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Abstract A novel short fuzzy fiber-reinforced composite (SFFRC) in which the aligned short carbon fiber
reinforcements are coated with radially aligned carbon nanotubes (CNTs) is considered in this study. A three-
phase shear lag model considering radial and axial deformations of the different constituent phases of the
SFFRC has been developed to analyze the stress transfer mechanisms of the SFFRC. Traditionally, the shear
lag models have been developed with an application of the axial load only on the representative volume element
(RVE) of the composite in an attempt for analyzing the stress transfer between the fiber and the matrix. The
three-phase shear lag model derived in this study analyzes the stress transfer to the short carbon fiber considering
the application of the axial as well as the radial loads on the RVE of the SFFRC. It is found that if the carbon
fiber is coated with radially aligned CNTs, then the axial load transferred to the fiber is significantly reduced
due to the radial stiffening of the polymer matrix by CNTs. When compared with the results without CNTs,
it is found that almost ∼20 and ∼29 % reductions in the maximum axial stress in the carbon fiber and the
interfacial shear stress along its length occur, respectively, if the value of the applied radial load is twice of the
applied axial load and the value of the CNT volume fraction is 0.0236 in the SFFRC. Effects of the variation
of the carbon fiber aspect ratio, the carbon fiber volume fraction, and the application of the radial load on the
load transfer characteristics of the SFFRC are also investigated.

1 Introduction

The identification of carbon nanotubes (CNTs) [1] has stimulated a great deal of research concerning the
prediction of their exceptionally high elastic properties [2–9]. The quest for utilizing such exceptional me-
chanical properties of CNTs and their high aspect ratio led to the opening of an emerging area of research
on the development of CNT-reinforced composites [9–13]. To this end, the load transferred to the CNT rein-
forcements from the surrounding matrix is an important issue. A number of research studies have been carried
out to investigate the load transfer characteristics of CNT-reinforced composites. For example, Schadler et
al. [10] studied the mechanical behavior of multi-walled CNT-reinforced composites with both the tension and
compression loading. They reported that the compression modulus is higher than that of the tensile modulus,
indicating that the load transfer to CNTs in the nanocomposite is higher in compression. Li and Chou [11]
developed a continuum-based numerical model for characterizing the interfacial shear stress between a CNT
and the polymer matrix. Gao and Li [12] performed a shear lag analysis for the CNT-reinforced composite
by replacing a CNT with an equivalent solid fiber. Their study reveals that the CNT aspect ratio significantly
influences the stress transfer characteristics of the CNT-reinforced composite. An attempt has also been made
by Jiang et al. [14] to characterize the non-bonded interface between a CNT and the polymer matrix through
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the cohesive law. A micromechanical shear lag model has been developed by Li and Saigal [15] for assess-
ing the interfacial shear stress transfer in CNT-reinforced polymer composites. Their results reveal that using
sufficiently long and large CNTs, small CNT volume fraction improves the efficiency of the stress transfer
in the CNT-reinforced composite. Zhang and He [16] theoretically investigated the viscoelastic behavior of
CNT-reinforced composites by developing a three-phase shear lag model.

The manufacturing of unidirectional continuous CNT-reinforced composites in large scale has to encounter
some challenging difficulties such as agglomeration of CNTs, misalignment, and difficulty in manufacturing
very long CNTs. CNT-reinforced composites, developed so far, can improve the mechanical properties of
the matrix and open a whole range of multifunctional applications for nanocomposite thin films. However,
in terms of structural applications, these CNT-based composites cannot compete with traditional continuous
fiber-reinforced composite materials. The combination of CNTs, polymer matrix, and advanced fibers to create
so-called hybrid composites is seen as a practical approach to deriving structural/multifunctional benefits from
CNTs. Further research on improving the out-of-plane properties of composites and better use of short CNTs
led to the growth of CNTs on the surfaces of the advanced fibers. For example, Downs and Baker [17] reported
the initial research work on the growth of carbon nanofibers on the surfaces of the commercial carbon fibers.
They modified the surface area of the carbon fiber by coating with carbon nanofibers and found the significant
enhancement in the adhesion properties at the fiber/matrix interface. Bower et al. [18] have grown aligned
CNTs on the substrate surface using high-frequency microwave plasma-enhanced chemical vapor deposition
with an extreme-case example of conformal radial growth of CNTs on the circumferential surface of a hair-thin
optical fiber glass. They have found that the growth rate of CNTs is approximately 100 nm/s with entire growth
of 12µm and such CNT growth always occurs perpendicular to the substrate surface regardless of the substrate
shape. The electrical self-bias imposed on the substrate surface was the primary mechanism responsible for
CNTs alignment. Thostenson et al. [19] synthesized CNTs on the circumferential surfaces of the carbon fibers
using chemical vapor deposition and found that the presence of CNTs at the fiber/matrix interface improves
the interfacial shear strength of the composite. In their work, the surfaces of the carbon fibers after each step in
the synthesization process of growing CNTs were examined with the scanning electron microscopy and found
that no pitting was occurring on the carbon fiber surfaces. Zhao et al. [20] synthesized different morphologies
of multi-walled CNTs on the circumferential surfaces of the carbon fibers by using floating catalyst method.
Veedu et al. [21] demonstrated that the remarkable improvements in the interlaminar fracture toughness,
hardness, delamination resistance, in-plane mechanical properties, damping, and thermoelastic behavior of
the laminated composite can be obtained by growing about 60µm-long multi-walled CNTs on the surfaces of
the fibers. Electrophoresis technique was utilized for the selective deposition of CNTs on the surfaces of the
carbon fibers by Bekyarova et al. [22]. For single-walled CNT (SWCNT)/carbon fiber-reinforced composite,
they demonstrated ∼30 % enhancement in the interlaminar shear strength and twofold improvement of the
out-of-plane electrical conductivity as compared to that of the composite without CNTs. Mathur et al. [23]
experimentally demonstrated that the growth of CNTs on the carbon fibers causes excellent improvement in
the mechanical properties of the carbon fiber-reinforced composite. They reported that the flexural strength
is improved by 20 % for unidirectional, 75 % for 2D, and 66 % for 3D hybrid composites as compared to
that of the composite with neat reinforcements. Growing CNTs on the woven carbon fiber, improved fracture
toughness of the cured composite on the order of 50 % has been reported by Kepple et al. [24], while no loss
in structural stiffness of the final composite structures is observed by them. Zhao et al. [25] investigated the
effects of the surface morphology of carbon fibers and catalysts on the growth of CNTs on the circumferential
surfaces of the carbon fibers. Tensile and compressive strengths of such hybrid nanocomposites have also
been experimentally investigated in many research studies [22,26–29], and reported values of the strengths lie
between 300 MPa and 1 GPa. A fiber coupled with radially grown CNTs on its circumferential surface is also
being called as “fuzzy fiber” [30].

The extensive research on the growing of CNTs on the surfaces of the advanced fibers motivated the
authors [31] to propose a novel short fuzzy fiber-reinforced composite (SFFRC) reinforced with zigzag CNTs
and carbon fibers. The distinct constructional feature of such SFFRC is that the uniformly spaced CNTs are
radially grown on the circumferential surfaces of the unidirectional short carbon fibers. They predicted that
the transverse effective elastic properties of this novel SFFRC are significantly enhanced over their values
without CNTs. To this end, the load transfer analysis of the SFFRC is yet to be investigated. Recently, Ray
et al. [32] carried out a load transfer analysis of the short carbon fiber-reinforced composite in which the
aligned CNTs are radially grown on the circumferential surfaces of the carbon fibers. In their study, the short
carbon fibers being coated with radially grown CNTs were assumed to touch each other laterally, and, hence, a
two-phase shear lag model was developed. In practice, the CNT-coated short carbon fibers may not touch each
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other laterally, and the corresponding representative volume element (RVE) for the shear lag analysis will be
composed of three phases; namely, the carbon fiber, the CNT-reinforced polymer matrix composite, and the
polymer matrix. However, a three-phase shear lag model of such SFFRC being composed of discontinuous
fuzzy fiber reinforcements has not yet been derived. In this study, the authors intend to derive a closed-form
three-phase shear lag model for analyzing the effect of radially grown CNTs on the load transferred to the
short carbon fiber while the RVE is subjected to both axial and radial loads.

2 Shear lag model

The schematic diagrams illustrated in Fig. 1 represent a lamina of the SFFRC being studied here and its
in-plane cross section. The novel constructional feature of such a composite is that uniformly aligned CNTs
of equal length are radially grown on the circumferential surfaces of the short carbon fiber reinforcements.
CNTs considered here are transversely isotropic [6,7,9]. They are grown on the circumferential surface of the
carbon fiber in such a way that their axes of transverse isotropy are normal to the circumferential surface of
the fiber. Such a resulting fuzzy fiber is shown in Fig. 2a. When this fuzzy fiber is embedded into the polymer
material, the gaps between CNTs are filled up with the polymer, and the radially aligned CNTs eventually
reinforce the polymer matrix surrounding the carbon fiber along the direction transverse to the length of the
carbon fiber. Thus, the augmented fuzzy fiber can be viewed as a circular cylindrical short composite fuzzy
fiber (SCFF) in which the carbon fiber is embedded in the CNT-reinforced polymer matrix nanocomposite
(PMNC). This in turn allows one to treat the SFFRC as a composite in which the SCFFs are the reinforcements
being embedded in the polymer matrix as shown in Fig. 2b. Figure 2b also illustrates a 3D structure of the
RVE under consideration subjected to boundary conditions.

Figure 3 illustrates a cylindrical RVE based on which the three-phase shear lag model is derived. The
cylindrical coordinate system (r, θ and x) is considered in such a way that the axis of the RVE coincides with

Fig. 1 a Schematic diagram of a lamina made of the SFFRC. b In-plane cross section of the SFFRC lamina
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Fig. 2 a Fuzzy fiber with CNTs radially grown on its circumferential surface. b Load-carrying structure of the RVE of the SFFRC
in which the SCFF is embedded in the polymer material

Fig. 3 Transverse and longitudinal cross sections of the three-phase RVE of the SFFRC

the x-axis while CNTs are aligned along the r-direction. The model is derived by dividing the RVE into three
zones. The portion of the RVE in the zone −L f ≤ x ≤ L f consists of three concentric cylindrical phases;
namely, the carbon fiber, the PMNC, and the polymer matrix. The RVE of the SFFRC has the radius R and
the length 2L. The radius and the length of the carbon fiber are denoted by a and 2L f . The inner and outer
radii of the PMNC phase are a and b, respectively. The portions of the RVE in the zones −L ≤ x ≤ −L f and
L f ≤ x ≤ L are considered to be composed of an imaginary fiber, the imaginary PMNC, and the polymer
matrix phase. The radius of the imaginary fiber is also denoted by a, while the inner and outer radii of the
imaginary PMNC phase are also represented by a and b, respectively. Thus, the shear lag model derived for
the zone −L f ≤ x ≤ L f can be applied to derive the shear lag models for the zones −L ≤ x ≤ −L f and
L f ≤ x ≤ L . In what follows, the shear lag model for the zone −L f ≤ x ≤ L f is first derived. As shown
in Fig. 3, a tensile stress σ is applied to the RVE along the x-direction at x = ±L while the RVE is subjected
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to a radial normal stress qo at r = R. In order to derive this shear lag model, the effective elastic properties
of the PMNC phase are required. A three-phase Mori–Tanaka model is used to determine the effective elastic
properties of the PMNC. The development of the Mori–Tanaka model is presented in “Appendix A.” These
results are used as an input to the shear lag model. Returning to the shear lag model, the governing equations
for the different phases of the RVE concerning equilibrium along the x-direction are given by

∂σ i
x

∂x
+ 1

r

∂(rσ i
xr )

∂r
= 0; i = f, c and m, (1)

while the relevant constitutive relations are

σ i
x = Ci

11ε
i
x + Ci

12ε
i
θ + Ci

13ε
i
r , σ i

r = Ci
13ε

i
x + Ci

23ε
i
θ + Ci

33ε
i
r and

σ i
xr = Ci

66ε
i
xr ; i = f, c and m. (2)

In Eqs. (1) and (2), the superscripts f, c, and m denote, respectively, the carbon fiber, the PMNC, and the
monolithic polymer matrix. For the i-th constituent phase, σ i

x and σ i
r represent the normal stresses in x and

r directions, respectively; εi
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r are the normal strains along x, θ and r directions, respectively; σ i
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is the transverse shear stress, εi
xr is the transverse shear strain, and Ci

i j are the elastic constants. It should be
noted here that the principle material coordinates axes (1–2–3) are coincident with the problem coordinate
axes (x–θ–r ). The strain–displacement relations for an axisymmetric problem relevant to this RVE are
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in which ui and wi represent the axial and the radial displacements at any point of the i-th phase along the x
and the r direction, respectively. The traction boundary conditions are given by
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where τi is the transverse shear stress at the interface between the carbon fiber and the PMNC while τo is the
transverse shear stress at the interface between the PMNC and the polymer matrix. The consideration of the
radial load qo on the RVE accounts for the lateral extensional interaction between the adjacent short carbon
fibers. The average axial stresses in the different phases are defined as
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Now, making use of Eqs. (1) and (4)–(6.1–3), it can be derived that
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It is evident from Eq. (7.1–3) that the gradients of σ̄ c
x and σ̄m

x with respect to the axial coordinate (x) are
independent of the radial coordinate (r). Hence, as the radial dimension of the RVE is very small, it is reasonable
to assume that [33]
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Thus, using the equilibrium equation given by Eq. (1), the transverse shear stresses in the PMNC phase and in
the polymer matrix phase can be expressed in terms of the interfacial shear stresses τi and τo, respectively, as
follows:
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Also, since the RVE is an axisymmetric problem, it is usually assumed [33] that the gradient of the radial
displacements with respect to the x-direction is negligible, and so, from the constitutive relation given by
Eq. (2) and the strain–displacement relations given by Eq. (3) between σ i

xr and εi
xr , one can write
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Solving Eq. (11) and satisfying the continuity condition at r= a and r= b, respectively, the axial displacements
of the PMNC phase and the polymer matrix phase along the x-direction can be derived as follows:
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in which Ai (i = 1, 2, 3, and 4) are the constants of the displacement fields of the PMNC and the polymer matrix
and are explicitly shown in “Appendix B.”

The radial displacements in the three constituent phases can be assumed as [34]
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r
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r
(15)

where Af , Ac, Bc, Am and Bm are unknown constants. Invoking the continuity conditions for the radial
displacement at the interfaces r= a and b, the radial displacement in the PMNC phase can be augmented as
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Substituting Eqs. (12), (13), (15), and (16) into Eq. (3) and subsequently, employing the constitutive relations
(2), the expressions for the normal stresses can be written in terms of the unknowns Af , Am and Bm as follows:
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Solving Eq. (23), the solutions of the constants of the radial displacements Af , Am and Bm can be expressed
as follows:
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The expressions of the coefficients Ai j are presented in “Appendix B.” The expressions of the coefficients ki j
are evident from Eqs. (23) and (24) and are not shown here for the sake of brevity.

Now, making use of Eqs. (19), (21), and (24) in Eqs. (6.2,3), the average axial stresses in the PMNC phase
and the polymer matrix phase are written as follows:
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The constants Li (i = 1, 2, 3, …, 8) appearing in the above two equations are presented in “Appendix B.”
Now, satisfying the equilibrium of force along the axial (x) direction at any transverse cross section of the

RVE, the following equation is obtained:
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Use of Eqs. (25), (26), (27)–(29) yields
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Differentiating Eqs. (27) and (31) twice with respect to x and using the resulting equations in Eq. (30), the
governing equation for the average axial stress in the carbon fiber coated with radially grown aligned CNTs is
obtained as follows:
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The coefficients Li (i = 14, 15, 16 and 17) appearing in the above differential equation have been explicitly
presented in “Appendix B.”

Following the above procedure, the governing equation for the average axial stress (σ̄
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follows:
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of Eqs. (32) and (33) are given by:

σ̄
f

x = (L16/L15) σ − (L17/L15) qo + L18 sinh (βx) + L19 cosh (βx) + L20 sinh (αx)

+L21 cosh (αx), (34)

σ̄
p f

x =
(

L p f
16 /L p f

15

)

σ −
(

L p f
17 /L p f

15

)

qo + L p f
18 sinh

(

β p f x
)

+ L p f
19 cosh

(

β p f x
)

+ L p f
20 sinh

(

α p f x
)

+L p f
21 cosh

(

α p f x
)

(35)

where

β =
√

1/2

(

−L14 +
√

(L14)
2 − 4L15

)

, α =
√

1/2

(

−L14 −
√

(L14)
2 − 4L15

)

,

β p f =
√
√
√
√1/2

(

−L p f
14 +

√
(

L p f
14

)2 − 4L p f
15

)

and α p f =
√
√
√
√1/2

(

−L p f
14 −

√
(

L p f
14

)2 − 4L p f
15

)

. (36)

The constants L18, L p f
18 , L19, L p f

19 , L20, L p f
20 , L21, and L p f

21 are to be evaluated from the following end
conditions:

σ̄
p f

x = σ at x = ±L and
∂σ̄

p f
x

∂x
= 0 at x = ±L , (37)

σ̄
f

x = σ̄
p f

x at x = ±L f and
∂σ̄

f
x

∂x
= ∂σ̄

p f
x

∂x
at x = ±L f . (38)
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Utilizing the end conditions given by Eq. (37) in Eq. (35), the constants L p f
18 , L p f

19 , L p f
20 and L p f

21 can be
explicitly expressed as follows:

L p f
18 = 0, (39)

L p f
19 = − α p f sinh

(

α p f L
)

α p f sinh
(

α p f L
)

cosh
(

β p f L
)− β p f sinh

(

β p f L
)

cosh
(

α p f L
) ,

×
{

L p f
16

L p f
15

σ − L p f
17

L p f
15

qo − σ

}

, (40)

L p f
20 = 0, (41)

L p f
21 = β p f sinh

(

β p f L
)

α p f sinh
(

α p f L
)

cosh
(

β p f L
)− β p f sinh

(

β p f L
)

cosh
(

α p f L
)

×
{

L p f
16

L p f
15

σ − L p f
17

L p f
15

qo − σ

}

. (42)

Substituting Eqs. (39)–(42) in Eq. (35), the final solution for σ̄
p f

x is obtained as follows:

σ̄
p f

x =
[

β p f sinh
(

β p f L
)

cosh
(

α p f x
)− α p f sinh

(

α p f L
)

cosh
(

β p f x
)

α p f sinh
(

α p f L
)

cosh
(

β p f L
)− β p f sinh

(

β p f L
)

cosh
(

α p f L
)

]

×
{

L p f
16

L p f
15

σ − L p f
17

L p f
15

qo − σ

}

+ L p f
16

L p f
15

σ − L p f
17

L p f
15

qo. (43)

Similarly, utilizing the end conditions given by Eq. (38) in Eq. (34), the constants L18, L19, L20, and L21 are
evaluated, and the same have been explicitly shown in “Appendix B.” Substitution of Eq. (34) into Eq (7.1)
yields the expression for the carbon fiber/PMNC interfacial shear stress as follows:

τi = −a

2
[βL18 cosh (βx) + βL19 sinh (βx) + αL20 cosh (αx) + αL21 sinh (αx)] . (44)

Following the procedure for deriving the solutions of the average axial stresses σ̄
f

x and σ̄
p f

x in the carbon
fiber and the imaginary fiber, respectively, the solutions for the average axial stresses σ̄m

x and σ̄
pm

x in the
polymer matrices surrounding the SCFF and the imaginary SCFF, respectively, can be derived as follows:

σ̄m
x = (L30/L29) σ − (L31/L29) qo + L32 sinh

(

βm x
)+ L33 cosh

(

βm x
)+ L34 sinh

(

αm x
)

+L35 cosh
(

αm x
)

, (45)

σ̄
pm

x = (L pm
30 /L pm

29

)

σ − (L pm
31 /L pm

29

)

qo + L pm
32 sinh

(

β pm x
)+ L pm

33 cosh
(

β pm x
)+ L pm

34 sinh
(

α pm x
)

+L pm
35 cosh

(

α pm x
)

(46)

where

βm =
√

1/2

(

−L28 +
√

(L28)
2 − 4L29

)

, αm =
√

1/2

(

−L28 −
√

(L28)
2 − 4L29

)

,

β pm =
√

1/2

(

−L pm
28 +

√
(

L pm
28

)2 − 4L p f
29

)

and α pm =
√

1/2

(

−L pm
28 −

√
(

L pm
28

)2 − 4L pm
29

)

. (47)

The constants L32, L pm
32 , L33, L pm

33 , L34, L pm
34 , L35, and L pm

35 are to be evaluated from the boundary
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conditions given in Eqs. (37) and (38). Also, the coefficients (L28) − (L31) appearing in Eqs. (45)–(47)
are presented in “Appendix B.” Finally, substitution of Eq. (45) into Eq. (7.3) yields the expression for the
SCFF/polymer matrix interfacial shear stress as follows:

τo =
(

R2 − b2

b2 − a2

)
[

βm L32 cosh
(

βm x
)+ βm L33 sinh

(

βm x
)

+αm L34 cosh
(

αm x
)+ αm L35 sinh

(

αm x
)]

. (48)

3 Results and discussion

Zigzag CNTs, carbon fiber, and polyimide matrix are used for evaluating the numerical results. Their material
properties are taken from references [9,35,36] and are listed in Table 1. The effective elastic properties and
the thickness of the hollow circular cylindrical continuum representing the interphase between a CNT and the
polyimide matrix are also presented in Table 1. Unless otherwise mentioned, the values of the geometrical
parameters of the RVE of the SFFRC are taken as follows:

2a = 10 µm, L f /a = 20, L/L f = 1.1 and D/Db = 1.1

where a, L , L f , D, and Db represent carbon fiber radius, half length of the RVE, half length of the
SCFF, diameter of the RVE, and diameter of the SCFF, respectively. Volume fraction of the CNT (VCNT)
in the SFFRC depends on the CNT diameter, the carbon fiber diameter, and the surface-to-surface distance
between two adjacent radially aligned CNTs at their roots. In the absence of any interphase between CNTs, it
is reported [37] that the minimum surface-to-surface distance between two adjacent CNTs is the equilibrium
van der Waals distance, which is about 0.34 nm. Since in the PMNC material, polymer molecules fill the gaps
between CNTs and the formation of the interphase is also considered between a CNT and the polymer, the
surface-to-surface distance between two adjacent CNTs at their roots is considered as 1.7 nm. In the SFFRC,
the hexagonal packing array of SCFFs is considered as shown in Fig. 4 for evaluating the numerical results
while they are not touching each other.

The determination of VCNT in the SFFRC is an important issue. It is obvious that the constructional feature
of the SFFRC imposes a constraint on the maximum value of VCNT. Based on the surface-to-surface distance

Table 1 Material properties of the constituent phases of the SFFRC

Material Reference C11 (GPa) C12 (GPa) C13 (GPa) C23 (GPa) C33 (GPa) C44 (GPa) C66 (GPa) (nm)

(10, 0) CNT [9] 709.9 172.4 240 240 1,513.1 1,120 268.7 dn = 0.78
Interphase 29.6 15.2 15.2 15.2 29.6 7.2 7.2 Gap = 0.3333

(14, 0) CNT [9] 557.5 137.5 187.7 187.7 1,082.8 779.2 210 dn = 1.1
Interphase 27.63 14.23 14.23 14.23 27.63 6.70 6.70 Gap = 0.3236

(18, 0) CNT [9] 472.9 118.7 159.7 159.7 846.1 596.3 177.1 dn = 1.42
Interphase 27.55 14.19 14.19 14.19 27.55 6.68 6.68 Gap = 0.3158

Carbon fiber [35] 236.4 10.6 10.6 10.7 24.8 7 25 d = 10,000
Polyimide [36] 9 6 6 6 9 1.5 1.5 –

Fig. 4 Hexagonal packing array comprised of SCFFs dispersed in the polymer matrix
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Table 2 Effective elastic coefficients of the PMNC

CNT Type D/Db & L/L f vf (vn)max Cc
11 (GPa) Cc

12 (GPa) Cc
23 (GPa) Cc

33 (GPa) Cc
44 (GPa) Cc

66 (GPa)

(10, 0) 1.1 0.3 0.062 11.266 7.108 17.609 43.740 13.066 2.426
(14, 0) 1.1 0.3 0.097 11.789 7.347 18.816 47.483 14.333 2.669
(18, 0) 1.1 0.3 0.130 12.344 7.610 19.369 49.250 14.941 2.929
(10, 0) 1.2 0.3 0.067 11.484 7.214 18.543 46.528 13.993 2.513
(10, 0) 1.3 0.3 0.072 11.695 7.316 19.419 49.143 14.862 2.596
(10, 0) 1.4 0.3 0.076 11.898 7.414 20.239 51.591 15.676 2.676
(10, 0) 1.1 0.1 0.043 10.484 6.727 14.034 33.057 9.511 2.112
(10, 0) 1.1 0.2 0.055 10.950 6.954 16.213 39.571 11.679 2.3
(10, 0) 1.1 0.4 0.067 11.507 7.225 18.639 46.816 14.089 2.522
(10, 0) 1.1 0.5 0.072 11.704 7.320 19.454 49.249 14.897 2.6

at the roots of two adjacent CNTs and the CNT diameter, the maximum number of CNTs grown on the
circumferential surface of a carbon fiber of particular diameter can be determined. Then, based on the carbon
fiber volume fraction (vf ) in the SFFRC, the maximum value of VCNT can be determined as [31]

(VCNT)max = V CNT

V FFRC = πd2
n

2 (dn + 1.7)2

(
b

a
− 1

)

vf . (49)

where dn is the diameter of the CNT. First, the effective elastic coefficients of the PMNC are computed by
employing the three-phase Mori–Tanaka method. Estimated values of the effective elastic coefficients of the
PMNC are summarized in Table 2. It may be noted that as the integer for designating the zigzag CNT increases,
the diameter of the CNT increases. These results reveal that if the CNT diameter is varied till that of (18, 0)
CNT, then the increase in the CNT diameter marginally enhances the values of the effective elastic coefficients
of the PMNC. This may be attributed to the fact that as the CNT diameter increases, the value of the CNT
volume fraction increases, which results in the increase in the values of the effective elastic coefficients of the
PMNC. In many research studies, tensile and compressive strengths of the hybrid nanocomposites have been
experimentally investigated, and reported values of the strengths lie between 300 MPa and 1 GPa [22,26–29].
However, the study concerned with the investigation of the strengths of the SFFRC is not yet reported in
the literature. Hence, the applied axial and radial loads on the RVE are normalized in the present study. For
analyzing the stress transfer characteristics of the SFFRC, the following non-dimensional parameters are used:

σ ∗ = σ̄
f

x

σ
, τ ∗ = τi

σ
and τ ∗

o = τo

σ
. (50)

In order to validate the three-phase shear lag model derived in Sect. 2, first the normalized average axial stress
(σ ∗) in the CNT fiber and the interfacial shear stress (τ ∗) along its length computed by the present model are
compared with those obtained by an existing model [15]. For such comparison, material properties of the (20,
0) CNT and the polymer matrix are taken as En = 1,034 GPa, μn = 0.28, E p = 2.41 GPa and μp = 0.35 as
considered by Li and Saigal [15]. For the CNT aspect ratio 50 and the CNT volume fraction 0.1, the comparisons
of the average axial stress in the CNT fiber and the interfacial shear stress along its length computed by the
present model and the model by Li and Saigal [15] are presented in Fig. 5a, b, respectively. It may be noted that
the good agreement between the two sets of results has been obtained verifying the present shear lag model.
The marginal differences observed may be attributed to the fact that the shear lag model of Li and Saigal [15]
did not consider the radial deformations in the constituent phases of the composite, whereas in the present
shear lag model, the radial deformations of the different constituent phases of the composite have been taken
into account.

The main novelty of the three-phase shear lag model derived in this study is that the radial deformations
of the transversely isotropic constituent phases (i.e., the CNT, the carbon fiber, and the PMNC) of the SFFRC
and the application of the radial load on the RVE of the SFFRC have been taken into account, which have
not been considered in the existing shear lag studies. However, it is imperative to justify the validity of the
shear lag model derived in Sect. 2 considering the different transversely isotropic constituent phases of the
SFFRC and the application of the radial load on the RVE. For this purpose, three-phase finite element (FE)
shear lag models have been developed using the commercial software ANSYS 11.0 to validate the analytical
shear lag model derived in Sect. 2. The finite element model of the three-phase RVE of the SFFRC has been
shown in Fig. 6. It should be noted that, because of the symmetry, one-half of the RVE is considered for the FE
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Fig. 5 Comparisons of a the average axial stress and b the interfacial shear stress along the length of the CNT fiber computed by
the present shear lag model with those predicted by the shear lag model by Li and Saigal [15]

Fig. 6 FE mesh of the RVE of the SFFRC

simulations. Under the conditions of an imposed tensile stress (σ ) and radial normal stress (qo) on the RVE
of the SFFRC, the average stresses

{

σ̄ i
}

in the i-th phase of the RVE can be obtained as follows:

{

σ̄ i
}

= 1

V i

∫ {

σ i
}

dV i ; i = f, c and m (51)

where V i represents the volume of the i-th phase of the RVE, and the field variable with an overbar represents
the average of the field variable. As shown in Fig. 6, a tensile stress σ is applied to the RVE along the x-direction
at x = L , while the RVE is subjected to a radial normal stress qo at r = R and its one end is constrained at
x = 0. With and without the application of the radial normal stress (qo), the comparisons of the average axial
stress in the carbon fiber and the interfacial shear stress between the carbon fiber and the PMNC computed
by the analytical shear lag model and the FE shear lag model are presented in Fig. 7a, b, respectively. It
may be observed that the excellent agreement between the two sets of results has been obtained verifying the
development of the analytical shear lag model in the present study. The subsequent results are presented based
on the analytical shear lag model only.

It should be noted that, because of the symmetry, distributions of stresses in the zone of the carbon fiber
reinforcement of the SCFF are plotted for one-half of the RVE only. The variations of the axial stress in the
carbon fiber (σ ∗) and the interfacial shear stress (τ ∗) along its length are presented in Figs. 8 and 9 for different
values of the applied radial load (qo). In the absence of the applied radial load (qo = 0), the carbon fiber coated
with radially aligned CNTs shares slightly less load than the bare carbon fiber (i.e., without coated with CNTs)
as shown in Fig. 8a, and the same is true for the interfacial shear stress (τ ∗) along the length of the carbon
fiber as depicted in Fig. 8b. Although not presented here, it is also found that radially grown CNTs on the
circumferential surface of the carbon fiber do not much improve the interfacial shear stress (τ ∗

o ) transfer along
the length of the SCFF. It is important to note from these figures that radial growing of aligned CNTs on the
circumferential surfaces of the carbon fibers do not appreciably improve the load transfer characteristics of the
SFFRC compared to that of the base composite (VCNT = 0) when the radial load is absent. This is attributed to
the facts that CNTs are grown transverse to the carbon fiber, the elastic properties of CNTs transverse to its axis
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Fig. 7 Comparisons of a the average axial stress and b the interfacial shear stress along the length of the carbon fiber computed
by the present analytical shear lag model with those predicted by the FE shear lag model (vf = 0.3, L f /a = 20, (10, 0) CNT,
D/Db = L/L f = 1.1)
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Fig. 8 Variation of a the average axial stress and b the interfacial shear stress along the length of the carbon fiber when the radial
load is absent (vf = 0.3, qo/σ = 0, L f /a = 20, D/Db = L/L f = 1.1)

(i.e., along the 1-direction) are much less than those along its longitudinal axis, and the CNT volume fraction is
low. Thus, the axial elastic coefficients (Cc

11, Cc
12 and Cc

66) of the PMNC are not much improved compared to
that of the base composite (VCNT = 0) as illustrated in Table 2, which eventually do not appreciably enhance
the load transfer characteristics of the SFFRC when the radial load is absent.

When the radial load is present, the load transfer characteristics of the SFFRC are significantly improved
compared to that of the base composite (VCNT = 0) as shown in Fig. 9a, b, respectively, for the results of
σ ∗ and τ ∗. Almost ∼20 and ∼29 % reductions occur, respectively, in the maximum axial stress in the carbon
fiber and the interfacial shear stress along its length when the value of the applied radial load is qo = 2σ
in the presence of only 2.36 % of (10, 0) CNT volume fraction in the SFFRC. This is attributed to the fact
that radially grown CNTs enhance the transverse elastic coefficients (Cc

22, Cc
23, Cc

33, and Cc
44) of the PMNC

matrix surrounding the carbon fiber (Table 2). Although the elastic properties of zigzag CNTs vary significantly
with the CNT type, the estimated results in Table 2 reveal that the effect of different types of zigzag CNTs is
not much pronounced on the effective elastic coefficients of the PMNC. Hence, the effect of different types
of zigzag CNTs on the load transfer characteristics of the SFFRC is found to be negligible. Once again, it is
found that radially grown CNTs on the circumferential surface of the carbon fiber do not much improve the
interfacial shear stress (τ ∗

o ) along the length of the SCFF when the radial load is present. Although not shown
here, significant reduction in the values of σ ∗ and τ ∗ has been found for the higher values of the applied radial
load (qo > 2σ) when the CNTs are present on the circumferential surface of the carbon fiber. It may also be
observed from Figs. 8 and 9 that the average axial stress remains uniform over the 90 % length of the carbon
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Fig. 9 Variation of a the average axial stress and b the interfacial shear stress along the length of the carbon fiber when the radial
load is present (vf = 0.3, qo/σ = 2, L f /a = 20, D/Db = L/L f = 1.1)
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Fig. 10 Variation of a the average axial stress along the length of the carbon fiber and b the interfacial shear stress along the
length of the SCFF when the radial load is absent (vf = 0.3, qo/σ = 0, L f /a = 20)

fiber from its center while it decreases sharply near the end of the carbon fiber. The interfacial shear stress
along the length of the carbon fiber reaches its maximum value near the ends of the carbon fiber and becomes
zero at x = ±L f .

So far, the load transfer characteristics of the SFFRC have been studied by considering the values of the
geometrical parameters D/Db and L/L f as 1.1 for a particular value of vf . Here, the values of D/Db and L/L f
represent the spacing between the adjacent SCFFs along their radial and axial directions, respectively, over
the volume of the SFFRC lamina. Practically, the gaps between the adjacent SCFFs dispersed in the polymer
matrix can vary over the volume of the SFFRC lamina. The variation of such gaps between the adjacent SCFFs
for a particular value of vf would be an important study. For this, the discrete values of D/Db and L/L f
are considered as 1.1, 1.2, 1.3, and 1.4, and the effective elastic coefficients of the PMNC corresponding to
these geometrical parameters have been listed in Table 2. Since the type of zigzag CNT does not influence the
load transfer characteristics of the SFFRC, zigzag (10, 0) CNT has been considered in the subsequent results.
The variations of the values of σ ∗, τ ∗, and τ ∗

o are presented in Figs. 10 and 11 for different values of the
applied radial load (qo). In the absence of the radial load (qo = 0), the maximum value of the axial stress in
the carbon fiber (σ ∗) decreases with the increase in the values of D/Db and L/L f as illustrated in Fig. 10a,
and the reverse is true for the interfacial shear stress (τ ∗

o ) along the length of the SCFF as shown in Fig. 10b
while the maximum value of the interfacial shear stress along the length of the carbon fiber (τ ∗) is found to be
marginally affected by the variation of the values of D/Db and L/L f ; hence, the predictions for the values of
τ ∗ are not shown here. With the application of the radial load, the load transfer characteristics of the SFFRC
are significantly improved with the increase in the values of D/Db and L/L f as illustrated in Fig. 11a–c,
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Fig. 11 Variation of a the average axial stress along the length of the carbon fiber b the interfacial shear stress along the length of
the carbon fiber and c the interfacial shear stress along the length of the SCFF when the radial load is present (vf = 0.3, qo/σ =
2, L f /a = 20)

respectively, for the values of σ ∗, τ ∗, and τ ∗
o . This is attributed to the fact that the effective transverse elastic

coefficients (Cc
22, Cc

23, Cc
33, and Cc

44) of the PMNC are improved with the increase in D/Db and L/L f ratios,
which eventually enhance the load-carrying capacity of the PMNC in the radial direction. When the values
of D/Db and L/L f are larger than or equal to 1.3 and the value of the applied radial load is qo = 2σ , the
maximum value of the axial stress shared by the carbon fiber is found to be less than the applied axial load σ
as depicted in Fig. 11a. For the value of qo = 2σ , the interfacial shear stress along the carbon fiber decreases
with the increase in the values of D/Db and L/L f and becomes negative for the higher values of D/Db and
L/L f as illustrated in Fig. 11b while the interfacial shear stress along the SCFF becomes negative as depicted
in Fig. 11c irrespective of the values of D/Db and L/L f . It is also important to note from Figs. 10 and 11 that
beyond the values of D/Db and L/L f as 1.3, the maximum values of σ ∗, τ ∗, and τ ∗

o become independent of
the values of D/Db and L/L f irrespective of the magnitude of the applied radial load on the RVE signifying
that the value of the optimum spacing between the adjacent SCFFs interlaced in the polymer matrix may be
considered as D/Db = L/L f = 1.3. Next, considering the values of D/Db and L/L f as 1.1, the effects of
the variation of the aspect ratio and the volume fraction of the carbon fiber on the load transfer characteristics
of the SFFRC are investigated.

In the previous sets of results, the load transfer characteristics of the SFFRC have been investigated by
considering the aspect ratio of the carbon fiber as L f /a = 20 for a particular value of vf . However, the variation
of the aspect ratio of the carbon fiber for a particular value of vf is an important issue. For this, the discrete
values of the aspect ratio of the carbon fiber (L f /a) are considered as 5, 10, 30, and 50. It may be observed
from Fig. 12a that in the absence of the radial load (qo), the maximum value of the axial stress in the carbon
fiber becomes independent of the aspect ratio of the carbon fiber, while the length of the carbon fiber being
uniformly stressed increases as the aspect ratio of the carbon fiber increases from 5 to 50. Although not shown
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Fig. 12 Variation of a the average axial stress and b the interfacial shear stress along the length of the carbon fiber when the radial
load is absent (qo/σ = 0, vf = 0.3, D/Db = L/L f = 1.1)

here, the maximum value of the axial stress in the carbon fiber is also found to be independent of the aspect
ratio of the carbon fiber in the presence of the applied radial load (qo > 0). On the other hand, the maximum
value of the interfacial shear stress along the length of the carbon fiber (τ ∗) decreases with the increase in the
value of L f /a as illustrated in Fig. 12b, when the value of the radial load is qo = 0. A similar trend of results
is also obtained for the interfacial shear stress along the length of the SCFF (τ ∗

o ) but results for τ ∗
o are not

presented here. Although not shown here, in the presence of the applied radial load on the RVE, the maximum
values of σ ∗, τ ∗, and τ ∗

o are significantly decreased compared to those of the values without the application
of the radial load on the RVE. It is important to note from Fig. 12 that the maximum length of the carbon
fiber required for the stress transfer becomes independent of the value of L f /a if its value is larger than 30
signifying that the upper limiting value of the aspect ratio of the carbon fiber may be considered as 30. Next,
the value of L f /a is considered as 5 to study the effect of the variation of the carbon fiber volume fraction on
the load transfer characteristics of the SFFRC.

So far, the load transfer characteristics of the SFFRC have been studied for a constant value of vf = 0.3. The
maximum value of VCNT corresponding to this value of vf is 0.0236. The variation of the value of vf influences
the maximum volume fraction of CNT ((vn)max) in the PMNC. To investigate the effect of the carbon fiber
volume fraction on the load-sharing capability of the carbon fiber and the SCFF, four discrete values of vf are
considered as 0.1, 0.2, 0.4, and 0.5. Keeping the diameter of the carbon fiber constant as 2a = 10 µm, the
values of the diameter of the SCFF (2b) corresponding to these values of vf are 26.103, 18.458, 13.05, and
11.674µm, respectively. The variations of the values of σ ∗ and τ ∗ are presented in Fig. 13a, b, respectively, for
different volume fractions of the carbon fiber when the value of the applied radial load is qo = 0. These results
reveal that the values of σ ∗ and τ ∗ decrease with the increase in the carbon fiber volume fraction. Although
not presented here, the reverse is true for the interfacial shear stress along the length of the SCFF (τ ∗

o ).

4 Conclusions

In this article, a study has been carried out to investigate the load transfer characteristics of a novel SFFRC.
The distinct constructional feature of the SFFRC is that the SCFFs are dispersed in the polymer matrix over
the volume of the SFFRC lamina. Such an SCFF is made of the short carbon fiber reinforcement coated with
radially aligned CNTs on its circumferential surface and the polymer matrix. A three-phase shear lag model has
been developed for this novel hybrid nanocomposite considering the axial as well as the radial deformations
of the constituent phases of the RVE while the RVE is subjected to both axial and radial loads. The following
main conclusions are drawn from the investigations carried out in this article:

(i) Since the radially grown CNTs on the circumferential surfaces of the carbon fiber eventually stiffen the
polymer matrix in the radial directions, the load transfer characteristics of the SFFRC are significantly
improved compared to that of the base composite without CNTs if the radial load is present. Without the
application of the radial load, marginal improvement in the load transfer characteristics of the SFFRC
has been observed compared to that of the base composite.
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Fig. 13 Variation of a the average axial stress and b the interfacial shear stress along the length of the carbon fiber when the radial
load is absent (qo/σ = 0, L f /a = 5, D/Db = L/L f = 1.1)

(ii) The effect of different types of zigzag CNTs is not much pronounced on the load transfer characteristics
of the SFFRC.

(iii) With and without the application of the radial load, the load transfer characteristics of the SFFRC
are significantly improved with the increase in the spacing between the adjacent SCFFs spaced in the
polymer matrix, and beyond the particular value of spacing (i.e., D/Db = L/L f = 1.3) the values of
the maximum stresses (σ ∗, τ ∗ and τ ∗

o ) become independent of the gaps between the adjacent SCFFs.
(iv) The upper limiting value of the aspect ratio of the carbon fiber required for the effective load transfer

is found as L f /a = 30. Beyond the value of L f /a > 30, the values of the maximum stresses (σ ∗, τ ∗,
and τ ∗

o ) become independent of the value of L f /a irrespective of the magnitude of the applied radial
load on the RVE.

(v) It is also revealed that the load transfer characteristics of the SFFRC are significantly improved with
the increase in the carbon fiber volume fraction in the SFFRC if the radial load is present.

(vi) The developed three-phase shear lag model in this study can be used systematically to study the
stress transfer mechanisms of any orthotropic advanced composite consisting of different orthotropic
constituent phases.

Appendix A: Estimation of the effective elastic properties of the PMNC

The effective elastic coefficients of the PMNC material, which are required as inputs for the shear lag analysis,
have been estimated by employing the micromechanics model based on the Mori–Tanaka method. From
the constructional feature of the SCFF, it may be viewed that the carbon fiber is wrapped by a lamina
of the PMNC material. Such an unwound lamina of the PMNC is reinforced by CNTs along its thick-
ness direction (i.e., along the 3-direction) shown in Fig. 14. The average effective elastic properties of the
PMNC material surrounding the carbon fiber may be approximated by estimating the effective elastic prop-
erties of this unwound lamina. The cross sections of the RVE of this unwound lamina have been shown in
Fig. 15.

The effective elastic properties of the PMNC are estimated in the presence of an interphase between
a CNT and the polymer matrix. Such an interphase models the non-bonded van der Waals interaction be-
tween a CNT and the polymer matrix [9,38–40]. The effective elastic properties of such interphase resem-
bling a solid continuum can be determined by molecular dynamics simulation and are readily available in
the open literature [9]. Consideration of such an interphase between a CNT and the polymer matrix results
in the derivation of a three-phase Mori–Tanaka model of the unwound PMNC. Employing the procedure
of the Mori–Tanaka model for multiple inclusions [41], a three-phase Mori–Tanaka model can be derived
for the unwound PMNC. The explicit formulation of such three-phase Mori–Tanaka model can be derived
as [41]
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Fig. 14 Transverse cross sections of the SCFF with unwound and wound PMNC

Fig. 15 Cross sections of the RVE of the unwound PMNC material

[

Cnc] = [C p]+
[

(vn + vi )
([

Ci
]

− [C p]
)

[AV ] + vn

([

Cn]−
[

Ci
])

[An]
]

× [vp [I ] + (vn + vi ) [AV ]
]−1

. (A1)

In Eq. (A1), the superscripts n, i and p denote, respectively, the CNT fiber, the effective interphase, and the
monolithic polymer matrix; whereas vn, vi and vp represent the volume fractions of the CNT, the interphase
and the polymer matrix, respectively, with respect to the RVE of the PMNC, and the subscript V denotes the
domain comprising a CNT and the interphase surrounding the CNT. The concentration matrices [AV ] and
[An] appearing in Eq. (A1) are given by

[AV ] = [I ] + [SV ][ΦV ] and [An] = [I ] + [ΔS][Φi ] + [Sn][Φn]. (A2)

The various matrices appearing in (A2) are

[Φn] = −
[

([Sn] + [C1]) + [ΔS]
(

[Sn] − vn

vi
[ΔS] + [C2]

)−1 (

[Sn] − vn

vi
[ΔS] + [C1]

)]−1

,

[Φi ] = −
[

[ΔS] + ([Sn] + [C1])
(

[Sn] − vn

vi
[ΔS] + [C1]

)−1 (

[Sn] − vn

vi
[ΔS] + [C2]

)]−1

,

[Φv] = vn

vn + vi
[Φn] + vi

vn + vi
[Φi ] ,

[ΔS] = [Sn] − [SV ], [C1] = ([Cn]− [C p])−1 [
C p] , and

[

C2] =
([

Ci
]

− [C p]
)−1 [

C p] . (A3)

Also, in the above matrices, [SV ] and [Sn] indicate the Eshelby tensors for the domains represented by V and
n, respectively, and [I ] is an identity matrix. The cylindrical molecular structure of CNT may be treated as an
equivalent solid a cylindrical fiber [9,12,38]. Thus, the specific form of the Eshelby tensor for a cylindrical
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inclusion given by Qui and Weng [42] is utilized here for computing the matrices [SV ] and [Sn]. It may be
noted that the elastic coefficient matrix

[

Cnc
]

directly provides the values of the effective elastic properties
at a point in the portion of the PMNC material surrounding the carbon fiber where the CNT is aligned with
the 3-axis of the SFFRC. But, with respect to the local material coordinate system (1′, 2′, 3′) as shown in
Figs. 3 and 14, the matrix

[

Cnc
]

also provides the effective elastic properties at a point located in the PMNC
where the CNT axis (3′–axis) is oriented at an angle θ with the 3-axis in the 2–3 plane. Thus, at any point in
the PMNC surrounding the carbon fiber, the location-dependent effective elastic coefficient matrix

[

C̄nc
]

of
the PMNC with respect to the 1–2–3 coordinate system can be obtained by the following transformations:

[

C̄nc] = [T ]−T [Cnc] [T ]−1 (A4)

where [T ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 m2 n2 mn 0 0
0 n2 m2 −mn 0 0
0 −2mn 2mn m2 − n2 0 0
0 0 0 0 m −n
0 0 0 0 n m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with m = cos θ and n = sin θ .

Therefore, the effective elastic properties of the PMNC surrounding the carbon fiber with respect to the
principle material coordinate axes of the SFFRC vary over an annular cross section of the PMNC phase of the
RVE of the SCFF as shown in Fig. 14. However, without the loss of generality, it may be considered that the
volume average of these effective elastic properties

[

C̄nc
]

over the volume of the PMNC can be treated as the
constant effective elastic properties

[

Cnc
]

of the PMNC material surrounding the carbon fiber with respect to
the 1–2–3 coordinate axes of the SFFRC and are given by

[

Cc] = 1

π
(

R2 − a2
)

2π∫

0

b∫

a

[

C̄nc] r dr dθ. (A5)

If the CNT volume fraction is homogenized in the annular portion of the RVE of the PMNC, then the ho-
mogenized effective elastic properties of the PMNC

[

Cc
]

will not be radially dependent, and the same can be
proved. Figure 16 illustrates an RVE of the PMNC surrounding the carbon fiber containing one CNT.

The volume fraction of the CNT at any location (r) of the RVE of the PMNC is given by

v̄n =
π
4 d2

nΔr

π[(r + Δr)2 − r2]L/n
≈ d2

nΔr N

8rΔr L
= d2

n n

8r L
(A6)

Fig. 16 RVE of the PMNC containing one CNT
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where L is the axial length of the RVE, dn is the CNT diameter, and N is the number of CNTs grown on the
circumferential surface of the carbon fiber. Obviously, Nθ = 2π . Equation (A6) reveals that the local volume
fraction of CNT for the non-homogenized RVE is radially dependent. The weighted volume average of the
CNT volume fraction over the volume of the RVE can be treated as the homogenized CNT volume fraction of
the RVE. Thus, the homogenized CNT volume fraction in the RVE is

vn = 1

π
(

b2 − a2
)

L/n

b∫

a

d2
n N

8r L
rθ dr L = Nd2

n

4 (a + b) L
. (A7)

It is evident from Eq. (A7) that vn is independent of the radial coordinate and equal to the ratio between the
volume of the CNT and the volume of the RVE.

Appendix B: Explicit forms of constants appearing in shear lag model development

The constants Ai (i = 1, 2, 3, and 4) appearing in Eqs. (12) and (13) are expressed as follows:

A1 = a

Cc
66(b

2 − a2)

[

b2ln
r

a
− 1

2
(r2 − a2)

]

, A2 = − b

Cc
66(b

2 − a2)

[

a2ln
r

a
− 1

2
(r2 − a2)

]

,

A3 = a

Cc
66(b

2 − a2)

[

b2ln
b

a
− 1

2
(b2 − a2)

]

and

A4 = b

Cm
66(R2 − b2)

[

R2ln
r

b
− 1

2
(r2 − b2)

]

− b

Cc
66

(

b2 − a2
)

[

a2ln
b

a
− 1

2

(

b2 − a2)
]

. (B1)

The constants Ai j and Ki j appearing in Eqs. (23) and (24) are expressed as follows:

A11 = Cc
23 − C f

23 − C f
33 − Cc

33
b2 + a2

b2 − a2 − 2C f
12Cc

13

C f
11

+ 2(C f
12)

2

C f
11

, A12 = 2Cc
33b2

b2 − a2 ,

A13 = 2Cc
33

b2 − a2 , A21 = 2Cc
33a2

b2 − a2 + 2Cc
13C f

12

C f
11

− 2Cm
12C f

12

C f
11

,

A22 = Cm
11 + Cm

12 − Cc
23 − Cc

33
b2 + a2

b2 − a2 , A23 = 1

b2

(

Cm
12 − Cm

11 − Cc
23 − Cc

33
b2 + a2

b2 − a2

)

,

A31 = −2C f
12Cm

12

C f
11

and A32 = Cm
11 + Cm

12, A33 = 1

R2

(

Cm
12 − Cm

11

)

. (B2)

The constants Li (i = 1, 2, 3,…, 8) appearing in Eqs. (25) and (26) are expressed as follows:

L1 = Cc
11

C f
11

+ B1k11 + B2k21 + B3k31, L2 = B1k12 + B2k22 + B3k32 + B4,

L3 = B1k13 + B2k23 + B3k33 + B5, L4 = B1k14 + B2k24 + B3k34,

L5 = Cm
11

C f
11

− 2Cm
11C f

12

C f
11

k11 + 2Cm
12k21, L6 = −2Cm

11C f
12

C f
11

k12 + 2Cm
12k22 + Cm

11 A3,

L7 = −2Cm
11C f

12

C f
11

k13 + 2Cm
12k23 + Cm

11 B6 and L8 = −2Cm
11C f

12

C f
11

k14 + 2Cm
12k24 (B3)
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in which

B1 = −
(

2Cc
12a2

b2 − a2 + 2Cc
11C f

12

C f
11

)

, B2 = 2Cc
12b2

b2 − a2 , B3 = 2Cc
12

b2 − a2 ,

B4 = − aCc
11

Cc
66(b

2 − a2)2

[

b4ln
b

a
+ a2b2 − 1

4
(3b4 + a4)

]

,

B5 = − bCc
11

Cc
66(b

2 − a2)2

[

a2b2ln
b

a
− 1

4
(b4 − a4)

]

and

B6 = b

Cm
66

(

R2 − b2
)2

[

R4ln
R

b
+ R2b2 − 1

4
(3R4 + b4)

]

− b

Cc
66(b

2 − a2)

[

a2ln
b

a
− 1

4
(b2 − a2)

]

.

The coefficients Li (i = 14, 15, 16, and 17) of the differential equation given by Eq. (32) are expressed as
follows:

L13 = −a

2

[
L2L7

L3
− L6

]

, L14 = 1

L13

[
L1L7

L3
+
(

a2

b2 − a2

)
L7

L3
− L5 −

(
R2 − b2

b2 − a2

)
L7L10

L8L11
− L10

L11

]

,

L15 = − 1

L13

[(
R2 − b2

b2 − a2

)
L7L9

L8L11
+ L9

L11

]

, L16 = − 1

L13

[(
R2 − b2

b2 − a2

)
R2L7

L8L11
+ R2

L11

]

and

L17 = − 1

L13

[(
R2 − b2

b2 − a2

)
L7L12

L8L11
+ L12

L11

]

. (B4)

The constants L18, L19, L20, and L21 evaluated by using the end conditions given by Eqs. (38) and (34)
are explicitly expressed as follows:

L18 = α p f sinh
(

α p f L
)

cosh
(

α p f L
)

N18

D18
(B5)

in which

N18 =
[

sinh
(

αL f
) {

α p f sinh
(

β p f L
)

cosh
(

α p f L f
)− β p f sinh

(

α p f L
)

cosh
(

β p f L f
)}

+α cosh
(

αL f
) {

sinh
(

α p f L
)

sinh
(

β p f L f
)− sinh

(

β p f L
)

sinh
(

α p f L f
)}

]

×
{

L p f
16 /L p f

15 σ − L p f
17 /L p f

15 qo − σ
}

,

D18 =
{

β p f sinh
(

α p f L
)

cosh
(

β p f L
)

− α p f sinh
(

β p f L
)

cosh
(

α p f L
)}

× {α sinh
(

βL f
)

cosh
(

αL f
)− β sinh

(

αL f
)

cosh
(

βL f
)}

,

L19 = 1

cosh
(

α p f L
)

N19

D19
(B6)

where

N19 = α sinh
(

αL f
)

cosh
(

α p f L
) {

L p f
16 /L p f

15 − L17/L15

}

σ

×
{

α p f sinh
(

α p f L f

)

cosh
(

αL f
)−α sinh

(

αL f
)

cosh
(

α p f L f

)} {

L p f
16 /L p f

15 σ − L p f
17 /L p f

15 qo−σ
}

,

D19 = α sinh
(

αL f
)

cosh
(

βL f
)− β sinh

(

βL f
)

cosh
(

αL f
)

,

L20 = α p f sinh
(

α p f L
)

cosh
(

α p f L
)

N20

D20
(B7)
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in which

N20 =
[

sinh
(

βL f
) {

α p f sinh
(

β p f L
)

cosh
(

α p f L f
)− β p f sinh

(

α p f L
)

cosh
(

β p f L f
)}

+β cosh
(

βL f
) {

sinh
(

α p f L
)

sinh
(

β p f L f
)− sinh

(

β p f L
)

sinh
(

α p f L f
)}

]

×
{

L p f
16 /L p f

15 σ − L p f
17 /L p f

15 qo − σ
}

,

D20 = {α sinh
(

βL f
)

cosh
(

αL f
)− β sinh

(

αL f
)

cosh
(

βL f
)}

×
{

α p f sinh
(

β p f L
)

cosh
(

α p f L
)

− β p f sinh
(

α p f L
)

cosh
(

β p f L
)}

,

L21 = − 1

cosh
(

α p f L
)

N21

D21
(B8)

where

N21 = β sinh
(

βL f
)

cosh
(

α p f L
) [{

L p f
16 /L p f

15 − L16/L15

}

σ +
{

L p f
17 /L p f

15 − L17/L15

}

qo

]

+
{

α p f sinh
(

α p f L f

)

cosh
(

βL f
)− β sinh

(

βL f
)

cosh
(

α p f L f

)} {

L p f
16 /L p f
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17 /L p f
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}

,

D21 = α sinh
(

αL f
)

cosh
(

βL f
)− β sinh

(

βL f
)

cosh
(

αL f
)

.

The coefficients Li (i = 28, 29, 30, and 31) appearing in Eqs. (45)–(47) are expressed as follows:

L28 = 1

L27

[

a2 L24

L22
+ (b2 − a2)

(
L2

L6
+ L24L26

L22

)

+ (R2 − b2)
]

,

L29 = 1

L27

[

a2 L23

L22
+ (b2 − a2)

(
L23L26

L22

)]

, L30 = 1

L27

[

−a2 R2

L22
− (b2 − a2) R2

(
L26

L22

)]

,

and L31 = 1

L27

[

a2 L25

L22
+ (b2 − a2)

(
L25L26

L22

)]

(B9)

in which

L22 = a

2

L6L9

L5
+ L10, L23 = − L9

L5
, L24 =

[(
R2 − b2

2b

)
L7L9

L5
− L11

]

,

L25 = L8L9

L5
− L12, L26 = L1 − L2L5

L6
and L27 = (b2 − a2)

(
R2 − b2

2b

)[

L3 − L2L7

L6

]

.
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