticity solution for a functionally graded simply supported plate under transversely
distributed load.

Ferreira et al. [18] used a meshless method for the static analysis of a simply supported FGP by a polynomial
HSDT. Elishakoff [19] developed a three-dimensional elasticity solution using the Ritz method for the static
response of a clamped rectangular FGP. The static response of FGPs was presented by Zenkour [20] using the
generalized shear deformation theory developed by the author. Ramirez et al. [21] developed a discrete layer
model in conjunction with the Ritz method for the approximate solution of a static analysis for the two types
of FGPs.

Zenkour [22] investigated the static problem of transverse load acting on exponentially graded (EG) rectan-
gular plates using both 2D trigonometric plate theory (TPT) and 3D elasticity solution. The quasi-3D HSDT
presented in this paper includes the thickness-stretching effect. Sladek et al. [23] presented the static and
dynamic analysis of FGPs by the meshless local Petrov–Galerkin method. The Reissner–Mindlin assumptions
were utilized to describe the plate deformation. Numerical results were presented for simply supported and
clamped plates. In Sladek et al. [24,25], the authors applied the same method to solve plates and shell problems
under thermal loading.

Abrate [26] deduced, by using the CPT, that no special tools are required to analyze FGPs, because an
FGP behaves like homogeneous plates. Bo et al. [27] presented the elasticity solutions for the static analysis
of FGPs for different boundary conditions. Stress, free vibration, and buckling analysis due to mechanical and
thermal loads were given by Matsunaga [28–30] by using a kind of generalized two-dimensional HSDT. This
interesting theory was obtained by using the method of power series expansion of continuous displacement
components.

Khabbaz et al. [31] provided a nonlinear solution of FGM plates using the first- and third-order shear
deformation theories. Aghdam et al. [32] presented a static analysis of fully clamped FGPs and doubly curved
panels by using the extended Kantorovich method. Zenkour and Alghamdi [33], using a variety of equivalent
single-layer theories (ESLTs), studied the thermo-bending problems of FG sandwich plates, consisting of a
homogeneous core layer bounded with two FGM face-sheet layers, in which the material properties of the
face-sheet layers were assumed to obey a power-law distribution of the volume fractions of the constituents
through the thickness coordinate. Wu and Li [34] used a RMVT-based and HSDT to study the response of
multilayered FGPs under mechanical loads.

Talha and Singh [35] investigated the free vibration and static analysis of FGPs using a non-conforming
finite element formulation by employing a quasi-3D polynomial HSDT. Vaghefi et al. [36] presented a three-
dimensional static solution for thick FGPs by utilizing a meshless Petrov–Galerkin method. RMVT-based
meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite
and FGM plates and circular hollow cylinders were presented by Wu et al. [37] and Wu and Yang [38].

Benachour et al. [39] developed a four-unknown HSDT without including the thickness-stretching effect
for free vibration analysis of plates made of FGMs with an arbitrary gradient. Thai and Choi [40] studied
the free vibration analysis of FG plates on elastic foundation by using similar refined plate theory as the one
presented in [39]. Reddy and Kim [41] proposed a general nonlinear third-order plate theory that accounts for
geometric nonlinearity, microstructure-dependent size effects, and two-constituent material variation through
the plate thickness using the principle of virtual displacements and Hamilton’s principle.
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In Carrera et al. [42], the influence of the thickness-stretching effect on the bending responses of FGPs
and shells was investigated in the context of Carreras’s unified formulation (CUF). In fact, this work is an
extension of several FGM papers published by using CUF [43–46]. Based on the previous experience on
meshless numerical method, Neves et al. [47–50] and Ferreira et al. [51] powered CUF in a remarkable joint
work between the authors.

In Mantari et al. [52,53] and Mantari and Guedes Soares [54], bending results of FG plates by using new non-
polynomial HSDTs were presented. The authors used five-unknown HSDTs without including the thickness-
stretching effect. In [55] and [56], the thickness-stretching effect was included by adding one unknown in the
displacement field (six-unknown HSDTs), and improved results of displacements and in-plane normal stresses
compared with [52] and [53] were obtained.

Xiang et al. [57] developed an nth-order HSDT for advanced composite plates with similar fashion as the
one developed by Matsunaga [28–30]. The authors realize that the polynomial HSDT with order 3 predicts
good results corroborating in this way the HSDT proposed by Reddy [15]. Mechab et al. [58] considered
the static and dynamic analysis of FGPs by using the four-unknown HSDTs (εzz = 0) and non-polynomial
shear strain shape function. Thai and Kim [59] developed a five-unknown TPT with thickness-stretching
effect with good accuracy with respect to its counterpart, the TPT with six unknowns. Mantari and Guedes
Soares [60,61] developed an optimized TPT with stretching effect (five and six unknowns) with improved
results compared with the five- and six-unknown quasi-3D trigonometric plate theories [22,59]. Recently,
Zenkour [62] developed an interesting HSDT with four unknowns and thickness-stretching effect, different to
the one proposed in this paper.

In this paper, a new trigonometric quasi-3D HSDT with four unknowns and thickness-stretching effect is
presented. The beauty of this theory is that, in addition to including the thickness-stretching effect (εzz �= 0),
the displacement field is modeled with only four unknowns, which is even less than in the FSDT and does not
need a shear correction factor. The principle of virtual works is used to derive the governing equations and
boundary conditions. Analytical results from the new theory are compared with the CPT, FSDT, and other
quasi-3D HSDTs. In conclusion, this theory is more accurate than the CPT and FSDT and behaves as well as
quasi-3D HSDTs having a much smaller number of unknowns. Therefore, trade-offs between computational
cost and accuracy of the present theory should be further studied.

2 Theoretical formulation

An FGP of uniform thickness h is shown in Fig. 1. Both an exponentially graded plate (EGP) and a powerly
graded plate (PGP) are shown. The displacement field satisfying the conditions of transverse shear stresses
(and hence strains) vanishing at a point (x, y, ± h/2) on the outer (top) and inner (bottom) surfaces of the
plate is given as follows:

(a)

(b)

h

z

xPGP

h

z

xEGP

Fig. 1 Geometry of a functionally graded plate
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u = u + z

[
y∗∗ ∂wb

∂x
+ q∗∗ ∂ws

∂x

]
+ f (z)

∂ws

∂x
,

v = v + z

[
y∗∗ ∂wb

∂y
+ q∗∗ ∂ws

∂y

]
+ f (z)

∂ws

∂y
, (1a–c)

w = wb + g(z)ws,

where u(x, y), v(x, y), wb(x, y), and ws(x, y) are the four unknown displacement functions of the middle
surface of the panel, f (z) = h

m tan
(mz

h

) + z3, g(z) = n f ′(z), while y∗∗ = −1, y∗ = − f ′ ( h
2

)
, q∗ = −g

( h
2

)
and q∗∗ = y∗ + q∗ (being h the thickness of the plate, see Fig. 1 for more details). The shape strain functions
are expressed in such way by considering basic ideas from Zenkour [62] and Mantari and Guedes Soares [55].
In Eqs. (1a–c), the displacement field includes the parameters m and n into the shear strain shape functions.
These parameters are selected in Sect. 4 with the idea to obtain close to 3D results.

The starting point of the present thick plate theory is the 3D elasticity theory [63]. In the derivation of the
necessary equations, small elastic deformations are assumed, i.e., displacements and rotations are small, and
obey Hooke’s law. The strain–displacement relations, based on this formulation, are written as follows:

εxx = ε0
xx + zε1

xx + f (z)ε2
xx ,

εyy = ε0
yy + zε1

yy + f (z)ε2
yy,

εzz = g′(z)ε5
zz,

εyz = ε0
yz + g(z)ε3

yz + f ′(z)ε4
yz,

εxz = ε0
xz + g(z)ε3

xz + f ′(z)ε4
xz,

εxy = ε0
xy + zε1

xy + f (z)ε2
xy,

(2a–f)

where

ε0
xx = ∂u

∂x
, ε1

xx = y∗∗ ∂2wb

∂x2 + q∗∗ ∂2ws

∂x2 , ε2
xx = ∂2ws

∂x2 ,

ε0
yy = ∂v

∂y
, ε1

yy = y∗∗ ∂2wb

∂y2 + q∗∗ ∂2ws

∂y2 , ε2
yy = ∂2ws

∂y2 ,

ε5
zz = ws,

ε0
yz = q∗∗ ∂ws

∂y
, ε3

yz = ∂ws

∂y
, ε4

yz = ∂ws

∂y

ε0
xz = q∗ ∂ws

∂x
, ε3

xz = ∂ws

∂x
, ε4

xz = ∂ws

∂x

ε0
xy = ∂v

∂x
+ ∂u

∂y
, ε1

xy = 2y∗∗ ∂2wb

∂x∂y
+ 2q∗∗ ∂2ws

∂x∂y
, ε2

xy = 2
∂2ws

∂x∂y
.

(3a–p)

An FGP of length a, width b, and a total thickness h made of a mixture of metal and ceramic materials are
considered in the present analysis. The effective material properties of the FGPs, P(z), vary through the plate
thickness according to the function V(z) as shown in the following equation:

P(z) =
⎧⎨
⎩

V(z) Pb, V(z) = e
p
(

z
h + 1

2

)
, Case 1 (exponentially graded),

(Pt − Pb)V(z) + Pb, V(z) = ( z
h + 1

2

)p
, Case 2 (powerly graded),

(4a–b)

where Pt and Pb denote the property of the top and bottom faces of the panel, respectively, and p is the
exponent that specifies the material variation profile through the thickness. In this paper, for example, the
Young’s modulus, E, and shear modulus, G, vary depending on the case problem according to Eqs. (4a–b),
and the Poisson ratio, ν is assumed to be constant.

Figure 2 shows the exponential function V (z) along the thickness of an EGP for different values of the
parameter p, while Fig. 3 shows the corresponding function for a PGP.
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Fig. 2 Exponentially graded function V (z) along the thickness of an EGP for different values of the parameter p
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Fig. 3 Powerly graded function V (z) along the thickness of an PGP for different values of the parameter p

The linear constitutive relations are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

k

(z)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55

0 0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

k

(z)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

k

(z)

(5)

in which σ k
(z) = {σxx, σyy, σzz, τyz, τxz, τxy}T and εk

(z) = {εxx , εyy, εzz, γyz,γxz, γxy}T are the stresses and
the strain vectors with respect to the plate coordinate system. The Qi j expressions in terms of engineering
constants are given by:

Q11(z) = Q22(z) = Q33(z) = E(z)(1 − v)

(1 − 2ν)(1 + ν)
,

Q12(z) = Q13(z) = Q23(z) = E(z)v

(1 − 2ν)(1 + ν)
,

Q44(z) = Q55(z) = Q66(z) = E(z)

2(1 + ν)
.

(6a–c)



630 J. L. Mantari, C. Guedes Soares

Considering the static version of the principle of virtual work, the following expressions can be obtained:

0 =
⎡
⎢⎣

h/2∫
−h/2

⎧⎨
⎩

∫
�

[
σ (k)

xx δεxx + σ (k)
yy δεyy + σ (k)

zz δεzz + σ (k)
yz δεyz + σ (k)

xz δεxz + σ (k)
xy δεxy

]
dxdy

⎫⎬
⎭ dz

⎤
⎥⎦

−
⎡
⎣ ∫

�

qδwdxdy

⎤
⎦ , (7)

0 =
∫
�

(
N1δε

0
xx + M1δε

1
xx + P1δε

2
xx + N2δε

0
yy + M2δε

1
yy + P2δε

2
yy + R3δε

4
zz + N4δε

0
yz + Q4δε

3
yz

+ K4δε
4
yz + N5δε

0
xz + Q5δε

3
xz + K5δε

4
xz + N6δε

0
xy + M6δε

1
xy + P6δε

2
xy − qδw

)
dxdy, (8)

where ε(k) and σ (k) are the stresses and the strain vectors of the kth layer; q is the distributed transverse load;
and Ni , Mi , Pi , Qi , Ki and Ri are the resultants of the following integrations:

(
Ni , Mi , Pi

) =
N∑

k=1

z(k)∫

z(k−1)

σ
(k)
i(z)(1, z, f (z))dz (i = 1, 2, 6),

Ni =
N∑

k=1

z(k)∫
z(k−1)

σ
(k)
i(z)dz (i = 4, 5),

(Qi , Ki ) =
N∑

k=1

z(k)∫

z(k−1)

σ
(k)
i(z)(g(z), f ′(z))dz (i = 4, 5),

Ri =
N∑

k=1

z(k)∫

z(k−1)

σ
(k)
i(z)g

′(z)dz (i = 3).

(9a–d)

The static version of the governing equations is derived from Eq. (8) by integrating the displacement gradients
by parts and setting the coefficients of δu, δv, δwb, and δws to zero separately. The generalized equations are
obtained as follows:

δu : ∂ N1

∂x
+ ∂ N6

∂y
= 0,

δv : ∂ N2

∂y
+ ∂ N6

∂x
= 0,

δwb : y∗∗
(

∂2 M1

∂x2 + ∂2 M2

∂y2 + 2
∂2 M6

∂x∂y

)
= q,

δws : q∗∗
(

∂2 M1

∂x2 + ∂2 M2

∂y2 + 2
∂2 M6

∂x∂y

)
+ ∂ P1

∂x2 − ∂ P2

∂y2 + 2
∂2 P6

∂x∂y
− q∗∗

(
∂ N4

∂y
+ ∂ N5

∂x

)

−
(

∂ Q4

∂y
+ ∂ Q5

∂x

)
−

(
∂K4

∂y
+ ∂K5

∂x

)
= −q∗q.

(10a–d)

By substituting the stress–strain relations into the definitions of force and moment resultants of the present
theory given in Eqs. (9a–d), the following constitutive equations are obtained:

Ni = Ai jε
0
j + Bi jε

1
j + Ci jε

2
j + Di jε

3
j + Ei jε

4
j + Fi jε

5
j , (i = 1, 2, 4, 5, 6),

Mi = Bi jε
0
j + Gi jε

1
j + Hi jε

2
j + I i jε

3
j + Ji jε

4
j + K ′

i jε
5
j , (i = 1, 2, 6),
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Pi = Ci jε
0
j + Hi jε

1
j + Li jε

2
j + M ′

i jε
3
j + N ′

i jε
4
j + Oi jε

5
j , (i = 1, 2, 6),

Qi = Di jε
0
j + I i jε

1
j + Mi jε

2
j + P ′

i jε
3
j + Q′

i jε
4
j + R′

i jε
5
j , (i = 4, 5),

Ki = Ei jε
0
j + J i jε

1
j + N ′

i jε
2
j + Q′

i jε
3
j + Si jε

4
j + Ti jε

5
j , (i = 4, 5)

Ri = Fi jε
0
j + K ′

i jε
1
j + Oi jε

2
j + R′

i jε
3
j + Ti jε

4
j + Ui jε

5
j , (i = 3), (11a–f)

where

(
Ai j , Bi j , Ci j , Di j , Ei j , Fi j

) =
h/2∫

−h/2

Q(k)
i j (z)(1, z, f (z), g(z), f ′(z), g′(z))dz,

(Gi j , Hi j , Ii j , Ji j , K ′
i j ) =

h/2∫
−h/2

Q(k)
i j (z)(z

2, z f (z), zg(z), z f ′(z), zg′(z))dz,

(Li j , M ′
i j , N ′

i j , Oi j ) =
h/2∫

−h/2

Q(k)
i j (z)( f 2(z), f (z)g(z), f (z) f ′(z), f (z)g′(z))dz,

(P ′
i j , Q′

i j , R′
i j ) =

h/2∫
−h/2

Q(k)
i j (z)(g

2(z), g(z) f ′(z), g(z)g′(z))dz,

(
Si j , Ti j

) =
h/2∫

−h/2

Q(k)
i j (z)

(
f ′2(z), f ′(z)g′(z)

)
dz,

Ui j =
h/2∫

−h/2

Q(k)
i j (z)g

′2(z)dz.

(12a–f)

From Eqs. (11a–f), it can be noticed that for Ni , Mi , Pi , Qi , Ki , and Ri , the variables depending on x and y
are the strains, εb

j (b = 0, . . ., 5). Therefore, the expressions in each of the plates governing equations (10a–d),

for example, ∂2 Mi
∂x2 , can be expressed as follows:

∂2 Mi

∂x2 = Bi j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

α3 0 0 0
0 α2β 0 0
0 0 0 0
0 0 0 −q∗∗α2β

0 0 0 −q∗∗α3

−α2β −α3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ Gi j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 y∗∗α4 q∗∗α4

0 0 y∗∗α2β2 q∗∗α2β2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 −2y∗∗α3β −2q∗∗α3β

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ Hi j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 α4

0 0 0 α2β2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2α3β

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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+Ii j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −α2β

0 0 0 −α3

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ Ji j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −α2β

0 0 0 −α3

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+K ′
i j

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −α2

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Urs′
Vrs′
W b

rs′
W s

rs′

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SS
SS
SS
SC
C S
CC

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (13)

where SS = sin(αx) sin(βy), SC = sin(αx) cos(βy) and so on, and the elements of the 6 × 4 matrices are the
coefficients obtained after taking the second derivation of the strains expression in Eqs. (11 a–f). As is known,
the strains are expressed as a function of the four unknowns, described in Eqs. (1 a–c). These unknowns are
expressed as shown in the Eqs. (17 a–d) in order to satisfy the simply supported boundary conditions.

The 6 × 4 matrices associated with ∂2 Mi
∂x2 in Eq. (13) are called M

2,b
x (b = 0, . . ., 5). The symbols used in

M
a,b
v are as follows: the first upper and lower (a, v) indicate the derivative (second derivative with respect to

x , in the example), and the second upper character, b, indicates that the derivative is associated with the strain

εb
j (b = 0, . . ., 5). Therefore, the expression ∂2 Mi

∂x2 can be expressed as

∂2 Mi

∂x2 = Bi j M
2,0
x + Gi j M

2,1
x + Hi j M

2,2
x + Ii j M

2,3
x + Ji j M

2,4
x + K ′

i j M
2,5
x , (14)

where, for example, M
2,0
x is

M
2,0
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α3 0 0 0

0 α2β 0 0
0 0 0 0

0 0 0 −q∗∗α2β

0 0 0 −q∗∗α3

−α2β −α3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

All matrices of type M
a,b
v associated with the expressions of the plate’s governing equations (10 a–d), for

example ∂2 Mi
∂x∂y or Qi , are given in the “Appendix.”

In what follows, the problem under consideration is solved for the following simply supported boundary
conditions prescribed at all four edges:

N1 = M1 = P1 = v = wb = ws = ∂ws

∂y
at x = 0, a,

N2 = M2 = P2 = u = wb = ws = ∂ws

∂x
at y = 0, b.

(16a–b)
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3 Solution procedure

Exact solutions of the partial differential equations (10a–d) on an arbitrary domain and for general boundary
conditions are difficult. Although the Navier-type solutions can be used to validate the present theory, more
general boundary conditions will require solution strategies involving, e.g., boundary discontinuous double
Fourier series approach (see, for example, Oktem et al. [64]).

Solution functions that completely satisfy the boundary conditions in Eqs. (16a–b) are assumed as follows:

u (x, y) =
∞∑

r=1

∞∑
s′=1

Urs′ cos(αx) sin(βy), 0 ≤ x ≤ a; 0 ≤ y ≤ b, (17a)

v (x, y) =
∞∑

r=1

∞∑
s′=1

Vrs′ sin(αx) cos(βy), 0 ≤ x ≤ a; 0 ≤ y ≤ b, (17b)

wb (x, y) =
∞∑

r=1

∞∑
s′=1

W b
rs′ sin(αx) sin(βy), 0 ≤ x ≤ a; 0 ≤ y ≤ b, (17c)

ws (x, y) =
∞∑

r=1

∞∑
s′=1

W s
rs′ sin(αx) sin(βy), 0 ≤ x ≤ a; 0 ≤ y ≤ b, (17d)

where

α = rπ

a
, β = s′π

b
. (18)

Substituting Eqs. (17a–d) into Eqs. (10a–d), the following equations are obtained:

Ki j d j = Fj (i, j = 1, . . . , 4) and (Ki j = K ji ). (19a)

Elements of Ki j in Eq. (19a) can be obtained by using the matrices M
a,b
v and the governing equations 10(a–d):

{d j }T =
{

Urs
′ Vrs′ W b

rs′ W s
rs′

}
, (19b)

{Fj }T = {
0 0 Qrs′ − q∗ Qrs′

}
, (19c)

where Qrs′ are the coefficients in the double Fourier expansion of the transverse load. Note that with −q∗Qrs ,
it is specified the position through the thickness where the load is applied, i.e., at the top or bottom of the plate
in this case; see Eq. 1c and the last term in Eq. 7 to understand its vector position in Eq. 19c.

q(x, y) =
∞∑

r=1

∞∑
s′=1

Qrs′ sin(αx) sin(βy). (20)

4 Numerical results and discussion

The bending analysis of FGPs is presented in this section. The selection of the parameters m and n of the shear
strain shape functions described in Eqs. (1a–c) was performed considering several aspects: (a) first of all, the
shear strain function should be expressed as a function of m and n (see Eqs. (1a–c)); (b) then, the strains and
stresses will be also f (z), g(z), m, and n parameter-dependent; (c) consequently, the governing equations will
be also m and n parameter-dependent; (d) by changing properly these parameters and running the bending
problem thousands of times, output matrices containing displacements and stresses as a functions of m and n
(see, for example, Fig. 4 for the non-dimensionalized vertical displacement at (a/2, b/2, 0) and shear stresses
at (0, b/2, 0) as the function of the parameters m and n for the case problem studied in [22]) can be obtained
at specific position of the plate (preferred at z = 0); (e) a simple MATLAB code, which uses the matrices
obtained in (d), was coded in order to optimize and properly select the appropriated values of m and n, which
produce a minimal error threshold with the 3D solutions [22] (case problem 1) and quasi-3D exact solution
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Fig. 4 Variations of non-dimensionalized vertical deflection (a/b = 1/6, a/h = 2 and p = 1.5) and transverse shear stresses
(a/b = 1/4, a/h = 4 and p = 0.5) with parameters m and n

[43] (case problem 2); (f) finally, the selected values of m and n were used for validations, i.e., the distribution
of displacement and stresses thought the plate thickness was compared again with the 3D solution [22] and
not just in one point in the plate as in (d).

By following the above-mentioned steps, finally, the values for m and n are 1 and 3
20 , respectively.

In the next section, FGPs with elastic properties varying exponentially in z, as given by Zenkour [22] and
FGPs with elastic properties powerly graded along the thickness direction z, as proposed by Zenkour [20] and
accurately solved by Carrera et al. [43], are utilized to validate the present theory.

4.1 Case problem 1 (exponentially graded plates)

The bending analysis of this FGM is conducted by using aluminum (bottom, Al) graded exponentially trough
the thickness of a rectangular plate (see Fig. 1a). The material properties used for computing the numerical
results are

Eb = 70 GPa, vb = 0.3. (21)
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Table 1 Non-dimensionalized center deflection w(a/2, b/2, 0) for various EGPs, a/h = 2

a/h b/a Theory p = 0.1 p = 0.5 p = 1.0 p = 1.5

2 6 3-D [22] 1.638 1.352 1.059 0.826
Present 1.657 1.352 1.043 0.800
Ref. [55] 1.637 1.336 1.033 0.794
Ref. [53] 1.735 1.418 1.100 0.850
TPT [22] 1.629 1.331 1.028 0.791
HSDT [22] 1.548 1.265 0.980 0.756

1 3-D [22] 0.577 0.477 0.373 0.289
Present 0.598 0.488 0.375 0.287
Ref. [55] 0.578 0.472 0.365 0.279
Ref. [53] 0.636 0.519 0.402 0.308
TPT [22] 0.573 0.468 0.361 0.277
HSDT [22] 0.586 0.478 0.369 0.282

Table 2 Non-dimensionalized normal stresses σ yy(a/2, b/2, h/2) for various EGPs, a/h = 4

a/h b/a Theory p = 0.1 p = 0.5 p = 1.0 p = 1.5

4 6 3-D [22] 0.218 0.247 0.289 0.337
Present 0.197 0.220 0.253 0.294
Ref. [55] 0.213 0.239 0.280 0.329
Ref. [53] 0.201 0.230 0.271 0.319
TPT [22] 0.237 0.268 0.314 0.370
HSDT [22] 0.282 0.322 0.380 0.448

1 3-D [22] 0.225 0.256 0.302 0.359
Present 0.213 0.242 0.284 0.332
Ref. [55] 0.224 0.255 0.301 0.356
Ref. [53] 0.216 0.248 0.293 0.345
TPT [22] 0.235 0.268 0.317 0.374
HSDT [22] 0.241 0.276 0.326 0.385

Table 3 Non-dimensionalized center deflection w(a/2, b/2, 0) for various EGPs, a/h = 10

b/a Theory p = 0.1 p = 0.5 p = 1.0 p = 1.5 p = 2.0 p = 2.5 p = 3.0

6 Present 1.033 0.845 0.655 0.506 0.391 0.302 0.232
Ref. [55] 1.035 0.846 0.656 0.507 0.391 0.302 0.232
Ref. [53] 1.039 0.852 0.667 0.524 0.412 0.323 0.254
TPT [55] 1.032 0.844 0.654 0.505 0.390 0.301 0.231

1 Present 0.279 0.228 0.177 0.137 0.106 0.081 0.063
Ref. [55] 0.280 0.229 0.177 0.137 0.106 0.081 0.063
Ref. [53] 0.282 0.231 0.181 0.142 0.111 0.087 0.068
TPT [55] 0.279 0.228 0.177 0.137 0.105 0.081 0.062

The following formulas are utilized to normalize deflections and stresses:

w = w

(
a

2
,

b

2
, z

)
10Ebh3

q0a4 , σ xx = σxx

(
a

2
,

b

2
, z

)
h2

q0a2 ,

σ yy = σyy

(
a

2
,

b

2
, z

)
h2

q0a2 , σ xz = σxz

(
0,

b

2
, z

)
h

q0a
, z = z

h
.

(22a–d)

As stated above, the bending results of this example problem are compared with the 3D exact solutions and
the six-unknown TPTs with stretching effect by Zenkour [22]; and the quasi-3D HSDT with six unknowns by
Mantari and Guedes Soares [55].

Results of non-dimensionalized vertical maximum displacement, normal stresses, and shears stresses are
presented in Tables 1, 2, 3, 4, and 5. Results are in good agreement with the published results. Figure 5 shows
the non-dimenzionalized distribution of vertical maximum deflection through the plate thickness (b/a =
{1, 2, 3, 4}, a/h = 4, p = 0.1). Both closed-form solutions predict well the no-constant distribution of the
central deflection (see Tables 1, 3 for more details). In Fig. 6, the non-dimensionalized normal stresses, σ xx ,
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Table 4 Non-dimensionalized normal stresses σ yy(a/2, b/2, h/2) for various EGPs, a/h = 10

b/a Theory p = 0.1 p = 0.5 p = 1.0 p = 1.5 p = 2.0 p = 2.5 p = 3.0

6 Present 0.584 0.665 0.783 0.921 1.083 1.274 1.497
Ref. [55] 0.601 0.686 0.808 0.951 1.118 1.312 1.539
Ref. [53] 0.603 0.688 0.811 0.954 1.120 1.315 1.542
TPT [55] 0.627 0.717 0.845 0.993 1.165 1.364 1.593

1 Present 0.198 0.224 0.263 0.309 0.363 0.428 0.506
Ref. [55] 0.206 0.234 0.275 0.324 0.382 0.451 0.532
Ref. [53] 0.206 0.235 0.277 0.326 0.384 0.450 0.528
TPT [55] 0.220 0.250 0.294 0.346 0.407 0.477 0.560

Table 5 Non-dimensionalized shear stresses σ xz(0, b/2, 0) for various EGPs, a/h = 10

b/a Theory p = 0.1 p = 0.5 p = 1.0 p = 1.5 p = 2.0 p = 2.5 p = 3.0

6 Present 0.492 0.484 0.460 0.425 0.382 0.336 0.291
Ref. [55] 0.463 0.461 0.454 0.442 0.425 0.407 0.384
Ref. [53] 0.463 0.461 0.454 0.441 0.425 0.406 0.384
TPT [55] 0.478 0.475 0.468 0.456 0.440 0.421 0.398

1 Present 0.246 0.242 0.232 0.215 0.195 0.173 0.151
Ref. [55] 0.238 0.237 0.233 0.227 0.218 0.209 0.199
Ref. [53] 0.238 0.237 0.233 0.227 0.218 0.209 0.198
TPT [55] 0.245 0.244 0.240 0.234 0.226 0.216 0.204
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Fig. 5 Distribution of non-dimensionalized displacement, w(a/2, b/2, z), through the thickness of a thick EGP (a/h = 4 and
p = 0.5)

through the plate thickness are shown. As in the vertical deflection, good results are achieved for both closed-
form solutions (see Tables 2, 4 for more normal stresses results). In Fig. 7, the non-dimensionalized shear
stresses, σ xz , distribution through the plate thickness, are shown. The present theory produces good results
compared with 3D solution and as good as the TPT with six unknowns developed by Zenkour [22]. Therefore,
this theory needs further research from the analytical and numerical point of view.

4.2 Case problem 2 (powerly graded plates)

A square FGP made of metal and ceramic powerly graded through its thickness is shown in Fig. 1b. The
Young’s modulus varies in thickness direction according to Eq. (4b), see also Fig. 3:

Eb = 70 GPa, Et = 380 Gpa, vb = vt = 0.3. (23)
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The following non-dimensional quantities are used:

u(z) = 100h3 Et

qa4 u

(
0,

b

2
, z

)
, w(z) = 10h3 Et

qa4 w

(
a

2
,

b

2
, z

)
,

σ xx (z) = σxx
h

qa

(
a

2
,

b

2
, z

)
, σ yy(z) = σyy

h

qa

(
a

2
,

b

2
, z

)
,

σ xy(z) = σxy
h

qa
(0, 0, z), σ yz(z) = σyz

h

qa

(a

2
, 0, z

)
,

σ xz(z) = σxz
h

qa

(
0,

b

2
, z

)
(24a–g)

There exist accurate referential results [43] for this example problem. This paper considers it for validation.
The reference solution was obtained by means of a discrete model, as described in [43]. Table 6 presents
solutions from the CPT and FSDT, and quasi-3D HSDT [42,47] with a higher number of unknowns than in
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Table 6 Non-dimensionalized deflection and shear stress of square PGPs, a/h = 10

p Theory (a/2, b/2, 0) (a/2, b/2, h/3)

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

1 Ref. [43] 0.717 0.588 0.563 0.622 1.506 14.969
Present 0.693 0.569 0.545 0.587 1.495 14.95
Ref. [47] 0.7 0.585 0.562 0.593 1.495 14.969
FSDT [42] 0.729 0.589 0.563 0.806 2.015 20.15
CPT [42] 0.562 0.562 0.562 0.806 2.015 20.15

4 Ref. [43] 1.159 0.882 0.829 0.488 1.197 11.923
Present 1.085 0.838 0.793 0.437 1.169 11.85
Ref. [47] 1.118 0.875 0.829 0.44 1.178 11.932
FSDT [42] 1.113 0.874 0.829 0.642 1.605 16.049
CPT [42] 0.828 0.828 0.828 0.642 1.605 16.049

10 Ref. [43] 1.375 1.007 0.936 0.37 0.897 8.908
Present 1.308 0.972 0.911 0.324 0.882 8.973
Ref. [47] 1.349 0.875 0.829 0.323 1.178 11.932
FSDT [42] 1.318 0.997 0.936 0.48 1.199 11.99
CPT [42] 0.935 0.935 0.935 0.48 1.199 11.99

Table 7 Non-dimensionalized displacements and stresses of several square PGPs, a/h = {4, 10, 100}
p Theory u

(− h
4

)
u

(− h
6

)
w(0) σ xx

( h
2

)
σ yy

( h
3

)
σ yz

( h
6

)
σ xz(0) σ xy

(− h
3

)
1 Present 0.587 0.446 0.569 2.931 1.495 0.274 0.246 0.564

Ref. [20] 0.663 0.509 0.589 3.087 1.489 0.262 0.246 0.611
2 Present 0.812 0.633 0.722 3.409 1.389 0.249 0.196 0.496

Ref. [20] 0.928 0.731 0.757 3.609 1.395 0.276 0.227 0.544
3 Present 0.911 0.714 0.796 3.634 1.264 0.217 0.161 0.505

Ref. [20] 1.045 0.827 0.838 3.874 1.275 0.272 0.211 0.553
5 Present 0.974 0.759 0.868 3.955 1.096 0.171 0.136 0.530

Ref. [20] 1.116 0.879 0.912 4.249 1.103 0.243 0.202 0.576
10 Present 1.002 0.762 0.972 4.743 0.882 0.140 0.145 0.554

Ref. [20] 1.137 0.876 1.009 5.089 0.878 0.204 0.220 0.589

the theory presented here. The exponent that specifies the material variation profile through the thickness and
side-to-thickness ratio are p = {1, 4, 10} and a/h = {4, 10, 100}, respectively.

Table 7 presents non-dimensionalized displacements (u and w) and normal, in-plane shear, and transverse
shear stresses (σ xx , σ yy, σ xy, σ xz , and σ yz) for simply supported homogenous square plate subjected to
bi-sinusoidal distributed load. The considered exponent and side-to-thickness ratio are p = {1, 2, 3, 5, 10}
and a/h = 10, respectively. Good results as in Zenkour [20] (εzz = 0) are achieved by the present the-
ory. However, as p increases, the shear stresses results lost accuracy (p ≥ 5). This may be perhaps alle-
viated when a refined hybrid-type shear strain shape function is utilized to model the displacement field
(g(z) �= n f ′(z)).

From a general overview, it can be concluded that due to the accuracy of the present theory and its reduced
number of unknowns, this paper delivers a new type of quasi-3D shear deformation theory not available in the
literature with potential for further investigation due to the reduced number of unknowns.

5 Conclusions

An unavailable trigonometric quasi-3D HSDT with only four unknowns and stretching effects is presented in
this paper. The governing equations and boundary conditions are derived by employing the principle of virtual
work. Results show that the present theory is capable to produce very accurate results compared with other
quasi-3D HSDTs with higher number of unknowns and so deserves special attention and further implementation
by using numerical methods.

Acknowledgments The first author has been financed by the Portuguese Foundation of Science and Technology under the
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Appendix: Definition of the matrices of type M
a,b
v

As mentioned before, these matrices are associated with the expressions of the plate

M
0,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α 0 0 0
0 −β 0 0
0 0 0 0
0 0 0 q∗∗β
0 0 0 q∗∗α
β α 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, M
0,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −y∗∗α2 −q∗∗α2

0 0 −y∗∗β2 −q∗∗β2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 2y∗∗αβ 2q∗∗αβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
0,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −α2

0 0 0 −β2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2αβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
0,3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 β

0 0 0 α

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M
0,4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 β

0 0 0 α

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, M
0,5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M
1,0
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−α2 0 0 0
0 −αβ 0 0
0 0 0 0
0 0 0 q∗∗αβ

0 0 0 −q∗∗α2

−αβ −α2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,1
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −y∗∗α3 −q∗∗α3

0 0 −y∗∗αβ2 −q∗∗αβ2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 2y∗∗α2β 2q∗∗α2β

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
1,2
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −α3

0 0 0 −αβ2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2α2β

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,3
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 αβ

0 0 0 −α2

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,4
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 αβ

0 0 0 −α2

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
1,5
x =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 α

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M
1,0
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−αβ 0 0 0
0 −β2 0 0
0 0 0 0
0 0 0 −q∗∗β2

0 0 0 q∗∗αβ

−β2 −αβ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,1
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −y∗∗α2β −q∗∗α2β

0 0 −y∗∗β3 −q∗∗β3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 −2y∗∗αβ2 −2q∗∗αβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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M
1,2
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −α2β

0 0 0 −β3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2αβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,3
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −β2

0 0 0 αβ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
1,4
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −β2

0 0 0 αβ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
1,5
y =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 β

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M
2,0
xy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−α2β 0 0 0
0 −αβ2 0 0
0 0 0 0
0 0 0 −q∗∗αβ2

0 0 0 −q∗∗α2β

β α 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
2,1
xy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −y∗∗α3β −q∗∗α3β

0 0 −y∗∗αβ3 −q∗∗αβ3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 2y∗∗α2β2 2q∗∗α2β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
2,2
xy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −α3β

0 0 0 −αβ3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2α2β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
2,3
xy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −αβ2

0 0 0 −α2β

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, M
2,4
xy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −αβ2

0 0 0 −α2β

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

M
2,5
xy =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 αβ

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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