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Abstract The appropriate consideration of non-material volumes at the level of analytical mechanics is an
ongoing research field. In the present paper, we aim at demonstrating the principle of stationary action that
is able to yield the proper form of Lagrange’s equation in the context, namely the Lagrange’s equation in the
form derived by Irschik and Holl (Acta Mech 153(3–4):231–248, 2002). Such issue will here be interpreted
as being the inverse problem of Lagrangian mechanics for a non-material volume. The classical method of
Darboux (Leçons sur la Théorie Générale des Surfaces. Gauthier-Villars, Paris, 1891) will be used as the
solution technique. This means that our discussion will be restricted to the case of a single degree of freedom.
Having such principle of stationary action at hand, the corresponding Hamiltonian formalism will be written
in accordance with the classical theory. Furthermore, a conservation law will be demonstrated for the time-
independent case. At last, two simple examples will be addressed in order to illustrate the applicability of the
proposed formulation. The reader may find some mathematical analogies between the upcoming content and
that discussed by Casetta and Pesce (Acta Mech, 2013. doi:10.1007/s00707-013-1004-1) in considering the
inverse problem of Lagrangian mechanics for Meshchersky’s equation. The mathematical formulation which
will be outlined in the present paper is thus expected to consistently situate non-material volumes within the
classical variational approach of mechanics.

1 Motivation

The inverse problem of Lagrangian mechanics, also named as the inverse problem of calculus of variations, is
a very traditional issue of mathematical physics. Solving this problem means to find a principle of stationary
action that is able to yield a previously given equation of motion. Fundamental investigations on this matter
are due to Helmholtz [1], Darboux [2], Havas [3], Santilli [4] and to many other authors not cited here.

Within the original domain of the variational methods of mechanics, which comprises conservative systems
with constant mass (see, e.g., comments in [5, Sect. 1]), the solution of such inverse problem is given by
Hamilton’s principle, with the Lagrangian equating kinetic energy minus potential energy. However, in a
broader context which can involve non-conservative systems and variable-mass systems, this is in general no
longer valid.

Of course that, when dealing with more general situations, one can have a variational principle by extending
the classical form of Hamilton’s principle in order to include non-potential terms, or, ‘external terms’ as in
Santilli’s [4] terminology. This refers to the variational principle which naturally arises from time integration,
between limiting instants, of the corresponding principle of virtual work. In this type of variational formulation
with external terms, one has the important advantage of preserving the original physical significance of the
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involved entities. On the other hand, one has the inconvenience of losing the bond with the classical variational
approach.

The inverse problem of Lagrangian mechanics goes in the opposite direction. Its solution offers the pos-
sibility of writing a principle of stationary action for more general systems, but one has to deal with the
inconvenience that the involved entities do not exhibit direct physical meanings. A motivation for having a
system formulated from this latter perspective is that, as argued in [4, p. 8], ‘the methodological profile is
basically that for systems with forces derivable from a potential, in the sense that the analytic equations, the
time evolution law, the underlying algebraic and geometric structure, etc. remain formally unchanged.’ This
signifies, to a good extent of the term, the prompt use of the mathematical theory which is grounded on the
variational methods of mechanics. See also [5, Sect. 1] for other motivational quotations in this sense.

The question is that both formulations, namely that with external terms and that following from the solution
of the inverse problem, are to be seen as complementary tools. According to Santilli [4, p. 9], ‘it is hoped that
a judicious interplay between these two complementary approaches to the same systems will be effective on
methodological as well as physical grounds. On the former grounds, certain aspects which are difficult to treat
within the context of one approach could be more manageable within the context of the other approach, and
vice versa. On the latter grounds, the two complementary approaches could be useful for the identification of
the physical significance of the algorithms at hand (…).’

The objective of the present paper is to address the inverse problem of Lagrangian mechanics within the
context of the so-called non-material volumes. This kind of system refers to a control volume whose surface
moves with a different velocity from the velocity of the material particles found to be instantaneously located
at the control surface. Due to such relative motion, flux of mass may occur through the control surface, and
then mass is not conserved within the non-material volume.

It is important to be mentioned that the consideration of non-material volumes at the level of analytical
mechanics is an ongoing research field. In this sense, the article of Irschik and Holl [6], concerning the
derivation of the proper form of Lagrange’s equation in the context, has been playing a fundamental role. A
noticeable point in the analysis of Irschik and Holl [6] is that, in changing from the material point of view to
the non-material point of view, two new terms of surface flux come out in Lagrange’s equation. This result
has motivated next investigations in the field like, for example, the demonstration of the generalized form of
Hamilton’s principle which accommodates such new terms in a variational framework (see [7]). With these
two fundamental results at hand, one so has the basis of a formulation (with external terms) for the treatment
of non-material volumes.

In the present paper, we aim at contributing to the field by outlining the formulation that originates from
the solution of the inverse problem. Within the context of non-material volumes, this means the proposition of
a formulation which mathematically agrees with the classical variational approach of mechanics.

2 The statement of the problem

Let us consider a continuum set of material particles defining a material body. In using Ritz-type approximations
(see [6, Sect. 2, 3] and [8, Chap. 11]), we can express the position vector p of the material particle as a function
of its position P in the reference configuration of the body, of time t and of a finite number of generalized
coordinates qk = qk(t), that is,

p = p(P, qk, t), (1)

where the one-to-one relation between p and P is supposed to hold. In consequence, the actual position of the
material volume V turns out to be a function depending on such generalized coordinates and on time, that is,
V = V (qk, t). Now, consider the non-material volume Vu . Such a volume can be defined by the continuum
set of fictitious particles in the sense of Truesdell and Toupin [9], and it is considered to be instantaneously
coincident with some material volume of the continuous body. The position vector r of the fictitious particle
is assumed to be dependent on its position R in the reference configuration, on time and on the same set of
generalized coordinates, namely

r = r(R, qk, t), (2)

where the one-to-one relation between r and R is also ensured. In the same manner, one has that Vu = Vu(qk, t).
Fictitious particles are allowed to move at an arbitrary velocity

u = dr
dt

, (3)
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which, in general, is different from the velocity

v = dp
dt

(4)

of the material particles. Thus, at the bounding surface ∂Vu of Vu , there exists a relative motion occurring be-
tween the original material particles and the corresponding fictitious particles. Therefore, Vu can be understood
as a non-material volume.

From such a consideration, Irschik and Holl [6] have demonstrated that the proper form of Lagrange’s
equation for a non-material volume is given by the following expression:

d

dt

∂Tu

∂q̇k
− ∂Tu

∂qk
−

∫

∂Vu

1

2
ρv2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu +

∫

∂Vu

ρv · ∂v
∂q̇k

(v − u) · nd∂Vu − Qk = 0, (5)

where d/dt is the total time derivative which is considered to be material with respect to the velocity u, v2 ≡
v · v, ρ is the volumetric mass density, Qk is the k-th generalized force instantaneously acting on the material
body in Vu, n is the outer normal unit vector at the surface, and Tu = Tu(q̇k, qk, t) is the total kinetic energy
of the material particles instantaneously included in Vu , that is,

Tu =
∫

Vu

1

2
ρv2dVu . (6)

The article of Irschik and Holl [6] contains, for example, a discussion on the involved Ritz-type formulation as
well as on following generalizations of Gauβ-Green’s divergence theorem and of Reynold’s transport theorem.

In the present paper, the inverse problem of Lagrangian mechanics for a non-material volume is defined
as the problem of finding the principle of stationary action that leads to Eq. (5). This principle of stationary
action is written as

δ

t2∫

t1

L̃udt = 0, (7)

where t1 and t2 are definite limits, and L̃u represents the Lagrangian function to be properly constructed to
solve such a problem, that is, L̃u has to be such that Eq. (7) yields the Lagrange’s equation in the form of
Eq. (5). We clarify that the symbol ∼ is being used to distinguishably label the L̃u-Lagrangian with respect
to the conventional Lagrangian L , which is normally used in the classical definition (see, e.g., [10, p. 112,
Eq. (51.7)]). The subscript u indicates that the function L̃u is to be defined in accordance with the velocity u
of the non-material control surface.

The crux of the matter is that, within this context of non-material volumes, three external terms may appear
in Lagrange’s equation (see Eq. (5)): the non-potential force, which occurs when Qk is non-derivable from a
potential, and two terms regarding surface flux, which are stated by the third term and by the fourth term of
Eq. (5). These surface flux terms explicitly depend on the velocity u of the control surface and, in general, they
are not derivable from a potential.

In the following, we exemplarily restrict our analysis to the case of a system described by a single generalized
coordinate. We thus propose to solve the inverse problem in agreement with the classical method of Darboux
[2], which means to mathematically construct the L̃u-Lagrangian from the knowledge of Eq. (5)—written for
a single degree of freedom.

3 An analytical and variational formulation for a single degree of freedom non-material volume: the
solution via the method of Darboux

From the analytic fundamental theorems of the inverse problem of calculus of variations (see [4, Chap. 3]), one
has that the mathematical procedure to have a Lagrangian constructed from the equation of motion is greatly
simplified in the case in which this has the form of

q̈ + G(q, q̇, t) = 0, (8)
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where q is the generalized coordinate of a single degree of freedom system. The function G = G(q, q̇, t)
appears from a convenient algebraic manipulation of the equation of motion.1

It is known that all second-order differential equations in the form of Eq. (8) admit a variational formulation.
Under certain continuity and regularity conditions, namely by assuming that G is differentiable and integrable
to the degree required, the theory of partial differential equations guarantees the existence of solution of the
associated inverse problem (see, e.g., discussion in [3, p. 367, footnote (*)], [4, p. 12 and 139], [11] and [12,
p. 72]).

A mathematical procedure that can so be used to find the Lagrangian which leads to Eq. (8) is the method
of Darboux [2]. In taking the following indirect representation of the problem

d

dt

∂ L̃

∂q̇
− ∂ L̃

∂q
= �( q̈ + G(q, q̇, t)) , (9)

where � is the so-called Jacobi last multiplier of Eq. (8) (see, e.g., [3, p. 371], [12, p. 72] and [13]), the method
of Darboux asserts that the L̃-Lagrangian which satisfies Eq. (9) is given by

L̃ =
q̇∫

0

(q̇ − ω)�(q, ω, t)dω −
q∫

0

G(ξ, 0, t)�(ξ, 0, t)dξ, (10)

with � calculated as

� = exp
∫

∂G(q, q̇, t)

∂q̇
dt . (11)

This means that, by inserting Eq. (10) into δ
∫ t2

t1
L̃dt = 0, one properly recovers the right-hand side of Eq. (9).

The derivation of Eqs. (10) and (11) can be found, for example, in [14] and [15].
The possibility of extending this technique to solve the inverse problem within the context of non-material

volumes then appears as a consequence of using Ritz-type approximations (see Eqs. (1) and (2)) and of
considering only single degree of freedom systems. In order to proceed, we need to transform Eq. (5) into the
form of Eq. (8). Let us assume the single degree of freedom case, in which Eqs. (1) and (2) are simplified as

p = p(P, q, t), (12)

r = r(R, q, t). (13)

From Eqs. (12) and (13), Eqs. (3) and (4) can be written as

u = ∂r
∂q

q̇ + ∂r
∂t

, (14)

v = ∂p
∂q

q̇ + ∂p
∂t

. (15)

We can make use of the identities

∂r
∂q

= ∂u
∂q̇

, (16)

∂p
∂q

= ∂v
∂q̇

(17)

(see, e.g., [6, Eq. (2.8)]) to alternatively write Eqs. (14) and (15) as

u = ∂u
∂q̇

q̇ + ∂r
∂t

, (18)

v = ∂v
∂q̇

q̇ + ∂p
∂t

. (19)

Substituting Eq. (19) into Eq. (6), the total of kinetic energy of the material particles instantaneously enclosed
by Vu becomes

1 Note that in the simple case of a constant-mass single particle the function G equals the negative of force divided by mass.
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Tu = q̇2
∫

Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

dVu + q̇
∫

Vu

ρ
∂v
∂q̇

· ∂p
∂t

dVu +
∫

Vu

1

2
ρ

∂p
∂t

· ∂p
∂t

dVu; (20)

and, analogously, from looking at Eqs. (18) and (19), the third term and the fourth term of Eq. (5) turn out to
be

∫

∂Vu

1

2
ρv2

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu = q̇2

∫

∂Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu

+ q̇
∫

∂Vu

ρ
∂v
∂q̇

· ∂p
∂t

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu +

∫

∂Vu

1

2
ρ

∂p
∂t

· ∂p
∂t

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu, (21)

∫

∂Vu

ρv · ∂v
∂q̇

(v − u) · nd∂Vu = q̇2
∫

∂Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu

+ q̇
∫

∂Vu

ρ

[
∂v
∂q̇

· ∂v
∂q̇

(
∂p
∂t

− ∂r
∂t

)
+ ∂p

∂t
· ∂v
∂q̇

(
∂v
∂q̇

− ∂u
∂q̇

)]
· nd∂Vu

+
∫

∂Vu

ρ
∂p
∂t

· ∂v
∂q̇

(
∂p
∂t

− ∂r
∂t

)
· nd∂Vu . (22)

Now, inserting Eqs. (20), (21) and (22) into (5) and assuming that Q = Q(q, q̇, t), we find

q̈Au(q, t) + q̇Bu(q, t) + q̇2Cu(q, t) + Du(q, t) − Q(q, q̇, t) = 0, (23)

where the auxiliary functions Au, Bu, Cu and Du , which are being used only for the sake of a shortened
representation of Eq. (23), correspond to

Au(q, t) =
∫

Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

dVu, (24)

Bu(q, t) = ∂

∂t

∫

Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

dVu +
∫

∂Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

(
∂p
∂t

− ∂r
∂t

)
· nd∂Vu, (25)

Cu(q, t) = ∂

∂q

∫

Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

dVu +
∫

∂Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu, (26)

Du(q, t) = ∂

∂t

∫

Vu

ρ
∂v
∂q̇

· ∂p
∂t

dVu − ∂

∂q

∫

Vu

1

2
ρ

∂p
∂t

· ∂p
∂t

dVu −
∫

∂Vu

1

2
ρ

∂p
∂t

· ∂p
∂t

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu

+
∫

∂Vu

ρ
∂p
∂t

· ∂v
∂q̇

(
∂p
∂t

− ∂r
∂t

)
· nd∂Vu . (27)

Note that such functional dependence of Au, Bu, Cu and Du is assured by the set of equations (12)–(19). The
subscript u is attached to these functions to clearly indicate that they are defined in terms of integrals over
the chosen non-material volume and also in terms of integrals over the corresponding (non-material) control
surface. In the following, for the sake of accordance with such notion, the subscript u will be attached to any
entity that is defined in terms of one or more of Au, Bu, Cu and/or Du .

Dividing Eq. (23) by Au , which by hypothesis is a non-vanishing function, the Lagrange’s equation for a
non-material volume so arises in the required form:

q̈ + q̇Bu(q, t) + q̇2Cu(q, t) + Du(q, t) − Q(q, q̇, t)

Au(q, t)
= 0. (28)
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Comparing Eqs. (28) and (8), the function Gu is promptly recognized as

Gu = q̇Bu(q, t) + q̇2Cu(q, t) + Du(q, t) − Q(q, q̇, t)

Au(q, t)
. (29)

With Eqs. (28) and (29) at hand, we are able to follow the method of Darboux [2]. The starting point is to write
the indirect representation of the problem from Eq. (28), and in analogy with Eq. (9), viz.,

d

dt

∂ L̃u

∂q̇
− ∂ L̃u

∂q
= �u

(
q̈ + q̇Bu(q, t) + q̇2Cu(q, t) + Du(q, t) − Q(q, q̇, t)

Au(q, t)

)
. (30)

Calling upon the definition of the Jacobi last multiplier (see Eq. (11)), we have from Eq. (29) that

�u = exp
∫ (Bu(q, t) + 2q̇Cu(q, t) − ∂ Q(q, q̇, t)/∂q̇

Au(q, t)

)
dt . (31)

Then, inserting Eqs. (29) and (31) into (10), one has that the L̃u-Lagrangian which satisfies Eq. (30) is

L̃u =
q̇∫

0

(q̇ − ω) exp
∫ (Bu(q, t) + 2ωCu(q, t) − ∂ Q(q, ω, t)/∂ω

Au(q, t)

)
dtdω

−
q∫

0

(Du(ξ, t) − Q(ξ, 0, t)

Au(ξ, t)

)
exp

∫ (Bu(ξ, t) − [∂ Q(ξ, q̇, t)/∂q̇]q̇=0

Au(ξ, t)

)
dtdξ . (32)

This is the solution of the inverse problem of Lagrangian mechanics for a non-material volume which is
in agreement with the method of Darboux. Therefore, inserting Eq. (32) into (7), one has at their disposal a
principle of stationary action properly connected to the Lagrange’s equation for a non-material volume, namely
Eq. (5) written for a single degree of freedom.

3.1 The following Hamiltonian formalism and a conservation law

Having such a principle of stationary action at our disposal, we can pursue other fundamental results of the
classical theory of mechanics. From the solution of the inverse problem, we define the corresponding canonical
momentum as

p̃u = ∂ L̃u

∂q̇
, (33)

and so, using Eq. (32) in (33), one has that

p̃u =
q̇∫

0

exp
∫ (Bu(q, t) + 2ωCu(q, t) − ∂ Q(q, ω, t)/∂ω

Au(q, t)

)
dtdω. (34)

Applying the usual Legendre’s transformation to L̃u = L̃u(q, q̇, t), that is,

H̃u = p̃uq̇ − L̃u, (35)

and substituting Eqs. (32) and (34) into (35), one finds the H̃u-Hamiltonian:

H̃u =
q̇∫

0

ω exp
∫ (Bu(q, t) + 2ωCu(q, t) − ∂ Q(q, ω, t)/∂ω

Au(q, t)

)
dtdω

+
q∫

0

(Du(ξ, t) − Q(ξ, 0, t)

Au(ξ, t)

)
exp

∫ (Bu(ξ, t) − [∂ Q(ξ, q̇, t)/∂q̇]q̇=0

Au(ξ, t)

)
dtdξ . (36)
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Given that L̃u is defined such that is the Lagrangian of a variational problem, the conventional set of canonical
equations accordingly follows from Eq. (35) (see, e.g., [10, Chap. VI]):2

q̇ = ∂ H̃u

∂ p̃u
, (37)

˙̃pu = −∂ H̃u

∂q
. (38)

Equations (37) and (38) then state a ‘Hamiltonization’ for non-material volumes.
Another aspect of the classical theory that can be pursued is the derivation of conservation laws. As

discussed, for instance, in [16, p. 61], if Eq. (7) holds; hence,

d

dt

(
∂ L̃u

∂q̇
q̇ − L̃u

)
= −∂ L̃u

∂t
. (39)

Thus, if ∂ L̃u/∂t = 0, time integration of Eq. (39) renders

∂ L̃u

∂q̇
q̇ − L̃u = const., (40)

which, seen Eqs. (33) and (35), shows to be mathematically equivalent to

H̃u = const. (41)

This means that, from Eq. (40) (or 41), one is able to evaluate conservation laws within the context.

4 The general single degree of freedom time-independent case

Let us assume a time-independent situation in which

∂p
∂t

= ∂r
∂t

= ∂Vu

∂t
= ∂ρ

∂t
= 0, (42)

Q = −∂U (q)

∂q
, (43)

where U = U (q) is the ‘potential energy’ in the sense discussed in [10, p. 27-31].3

Considering Eq. (42), one obtains the following simplifications of Eqs. (24)–(27):

Au(q) =
∫

Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

dVu, (44)

Bu = Du = 0, (45)

Cu(q) = ∂

∂q

∫

Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

dVu +
∫

∂Vu

1

2
ρ

∂v
∂q̇

· ∂v
∂q̇

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu . (46)

Equations (43)–(46) simplify Eqs. (28) and (29) as

q̈ + q̇2Cu(q) + ∂U (q)/∂q

Au(q)
= 0, (47)

Gu = q̇2Cu(q) + ∂U (q)/∂q

Au(q)
. (48)

2 One should read ˙̃pu ≡ d p̃u(t)/dt .
3 Notice that our symbol U corresponds to the symbol V in [10, p. 29, Eq. (17.10)]. In the present work, the symbol V is used

to define volume.



8 L. Casetta

The indirect representation of the inverse problem is written from substituting Eq. (48) into (9):

d

dt

∂ L̃u

∂q̇
− ∂ L̃u

∂q
= �u

(
q̈ + q̇2Cu(q) + ∂U (q)/∂q

Au(q)

)
, (49)

where, in consonance with the method of Darboux, namely using Eq. (48) in (11), one reads

�u = exp
∫ (

2
q̇Cu(q)

Au(q)

)
dt . (50)

Notice that such particular form of �u is a function solely dependent on the generalized coordinate:4

�u(q) = exp
∫ (

2
q̇Cu(q)

Au(q)

)
dt = exp

∫ (
2

Cu(q)

Au(q)

)
dq

dt
dt = exp

∫ (
2

Cu(q)

Au(q)

)
dq. (51)

Making use of the right-hand side of Eqs. (44) and (46) in Eq. (51), �u assumes the form of

�u(q) =
⎛
⎜⎝

∫

Vu

ρ
∂v
∂q̇

· ∂v
∂q̇

dVu

⎞
⎟⎠ exp

∫ ⎡
⎣

∫
∂Vu

ρ ∂v
∂ q̇ · ∂v

∂ q̇

(
∂v
∂ q̇ − ∂u

∂ q̇

)
· nd∂Vu∫

Vu
ρ ∂v

∂ q̇ · ∂v
∂ q̇ dVu

⎤
⎦ dq. (52)

Aiming at a shortened representation of the upcoming equations, Eq. (51) will be preferred.
The solution of the problem—Eq. (49) follows from the consideration of Eqs. (48) and (51) in (10), that is,

L̃u = 1

2

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]
q̇2 −

∫ {
∂U (q)/∂q

Au(q)

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]}
dq. (53)

This signifies that, in the case in which Eqs. (42) and (43) hold, Eq. (7)—with the L̃u-Lagrangian given by
Eq. (53) recovers the right-hand side of Eq. (49).

The associated p̃u-canonical momentum shows up when introducing Eq. (53) into (33):

p̃u =
[

exp
∫ (

2
Cu(q)

Au(q)

)
dq

]
q̇. (54)

The H̃u-Hamiltonian results from the usage of Eqs. (53) and (54) in the identity given by Eq. (35):

H̃u = 1

2

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]
q̇2 +

∫ {
∂U (q)/∂q

Au(q)

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]}
dq. (55)

Having Eqs. (54) and (55), we are able to put the H̃u-Hamiltonian in terms of the canonical variables (q, p̃u):

H̃u(q, p̃u) = p̃2
u

2 exp
∫ (

2 Cu(q)
Au(q)

)
dq

+
∫ {

∂U (q)/∂q

Au(q)

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]}
dq. (56)

Thus, substituting Eq. (56) into (37) and into (38), one finds the corresponding set of canonical equations:5,6

q̇ = p̃u

exp
∫ (

2 Cu(q)
Au(q)

)
dq

, (57)

˙̃pu = p̃2
uCu(q)

Au(q) exp
∫ (

2 Cu(q)
Au(q)

)
dq

− ∂U (q)/∂q

Au(q)
exp

∫ (
2

Cu(q)

Au(q)

)
dq. (58)

At last, since ∂ L̃u/∂t = 0 (see Eq. (53)), we have from Eqs. (39), (40), (41) and (55) that

1

2

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]
q̇2 +

∫ {
∂U (q)/∂q

Au(q)

[
exp

∫ (
2

Cu(q)

Au(q)

)
dq

]}
dq = const., (59)

which appears as a conservation law in the case in which Eqs. (42) and (43) hold.

4 In fact, q̇ ≡ dq(t)/dt .
5 Note that, in such a time-independent case, this equation algebraically coincides with the definition of p̃u .
6 See footnote 3.
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5 Illustrative problems

In order to illustrate the applicability of the proposed variational formulation, two simple problems will be
studied in the following.

5.1 Flow of liquid from an open tube

Consider the two-dimensional problem of a straight and vertical tube of constant cross-sectional area which
is initially filled with an ideal and incompressible liquid. Suppose that, at a certain instant of time, the full
bottom of the tube is suddenly withdrawn, so allowing flux of mass through it. This is a typical open-reservoir
problem (see, e.g., [8, p. 506]).7 In this problem, the control volume has a bounding surface such that it is
material with respect to the downward moving level of the liquid and also with respect to the solid wall of the
tube, being then closed by a fixed control surface spatially coincident with the open bottom area of the tube.
The height of the amount of liquid inside the tube is chosen to be the generalized coordinate q = q(t) of the
problem. Given that the liquid is ideal and incompressible, only the gravitational force instantaneously acting
on the liquid included in the non-material volume is to be taken into account:

Q = −ρ′qg, (60)

that is, in considering Eq. (43), one has

U = 1

2
ρ′q2g, (61)

with ρ′ being the (constant) linear mass density of the liquid.
Since the position of the liquid particles inside the tube as well as the position of the control volume do

not explicitly depend on time, but on the generalized coordinate q , Eq. (42) also holds. Therefore, we are able
to apply the formulation of Sect. 4.

Seen that the velocity v = q̇ is common to any of the liquid particles in the non-material volume, Eqs. (44)
and (46) are simplified as

Au(q) =
∫

Vu

ρdVu, (62)

Cu(q) = ∂

∂q

∫

Vu

1

2
ρdVu +

∫

∂Vu

1

2
ρ

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu . (63)

One recognizes that the right-hand side of Eq. (62) is the total of liquid mass in the non-material volume,
which can alternatively be given by

Au(q) = ρ′q. (64)

Moreover, evoking Reynolds’ transport theorem properly formulated for partial derivatives (see [6, p. 242,
Eq. (4.15)])8 together with the law of conservation of mass in the corresponding material volume V , one has
that

∂

∂q

∫

V

ρdV = ∂

∂q

∫

Vu

ρdVu +
∫

∂Vu

ρ

(
∂v
∂q̇

− ∂u
∂q̇

)
· nd∂Vu = 0. (65)

Looking at Eq. (65), Eq. (63) is immediately reduced to

Cu = 0. (66)

The associated equation of motion is then obtained by substituting Eqs. (61), (64) and (66) into (47):

7 In the original problem described in [8, p. 506], the area through which the liquid flows is different from the cross-sectional
area of the reservoir. In the present paper, we adopt a simplified version of this problem in which such an area is assumed to be
equal to the cross-sectional area of the tube.

8 In [6, p. 242, Eq. (4.15)], the reader finds Reynolds’ transport theorem properly formulated for partial derivatives—written
regarding the transport of kinetic energy. Here, in total analogy, we consider the transport of mass.
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q̈ + g = 0. (67)

Note that Eq. (67) agrees with the solution presented in [8, p. 506].9 In fact, it is the expected result in view of
the fact that the liquid mass falls freely.

The indirect representation of the inverse problem is written from inserting Eqs. (61), (64) and (66) into
(49), that is,

d

dt

∂ L̃u

∂q̇
− ∂ L̃u

∂q
= �u(q̈ + g), (68)

where

�u = 1 (69)

10is obtained from the substitution of Eqs. (64) and (66) into (51).
The L̃u-Lagrangian which solves Eq. (68) is derived by using Eqs. (61), (64) and (66) in (53):

L̃u = 1

2
q̇2 − gq. (70)

This implies that, by inserting Eq. (70) into (7), one has a variational formulation for the problem of a
liquid flowing from an open tube. Note that such a Lagrangian equation (70), which is derived within the
context of non-material volumes, is mathematically equal to the Lagrangian describing the free fall motion
of a single point of unitary mass—a typical conservative problem. However, we emphasize that Eq. (70) was
demonstrated within the different context of (non-material) control volumes, within which one has to deal with
non-conservative terms (surface flux terms) in Lagrange’s equation (5).

Substituting Eqs. (61), (64) and (66) into (54), (56)–(59), we accordingly derive the p̃u-canonical momen-
tum, the H̃u-Hamiltonian, the set of canonical equations, and the conservation law:11

p̃u = q̇; (71)

H̃u = 1

2
p̃2

u + gq; (72)

q̇ = p̃u, (73)
˙̃pu = −g; (74)

1

2
q̇2 + gq = const. (75)

The analogy between Eq. (75) and the energy conservation theorem of the free fall motion of a single point of
unitary mass is also immediate, as expected.

5.2 The rocket motion

Now we study the problem of the rectilinear motion of a rocket. As demonstrated in [6, Sect. 6], the equation
of the rocket motion can be derived from the proper consideration of Lagrange’s equation for a non-material
volume (see Eq. (5)). In this section, we will briefly recover such a result by following the simplifying
assumptions adopted in [6, Sect. 6]. Next, we will address the inverse problem.

Let the velocity v = v(t) of the solid part of the rocket be the generalized velocity of the problem q̇ = q̇(t),
that is,

v = q̇. (76)

The control volume is conveniently chosen such that its surface is material with respect to the solid outer
surface of the rocket. This surface is closed by the exhaust plane of the rocket, at which propellant is expelled
backwards with relative velocity vrel = vrel(t). This implies a varying-mass condition, and we consider that
the total of mass instantaneously included in the control volume is given by the time-dependent function
mu = mu(t). Assuming that the material particles instantaneously included in the control volume have the
same velocity v = q̇, one has that the total of kinetic energy of such particles can be expressed as (see Eq. (6))

9 See footnote 8.
10 We emphasize that, in more general situations, �u may not equal unity.
11 See footnote 6.
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Tu = 1

2
mu(t)q̇2. (77)

Following [6, Sect. 6], one has that
∫

∂Vu

1

2
ρv2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu = 0, (78)

since the flow of mass through the control surface is assumed to be independent from the generalized velocity
q̇; and also that ∫

∂Vu

ρv · ∂v
∂q̇k

(v − u) · nd∂Vu = − ( q̇ − vrel(t) ) ṁu(t), (79)

where ṁu(t) ≡ dmu(t)/dt .
Inserting Eqs. (77), (78) and (79) into (5), the equation of the rocket motion shows up:

mu(t)q̈ + ṁu(t)vrel(t) − Q(t) = 0, (80)

where
Q = Q(t) (81)

is the overall external force acting instantaneously upon the control volume.
Comparing Eqs. (23) and (80), we immediately find that

Au = mu(t), (82)

Bu = Cu = 0, (83)

Du = ṁu(t)vrel(t). (84)

In fact, Eqs. (82), (83) and (84) follow from the consistent simplification of the general expressions for
Au, Bu, Cu and Du (see Eqs. (24)–(27)). Note that

v(q̇) = q̇ (85)

in Vu .
Looking at Eqs. (19) and (85), we have that in Vu

∂v/∂q̇ = 1, ∂p/∂t = 0. (86)

Furthermore,
v(q̇, t) = q̇ − vrel(t) (87)

at the exhaust plane.
Comparing Eqs. (19) and (87), we find that at the exhaust plane

∂v/∂q̇ = 1, ∂p/∂t = −vrel. (88)

Since the rocket moves toward and the burned fuel is backwards expelled, one has

(∂v/∂q̇) · (∂p/∂t) = −vrel, (∂p/∂t) · n = vrel. (89)

Also note that at the exhaust plane
∫

∂Vu

ρ(∂p/∂t) · nd∂Vu = ρvrel A = −ṁu(t), (90)

where A is the constant exhaust area. We also suppose that ρ = const.
At the material portion of ∂Vu , we have that

(v − u) · n = 0. (91)
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At last, at any point of ∂Vu , one writes
u(q̇) = q̇, (92)

which leads to

∂u/∂q̇ = 1 and ∂r/∂t = 0 (93)

at any point of ∂Vu (see Eq. (18)).
The reader can now verify that Eqs. (82), (83) and (84) follow from using Eqs. (85)–(93) in (24)–(27).
Thus, substituting Eqs. (81)–(84) into (30) and into (31), one writes the indirect representation of the

inverse problem:
d

dt

∂ L̃u

∂q̇
− ∂ L̃u

∂q
= �u

(
q̈ + ṁu(t)vrel(t) − Q(t)

mu(t)

)
, (94)

with12

�u = 1. (95)

According to the formulation of Sect. 3, we insert Eqs. (81)–(84) into (32) in order to find the L̃u-Lagrangian
which solves Eq. (94), that is,

L̃u = 1

2
q̇2 −

(
ṁu(t)vrel(t) − Q(t)

mu(t)

)
q. (96)

The variational formulation of the rocket problem is obtained when considering Eq. (96) in (7). In harmony,
the following p̃u-canonical momentum and H̃u-Hamiltonian are derived in substituting Eqs. (81)–(84) into
(34) and into (36):

p̃u = q̇, (97)

H̃u = 1

2
q̇2 +

(
ṁu(t)vrel(t) − Q(t)

mu(t)

)
q. (98)

The H̃u-Hamiltonian can be put in terms of canonical variables by substituting Eq. (97) into (98):

H̃u = 1

2
p̃2

u +
(

ṁu(t)vrel(t) − Q(t)

mu(t)

)
q. (99)

The set of canonical equations may be achieved from inserting Eq. (99) into Eqs. (37) and (38):13,14

q̇ = p̃u, ˙̃pu = −
(

ṁu(t)vrel(t) − Q(t)

mu(t)

)
. (100)

Once the L̃u-Lagrangian (see Eq. (96)) explicitly depends on time, we have a situation in which ∂ L̃u/∂t �= 0;
hence, a conservation law cannot be stated in the form of Eq. (40) (or (41)), at least not considering the general
functions mu = mu(t), vrel = vrel(t) and Q = Q(t). However, we can attempt to find particular cases of
mu = mu(t), vrel = vrel(t) and Q = Q(t) in which one is able to write a conservation law using Eq. (40). For
the sake of this purpose, let us suppose that

Q = 0, (101)

which means absence of external forces, and also that

ṁu(t)vrel(t)

mu(t)
= −c, (102)

where, conveniently, c = const., c > 0.

12 See footnote 11.
13 See footnote 6.
14 See footnote 3.
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Notice that in such a particular case, Eq. (96) is simplified as

L̃u = 1

2
q̇2 + cq (103)

and therefore, ∂ L̃u/∂t = 0. This signifies that, by using Eq. (103) in (40), we find the following conservation
law:

1

2
q̇2 − cq = const. (104)

Now, we need only to discuss under which conditions Eq. (102) can be satisfied. Let us note that time integration
of Eq. (90) yields

mu(t)∫

mu(t=0)

dmu = −ρ A

t∫

t=0

vrel(t)dt, (105)

that is,

mu(t) = mu(t = 0) − ρ A

t∫

t=0

vrel(t)dt . (106)

Next, substituting Eq. (106) into (102), we write

ρAv2
rel(t) = cmu(t = 0) − ρ Ac

t∫

t=0

vrel(t)dt, (107)

which, from time differentiation, furnishes
dvrel

dt
= −1

2
c, (108)

that is,

vrel(t) = vrel(t = 0) − 1

2
ct. (109)

Thus, inserting Eq. (109) into (106), we find that

mu(t) = mu(t = 0) − ρAvrel(t = 0)t + 1

4
ρAct2. (110)

Additionally, from using Eq. (109) in (107), one obtains

c = ρAv2
rel(t = 0)

mu(t = 0)
. (111)

In view of Eq. (111), we can rewrite Eqs. (104), (109) and (110) as

1

2
q̇2 − ρAv2

rel(t = 0)

mu(t = 0)
q = const., (112)

vrel(t) = vrel(t = 0) − 1

2

ρAv2
rel(t = 0)

mu(t = 0)
t, (113)

mu(t) = mu(t = 0) − ρAvrel(t = 0)t + 1

4

ρ2 A2v2
rel(t = 0)

mu(t = 0)
t2. (114)

Equation (112) then states a conservation law for the rocket motion in the particular case in which Eqs. (101)
and (102) hold. Note also that time differentiation of Eq. (112) gives

q̈ − ρAv2
rel(t = 0)

mu(t = 0)
= 0, (115)
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which indicates a constant acceleration situation. In fact, Eq. (115) results from Eq. (80), by assuming Eqs.
(101), (102) and (111).

As it was demonstrated, the condition given by Eq. (102) can be achieved by imposing Eq. (113) to
describe the time evolution law of the relative velocity vrel = vrel(t) at which propellant is expelled backwards.
Consequently, from the consideration of the continuity equation (see Eq. (90)), the instantaneous mass of the
rocket turns out to be given by Eq. (114). We emphasize that such particular results are valid under the condition
of ṁu(t) < 0, namely for t < (2mu(t = 0))/(ρAvrel(t = 0)) (see Eq. (114)).

6 Discussion and conclusions

This paper has addressed the inverse problem of Lagrangian mechanics within the context of non-material
control volumes. It means that we have addressed the problem of finding a Lagrangian function that, via a
principle of stationary action, is able to recover the proper form of Lagrange’s equation in the context. Such a
form of Lagrange’s equation, as demonstrated in [6] within the framework of Ritz’s method, contains terms
of surface flux. From the perspective of the inverse problem, these terms are mathematically considered as
non-potential terms.

We have exemplarily restricted our analysis to single degree of freedom systems, and so the classical
method of Darboux could be properly applied to analytically solve the inverse problem. Thus, considering
single degree of freedom systems, we could connect the Lagrange’s equation in the form derived by Irschik
and Holl [6] with a principle of stationary action. Consequently, in following the fundamentals of analytical
mechanics, a canonical momentum and a Hamiltonian function were demonstrated in accordance. This has
allowed us to write a Hamiltonian formalism for non-material volumes, in which the corresponding set of
canonical equations has arisen as in the conventional form.

The case of a non-material volume in which both the position vector of the material particles and the position
vector of the fictitious particles do not depend explicitly on time, but only on a single generalized coordinate,
has shown up as an important case of the proposed formulation. In this case, it was shown that, when solely a
time-independent potential force is assumed to act upon the non-material volume, the Hamiltonian can be put
in terms of canonical variables, and a conservation law can also be demonstrated.

Within the classical context of constant-mass potential systems, it is known that, if the kinetic energy and
the potential energy are both time-independent, a fundamental quantity, which is interpreted as total energy,
remains constant during the motion (see, e.g., [10, p. 31–34]). The inverse problem provides a generalization
of this concept. According to the particular formulation of the time-independent case, one so has that: if the
total kinetic energy of the material particles instantaneously included in the non-material volume as well as
the fluxes of linear momentum and of kinetic energy across the control surface are all time-independent, and
if the acting force upon the corresponding material body follows from a time-independent potential, then the
motion of the non-material volume, which can in general occur by translation, rotation and/or deformation, is
such that it satisfies a conservation law.

At last, two simple problems were considered aiming at illustrating the applicability of the formulation.
We expect to have contributed to the construction of a proper formalism for non-material volumes, in the

sense that we have established the initial grounds of a formulation which accommodates such systems within
the classical variational approach of mechanics.
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