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Abstract An isogeometric meshless finite volume method has been presented to solve some nonlinear prob-
lems in elasticity. A non-uniform rational B-spline isogeometric basis function is used to construct the shape
function. High computational efficiency and precision are other benefits of the method. Solving some sample
problems of thin-walled structures shows the good performance of this method.

1 Introduction

Many engineering problems of interest are inherently nonlinear. In solid mechanics, generally, two kinds of
nonlinearities are encountered, viz. material and geometrical nonlinearities. A typical material nonlinearity is
the plastic response of many kinds of materials, such as the metals. Geometrical nonlinearity becomes signifi-
cant when the solid undergoes a large deformation, leading to a considerable variation in the shape of the solid
that cannot be neglected. Research into large deformation analysis began many years ago. Kohnke [1] and
Haisler et al. [2] introduced a mathematical programming approach for the analysis of geometrically nonlinear
structural behavior, and applied it to the analysis of frame structures. De Freitas and Smith [3,4] also pro-
posed a mathematical programming approach for the elastoplastic solutions of large displacement problems,
and applied it to the analysis of planar structures. Many other approaches based on the traditional Newton–
Raphson iteration were also introduced in the last decade. Boisse et al. [5] presented a fully nonlinear shell
theory including both the membrane and bending components in the field of large elastoplastic deformations,
and applied it to the analysis of thin shells. Lee [6] performed a three-dimensional large-strain non-steady-state
elastoplastic finite element analysis for the flat rolling process. Basar and Itskov [7] introduced a refined consti-
tutive and finite element formulation for arbitrary shell structures undergoing large elastoplastic deformations.
Brünig [8] proposed an efficient framework for a nonlinear finite element procedure for the rate-independent
finite strain analysis of solids undergoing large elastic-isochoric plastic deformations. All these analyses were
based on the finite element method (FEM).

Meshless methods have attracted more and more attention from researchers, and some meshless methods
have achieved remarkable progress. These meshless methods do not require a mesh to discretize the problem
domain, because the approximate solution is constructed entirely based on a set of scattered nodes. A group of
meshless methods have been developed including the smooth particle hydrodynamics (SPH) [9], the diffuse
element method (DEM) [10], the element-free Galerkin (EFG) method [11], the reproducing kernel particle
method (RKPM) [12] the point interpolation method (PIM) [13,14]. Liu [14] grouped these existing meshless
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methods into two different categories: meshless methods based on strong-forms of partial differential equations
(PDEs) (e.g., SPH) and meshless methods based on weak-forms of PDEs (e.g., DEM, RKPM, EFG, PIM).
Later, Liu and Gu [15] clarified the combination of the strong- and weak-forms [16] as the third category of
the meshless methods. In order to alleviate the global integration background mesh, the meshless methods
based on the local weak-forms have also been developed, for example, the meshless local Petrov–Galerkin
(MLPG) method [17–21], and the local radial point interpolation method (LRPIM) [22–24]. Chen et al. [25–
27], Liu et al. [28,29] and Li et al. [30] applied meshless methods, such as the RKPM, to large deformation
analysis, and found that these methods are very effective in dealing with large material distortion. In these
analyses, Lagrangian and updated Lagrangian reproducing kernel (RK) shape functions have been introduced
to approximate the field variables. A material kernel function was introduced to deal with large material
distortions, in order that the support of the kernel function covers the same set of nodes during the course of
large deformation to avoid kernel instability. Chen et al. [27] also observed that the RKPM requires a relatively
large kernel support to obtain an accurate solution in incompressible problems. The aforementioned RKPM,
developed by Liu et al. [31–34], is one of the meshless methods that takes full advantage of the concept of
having no mesh. The RKPM introduces a correction function to the kernel to correct the boundary error in
SPH. The discretization of the kernel estimate in SPH assures neither zero-th nor first order consistency in a
finite domain, unless the lumped mass (or lumped volume) is carefully selected, which is a very difficult task
with irregular boundaries and arbitrary particle distributions. Thus, the basic idea of the RKPM is to formulate
the discrete consistency that is lacking in SPH. It modifies the kernel by introducing a correction function to
enhance its accuracy near, or on the boundary of the problem domain. Due to this correction function, the
RKPM kernel function obtains the consistency conditions throughout the domain of the problem.

Isogeometric analysis is devoted to unify numerical procedures related to geometrical design and analysis
by using a single framework where the same techniques are utilized in both procedures. These tasks have
been performed independently with pre-processing programs based on CAD technologies and numerical
solvers based on the mesh-based or meshless methods. Pre-processing includes CAD representation of physical
prototypes, where a virtual model is obtained through a geometric translation from the actual model. In addition,
node generation and imposition of boundary conditions and loads are also performed at this stage. However, it
is observed that the grid obtained after the node generation is only an approximation of the CAD geometrical
model and poor approximations may be observed depending on the basis functions adopted during the spatial
discretization. Hence, meshing procedures for finite element analysis usually deteriorate the CAD geometry,
which is taken as “exact” when compared to the actual geometrical model. The first step of a numerical analysis
refers to the computational reproduction of a representative geometrical model using CAD technologies,
which are also responsible for producing node information to be utilized in a meshless analysis. Although
many technologies may be employed to represent general geometries computationally, one can observe that
most of the commercial programs based on CAD adopt non-uniform rational B-splines (NURBS) as a basic
tool. NURBS are very useful since they can exactly represent all conics such as circles, ellipses, parabolas
and hyperbolas. An analysis procedure based on CAD formulation is referred to as isogeometric analysis.
Isogeometric analysis offers the possibility of integrating meshless analysis with CAD tools by using B-spline
and NURBS parameterizations. Another important aspect related to isogeometric analysis is associated to
the isoparametric concept, since the solution space is represented with the same basis functions utilized to
represent the geometry. The general concepts on isogeometric analysis were first introduced by Hughes et al.
[35] and simulations have been carried out, where very good results are observed for several applications in
the field of solid and fluid mechanics.

In the present work, a numerical meshless model based on the isogeometric analysis is presented. An
equilibrium equation for three-dimensional large deformation is developed and the isoparametric approach
applied on the equilibrium equation. Assembly and evaluation of the stiffness matrix and load vector at local
and global levels are described utilizing analogies with the meshless method and relations among physical,
parametric and parent fields are established. In order to verify the present formulation with respect to important
computational aspects such as accuracy and efficiency, comparisons are performed considering results obtained
here for nonlinear elasticity applications. All examples are modeled with NURBS solids, and the displacement
formulation is adopted for the equilibrium description.

2 Governing equations

The governing differential equation for a linear elastic body can be obtained by

σi j, j + bi = 0 in � (1)
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with the boundary conditions

ui = ūi on �u (2a)

ti = σi j n j = t̄i on �t (2b)

where σi j is the Cauchy stress tensor, bi is the body force in the initial configuration, � is the initial con-
figuration, ūi is the prescribed displacements on the initial displacement boundary �u, n j is the unit vector
outward normal to the initial boundary �, and t̄i is the prescribed tractions on the initial traction boundary �t .
By considering large deformations, the Cauchy stress tensor in Eq. (1) can be rewritten as

σi j = 1

2
Ckli j

(
∂ui

∂ Xk
+ δik

)(
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

)(
∂u j

∂ Xl
+ δ jl

)
, (3)

where Ckli j is the elasticity matrix, u is the displacement, and X is the position in the initial configuration. In

other words, 1
2

(
∂ui
∂ X j

+ ∂u j
∂ Xi

+ ∂uk
∂ Xi

∂uk
∂ X j

)
is the Lagrangian strain tensor, and 1

2 Ckli j

(
∂ui
∂ X j

+ ∂u j
∂ Xi

+ ∂uk
∂ Xi

∂uk
∂ X j

)
is

the second order Piola–Kirchhoff stress tensor.
NURBS are built from B-splines. The B-spline parametric space is local to “patches”. Patches play the role

of subdomains within which material models are assumed to be uniform. A knot vector in three dimensions is
a set of coordinates in the parametric space, written, Ξ = {

ξ1, ξ2, . . . , ξn+p+1
}
, H = {

η1, η2, . . . , ηm+q+1
}

and Z = {ζ1, ζ2, . . . , ζl+r+1} where, ξi , η j , ζk ∈ R are the i th, j th and kth their knots, respectively, i, j, k are
the knot indices, i = 1, 2, . . . , n + p + 1, j = 1, 2, . . . , m + q + 1, k = 1, 2, . . . , l + r + 1, p, q, r are the
polynomial orders, and n, m, l are the number of basis functions which comprise the B-spline. Using NURBS
approximation, the geometry and the trial function are

x(ξ) = RT (ξ) x, (4)

u(x) = R I T
(ξ)uI + RBT

(ξ)uB, (5)

where R I T
(ξ) and RBT

(ξ) are NURBS basis function relating to interior and boundary control points, respec-
tively, which is defined as follows:

R pqr
i jk (ξ, η, ζ ) = Nip(ξ)M jq(η)Lkr (ζ )wi jk∑n

î=1

∑m
ĵ=1

∑l
k̂=1

Nî p(ξ)M ĵq(η)Lk̂r (ζ )wî ĵ k̂

. (6)

ξ = {ξ, η, ζ } is a vector of parametric coordinates, and u is a vector containing control variable associated
with the control point x. Nip(ξ), M jq(η) and Lkr (ζ ) are B-spline basis functions in ξ , η, and ζ directions,
respectively, which can be defined as

Nip(ξ) =
{

1 if ξi ≤ ξ < ξi+1

0 otherwise
p = 0, (7)

Nip(ξ) = ξ − ξi

ξi+p − ξi
Ni(p−1)(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
N(i+1)(p−1)(ξ) p = 1, 2, . . . , (8)

M jq(η) =
{

1 if η j ≤ η < η j+1

0 otherwise
q = 0, (9)

M jq(η) = η − η j

η j+q − η j
M j(q−1)(η) + η j+q+1 − η

η j+q+1 − η j+1
M( j+1)(q−1)(η) q = 1, 2, . . . , (10)

Lkr (ζ ) =
{

1 if ζk ≤ ζ < ζk+1

0 otherwise
r = 0, (11)

Lkr (ζ ) = ζ − ζk

ζk+r − ζk
Lk(r−1)(ζ ) + ζk+r+1 − ζ

ζk+r+1 − ζk+1
L(k+1)(r−1)(ζ ) r = 1, 2, . . . , (12)

and wi jk is weight of control points. Derivatives of the B-spline basis functions are represented in terms of
B-spline lower order bases owing to the recursive definition of the basis functions. The derivative of the i th
basis function with respect to the parametric coordinate is defined as
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d

dξ
Nip(ξ) = p

ξi+p − ξi
Ni(p−1)(ξ) − p

ξi+p+1 − ξi+1
N(i+1)(p−1)(ξ), (13)

dk

dξ k
Nip(ξ) = p

ξi+p − ξi

(
dk−1

dξ k−1 Ni(p−1)(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dξ k−1 N(i+1)(p−1)(ξ)

)
. (14)

The derivatives of B-spline basis functions are defined over the same knot vector. Derivatives of NURBS basis
functions are obtained according to the following expression:

∂

∂ξ
R pqr

i jk (ξ, η, ζ ) =
((

d

dξ
Nip(ξ)

)
M jq(η)Lkr (ζ )wi jk W (ξ, η, ζ )

−Nip(ξ)M jq(η)Lkr (ζ )wi jk
∂

∂ξ
W (ξ, η, ζ )

)/
W 2(ξ, η, ζ ), (15)

where

W (ξ, η, ζ ) =
n∑

î=1

m∑
ĵ=1

l∑
k̂=1

Nî p(ξ)M ĵq(η)Lk̂r (ζ )wî ĵ k̂ . (16)

To relate the control variables with the given boundary values, Eq. (5) can be collocated at a set of boundary
points xC , C = 1, 2, . . . , nB , i.e.,

u(xC ) = RBT
(xC )uC xC ∈ �, (17)

where � indicates the boundary of the problem. It is noted that the control points in NURBS approximation
may not lie on the problem boundary, and thus, the boundary collocation or interpolation point xC also may
not coincide with the corresponding boundary control point xB . Equation (17) can be recast into a matrix form
as

uB = TT uC TT = RBT
(xC ), xC ∈ �, (18)

where uC and uB are vectors of boundary control variables and physical values at the discretized boundary
collocation points. From Eq. (18), one has

uC = T−T uB . (19)

Then a generalized displacement vector u can be constructed as

u =
{

uI

uB

}
=

[
I 0

0 TT

] {
uI

uC

}
. (20)

It is also worthwhile to point out that there is no obligation that the boundary interpolation points xC coincide
with either the control points or the grid knots. The basic idea of the present method is to enable the control
variables to produce exact values at boundary interpolation points and then provide a straightforward way
to enforce the Dirichlet boundary conditions. This is realized by evaluating Eq. (17) at a set of boundary
interpolation points xC . Clearly, it is quite flexible to choose xC provided the transformation matrix T is well
defined. Of course for convenience the grid knots can be chosen as the interpolation points if possible. In other
cases, a set of boundary interpolation points can always be selected to construct the relationship of Eq. (18)
and the proposed method is general and does not depend on a specific basis order. Based on Eq. (19), Eq. (5)
becomes

u(x) = R I T
(ξ)uI + RBT

(ξ)uC = R I T
(ξ)uI + RBT

(ξ)T−T uB . (21)

The finite volume (FV) discretization is based on the integral form of the equation over the control volume
or sub-domain �s . In other words, the FV discretization uses the integral form of Eq. (1) over the sub-domain
�s around node I as ∫

�s

[
σi j, j + bi

]
d� = 0. (22)
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Applying the divergence theorem to the first integral term gives
∫

∂�s

σi j n j d� +
∫
�s

bi d� = 0, (23)

where n j is the outward normal to the local boundary ∂�s . At this point, the conservative nature of the FVM
is established as the flux, stress σi j , is integrated over the local boundary ∂�s . Substituting Eq. (3) into Eq.
(23), we obtain

∫
∂�s

[
1

2
Ckli j

(
∂ui

∂ Xk
+ δik

) (
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

) (
∂u j

∂ Xl
+ δ jl

)
n j

]
d� +

∫
�s

bi d� = 0. (24)

By considering the traction boundary conditions from Eq. (2) and imposing it in Eq. (24) leads to
∫
Ls

1

2
Ckli j

(
∂ui

∂ Xk
+ δik

) (
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

) (
∂u j

∂ Xl
+ δ jl

)
n j d�

+
∫

Lsu

1

2
Ckli j

(
∂ui

∂ Xk
+ δik

)(
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

) (
∂u j

∂ Xl
+ δ jl

)
n j d�

+
∫

Lst

1

2
Ckli j

(
∂ui

∂ Xk
+ δik

)(
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

)(
∂u j

∂ Xl
+ δ jl

)
n j d�

+
∫
�s

bi d� = 0. (25)

Equation (25) represents a physical meaning in the balance law of the local sub-domain �s as conventional
FVM with the traction boundary conditions being enforced. Hence, it is called isogeometric meshless finite
volume (IMFV) formulation of the equilibrium equation. To handle the geometric nonlinearity, the incremental
formulation is usually used. For the reference (undeformed) configuration during a finite deformation, we have
the following incremental relationships:

ut+�t
i = ui + �ui , (26)

where �ui is the increment of displacement. The displacement can be interpolated with the shape function as
in Eq. (21),

ui (x) =
n∑

J=1

R I (J )

(ξ)uI (J )

i +
m∑

K=1

RB(K )

(ξ)T−T u B(K )

i , (27)

where n and m are number of interior and boundary nodes, respectively. Now, Eq. (24) is discretized by
substituting Eqs. (26) and (27):

−
n∑

J=1

⎡
⎢⎣

∫
Ls

1

2
Ckli j

(
∂R I (J )

∂ Xk
+δik

) (
∂R I (J )

∂ X j
+ ∂R I (J )

∂ Xi
+ ∂R I (J )

∂ Xi

∂R I (J )

∂ X j

) (
∂R I (J )

∂ Xl
+δ jl

)
n j d�

]
�uI (J )

i

−
m∑

K=1

⎡
⎢⎣

∫
Lsu

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

)(
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
�u B(K )

i

−
m∑

K=1

⎡
⎢⎣

∫
Lst

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

) (
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
�u B(K )

i
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=
n∑

J=1

⎡
⎢⎣

∫
Ls

1

2
Ckli j

(
∂R I (J )

∂ Xk
+δik

) (
∂R I (J )

∂ X j
+ ∂R I (J )

∂ Xi
+ ∂R I (J )

∂ Xi

∂R I (J )

∂ X j

) (
∂R I (J )

∂ Xl
+δ jl

)
n j d�

]
uI (J )

i

+
m∑

K=1

⎡
⎢⎣

∫
Lsu

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

) (
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
u B(K )

i

+
m∑

K=1

⎡
⎢⎣

∫
Lst

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

)(
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
u B(K )

i

+
∫
�st

[
1

2
Ckli j

(
∂ ūi

∂ Xk
+δik

) (
∂ ūi

∂ X j
+ ∂ ū j

∂ Xi
+ ∂ ūk

∂ Xi

∂ ūk

∂ X j

) (
∂ ū j

∂ Xl
+δ jl

)
n j

]
d�+

∫
�s

bi d� = 0. (28)

It can be found that Eq. (28) is nonlinear because the right hand side of this equation is also a function
of displacements. Hence, the Newton–Raphson iteration is often used to get results in the analyses of large
deformation problems.

Equation (28) can be written as

K�u = f, (29)

where

Ki j = −
n∑

J=1

⎡
⎢⎣

∫
Ls

1

2
Ckli j

(
∂R I (J )

∂ Xk
+δik

) (
∂R I (J )

∂ X j
+ ∂R I (J )

∂ Xi
+ ∂R I (J )

∂ Xi

∂R I (J )

∂ X j

) (
∂R I (J )

∂ Xl
+δ jl

)
n j d�

]

−
m∑

K=1

⎡
⎢⎣

∫
Lsu

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

)(
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]

−
m∑

K=1

⎡
⎢⎣

∫
Lst

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

) (
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]

(30)

is the stiffness matrix, �u is the increment of displacement vector, and

fi =
n∑

J=1

⎡
⎢⎣

∫
Ls

1

2
Ckli j

(
∂R I (J )

∂ Xk
+δik

) (
∂R I (J )

∂ X j
+ ∂R I (J )

∂ Xi
+ ∂R I (J )

∂ Xi

∂R I (J )

∂ X j

) (
∂R I (J )

∂ Xl
+δ jl

)
n j d�

]
uI (J )

i

+
m∑

K=1

⎡
⎢⎣

∫
Lsu

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

)(
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
u B(K )

i

+
m∑

K=1

⎡
⎢⎣

∫
Lst

1

2
Ckli j

(
∂RB(K )

∂ Xk
+δik

) (
∂RB(K )

∂ X j
+ ∂RB(K )

∂ Xi
+ ∂RB(K )

∂ Xi

∂RB(K )

∂ X j

) (
∂RB(K )

∂ Xl
+δ jl

)
n j d�

]
u B(K )

i

+
∫
�st

[
1

2
Ckli j

(
∂ ūi

∂ Xk
+δik

) (
∂ ūi

∂ X j
+ ∂ ū j

∂ Xi
+ ∂ ūk

∂ Xi

∂ ūk

∂ X j

) (
∂ ū j

∂ Xl
+δ jl

)
n j

]
d�

+
∫
�s

bi d� (31)

is the force vector.
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3 Numerical examples

The proposed method is evaluated by the following examples. Those are presented to illustrate the implemen-
tation, accuracy and efficiency of the present IMFVM approach in nonlinear problems.

Example 1 Large deformation of 3-D cantilever beam subjected to end shear
A cantilever beam with length l and a transverse load is considered, l = 10 m, h = 2 m and b = 0.1 m, as

shown in Fig. 1. The large deformation analysis is performed and the beam is subjected to a distributed vertical
loading, which is fixed, along the right end with P = 1/Unit. The analysis is carried out using N incremental
load steps, and the load-scaling factor is β = 10. It means that at the kth loading step, the distributed loading
is Pk = βk P/Unit.

The above developed IMFVM formulation is used to solve this problem. Thirty-three regularly distributed
field nodes are firstly used. For comparison, the results obtained by the FEM using the total Lagrangian
(TL) and bi-linear elements with the same number of nodes (33 nodes) are also presented. All these results
are compared with the reference FEM solution with 738 (41×18) nodes. In addition, the FEM results using
369 (41×9) nodes and loading steps N = 8. Table 1 lists vertical displacements at Point A obtained by the
IMFVM method and the FEM. In both methods, 33 nodes are used. A sample of node distribution used in the
IMFVM is shown in Fig. 2. The computational errors are also listed in this table. It is found that the present
IMFVM formulation leads to more accurate results than FEM when the same numbers of nodes are used. This
demonstrates that the IMFVM method has higher accuracy than the FEM. It should be mentioned here that,
in this paper, the common and standard nonlinear FEM formulation with bi-linear elements is used. In other
words, for fair comparison, we did not use the special techniques that have been developed to improve the
effectiveness of FEM for large deformation problems.

For studying the computational efficiency, the CPU times of IMFVM are obtained and listed in Table 2.
The CPU time of the FEM using the TL is also listed in the same table. From Table 2, it is observed that the
FEM (with the same number of nodes, i.e., 33 nodes) needs less computational time because its interpolation
and integration are very simple. However, the CPU time of the FEM shown in Table 2 does not include the
computational cost in the preprocessing, which is usually computationally very expensive.

The computational cost must be considered together with the accuracy. A successful numerical method
should obtain high accuracy at a lower computational cost. Therefore, Tables 1 and 2 should be studied

Fig. 1 A cantilever beam under a transverse load

Table 1 Vertical displacement at point A

Loading steps N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

Ref. solution, FEM 738 nodes
−vA 0.816 1.617 2.376 3.078 3.714 4.283 4.768 5.235

IMFVM 33 nodes
−vA 0.7936 1.5809 2.3318 3.0389 3.6887 4.2693 4.7580 5.2261
Error % 2.75 2.23 1.86 1.27 0.68 0.32 0.21 0.17

FEM 33 nodes
−vA 0.733 1.452 2.148 2.796 3.393 3.935 4.424 4.863
Error % 10.17 10.20 9.61 9.16 8.64 8.13 7.21 7.11



130 M. R. Moosavi, A. Khelil

x

y

z

Fig. 2 A sample of node distribution in beam

Table 2 CPU time and the iteration steps

Loading steps N = 2 N = 4 N = 6 N = 8

IMFVM 33 nodes
CPU time 7.23 11.41 16.35 28.76
Iteration step 4 4 5 6

FEM 33 nodes
CPU time 4.691 7.265 9.765 12.265
Iteration step 4 4 4 4

Fig. 3 CPU time versus computational error

together. Figure 3 plots the computational error versus the CPU time. For further comparison, the similar
curves of IMFVM using 105 nodes and FEM using 105 nodes are also plotted in this figure. We can find that
the IMFVM method has better efficiency than the FEM.

It should also be mentioned that, in this paper, the bilinear FE elements are used. Hence, the accuracy of
the FEM is lower than of the IMFVM method, in which the higher order meshless shape functions are used.
If the FE elements with a higher order are used, the accuracy of the FEM will be considerately improved, and
therefore, the efficiency of the FEM will be also improved. In short, although the IMFVM has higher efficiency
in this study, this is not always true. In fact, improving the efficiency of the meshless method is still a key issue
in the development of meshless methods.
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Fig. 4 Comparison between the linear and nonlinear results of the vertical displacement of point A

Fig. 5 A circular shallow arch under midspan concentrated load

To study the stability of the IMFVM method for nonlinear analyses, many loading steps are computed. It
is found that very stable results obtained by the presented IMFVM method. It should be mentioned that the
vertical deflection at the free end of the beam is already more than 5 times of the initial depth of the beam. It
means that the IMFVM method is still stable even in the case of very large deformation. The deflection results
obtained by IMFVM formulations versus the load steps for Point A are plotted in Fig. 4. For comparison,
the results obtained by IMFVM method for the linear analysis are also plotted in the same figure. It can be
seen that for this problem the nonlinear analysis makes the beam stiffer than the linear solutions as the load
increases.

Example 2 Large deformation of a circular shallow arch
A pin supported elastic circular shallow arch is loaded with a concentrated force at its central point as

shown in Fig. 5. For the arch, ν = 0, E = 68.948 kN/mm2, radius is R = 10581.6 mm, cross-section radial
depth is h = 79.2 mm, and the width of the cross section is b = 25.4 mm. The span of the arch from pin to
pin is L = 2,540 mm.

The arch is modeled with 2,761 nodes, which is similar to 2,500 quadrilateral elements. Figure 6 represents
a sample of node distribution in the arc. In Fig. 7, the load displacement response, exhibiting snap-through
behavior, is compared to results found by using 2,500 quadrilateral membrane elements in LS-DYNA [36].
The load displacement results are obtained by using a single node displacement control scheme using 115
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Fig. 6 Node distribution in circular shallow arch

Fig. 7 Load displacement plot

Fig. 8 Displacement convergence plot

displacement increments [37]. The agreement with LS-DYNA is very good. Numerical results are also shown
in Fig. 8 illustrating the convergence of the meshless method with grid refinement. The analysis correctly
captures the snap-through behavior.

Example 3 Square plate subjected to a concentrated load
A clamped square plate subjected to a concentrated load at the center of plate, Fig. 9, has been analyzed for

its large deflection response. An 8-node brick element is used to model one quarter of the plate. Geometrical and
material properties of the plate are: length of plate L = 24 in., thickness b = 0.12 in., Young’s modulus E =
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Fig. 9 A square plate subjected to a concentrated load

Fig. 10 Node distribution in square plate

Fig. 11 Vertical displacement at central point of plate

107psi and Poisson ratio ν = 0.3. The concentrated load is P = 3,200Db/L2, where D = Eb3/12
(
1 − ν2

)
.

A sample of the node distribution in the plate is shown in Fig. 10.

In both cases, two elements are considered through the thickness of the plates. Figure 11 shows the prediction
of displacement at the loaded point by FEM and IMFVM. For the clamped plate, the finite difference solution
reported by Adotte [38] has been used as the reference.

4 Conclusion

This paper presented the IMFVM applied to nonlinear elasticity problems. The IMFVM unifies the major
advantages of meshless methods, finite volume method, and isogeometric analysis in one single scheme. In the
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local weak form (LWF) of the governing differential equation, a NURBS interpolation was used to form the
approximations to the solution known as trial functions. Because of applying the NURBS approximation, this
method does not have any singularity or ill-conditioning in calculation of shape function. Also, the method
has a great computational precision. The IMFVM method was applied to and passed several test problems.
Very good results from the method were obtained.
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