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Abstract The flexoelectric effect which is defined as the coupling between strain gradient and polarization has
long been neglected because it is insignificant in bulk ferroelectrics. However, at nanoscale, the strain gradient
can be dramatically increased leading to giant flexoelectric effects. In the present study, the flexoelectric effects
in epitaxial nano thin films of a 180◦ multi-domain structure, which are subjected to a compressive in-plane
misfit strain, are investigated by the phase field method. Unlike the case of a single domain structure where
the strain gradient is mainly attributed to the formation of dislocation which relaxes the misfit strain, in a
multi-domain structure, it is attributed to many factors, such as surface and interface effects, misfit relaxation
and domain wall structure. The results obtained show that relatively large flexoelectricity-induced electric
fields are produced near the domain wall region. The induced field will not only influence the domain structure
of the thin film, but also the hysteresis loops when it is under an applied electric field.

1 Introduction

The flexoelectric effect that couples the polarization and strain gradient has been predicted [1] and then
theoretically described [2] more than fifty years ago. However, this effect has been overlooked for nearly
four decades due to its small magnitude for which the flexoelectric coefficients were theoretically estimated
to be in the order of e/a, where e and a are the electronic charge and the lattice parameter, respectively.
Nevertheless, the extensive experimental [3–7] and theoretical [8–14] works carried out in the past decade,
on materials at nanoscale, showed that the strain gradient could be five or six orders of magnitude larger than
that in bulk materials. Therefore, the flexoelectric effect can be quite significant or even dominant in nano thin
films. Enhancement of piezoelectricity by 500 % was predicted in a BaTiO3 nanobeam when the thickness of
the beam was at several nanometers scale [15], and a giant imprint effect was observed in HoMnO3 epitaxial
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thin films [16]. The flexoelectric effect not only enlarges the range of piezoelectric materials [10,11,17], but
also offers a totally new route for switching polarization in ferroelectrics [18,19]. In most previous works
[8,20], one-dimensional assumption was always adopted to focus on the flexoelectric effects coupling with
vertical strain gradient arising from the formation of dislocation by which the misfit strains were relieved.
This simple assumption is helpful in achieving a preliminary understanding on the influence of flexoelectric
effects. However, when both elastic energy and electrostatic energy are taken into consideration, the formation
of a multi-domain structure is likely to be more energy preferable in epitaxial thin films that renders the
one-dimensional assumption invalid. A recent experimental work [21] demonstrated that a horizontal strain
gradient instead of vertical strain gradient can also cause a giant flexoelectric effect in dislocation-free epitaxial
thin films. In order to achieve a better understanding of the influence of the flexoelectric effect in epitaxial thin
films, an attempt is made in the present study to perform a rough estimation of the said effect by considering
not only the strain gradient arising from the misfit strain relaxation, but also that due to domain formation.

2 Phase field modeling

A phase field model is developed to investigate the flexoelectric effects in epitaxial thin films. Conventionally,
the total free energy of the system can be expressed as:

F0 =
∫∫∫ (

fbulk + fgrad + felec + felas
)
dx1dx2dx3 +

∫∫
fsdx1dx2, (1)

where fbulk, fgrad, felec, felas and fs are the bulk free energy density, domain wall energy density, electric
energy density, elastic energy density and surface energy density, respectively.

The bulk free energy density can be described by the conventional Landau-type extension, which can be
expressed as:
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where α1, α11, α12, α111, α112, α123 are the phenomenological Landau expansion coefficients.
The domain wall energy density is given by:

fgrad = 1

2
g11

(
P2

1,1 + P2
2,2 + P2

3,3

) + g12
(
P1,1 P2,2 + P2,2 P3,3 + P3,3 P1,1
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+ 1

2
g44

[(
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)2 + (
P2,3 + P3,2
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)2
]

+ 1

2
g′

44

[(
P1,2 − P2,1

)2 + (
P2,3 − P3,2

)2 + (
P1,3 − P3,1

)2
]
, (3)

where g11, g44 and g′
44 are the gradient coefficients, and the commas in the subscripts denote spatial differen-

tiation.
The electric energy can be presented as [22]:

∫∫∫
felecdx1dx2dx3= 1

2ε

∫∫ ∫

|ξ|�=0

d3ξ

(2π)3 |P(ξ) · k|2 −
∫∫∫

Eex
i Pi dx1dx2dx3, (4)

where P (ξ) = ∫ d3x
(2π)3 P (x) e−iξ·x is the Fourier transformation of the polarization field P(r), k =

(k1, k2, k3) = (ξ1, ξ2, ξ3)/|ξ| is the unit vector in the reciprocal Fourier space, and ε = εrε0 is the dielectric
constant of ferroelectric material with ε0 = 8.85 × 1012 Fm−1 the dielectric constant in the vacuum, and εr
the relative dielectric constant.

The elastic energy density can be expressed as:

felas = 1

2
ci jklei j ekl = 1

2
σi j

(
εi j − ε∗

i j

)
, (5)
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(a) (b)

Fig. 1 a Schematic of a film–substrate simulation system, where h f denotes the thickness of the ferroelectric film; b the equivalent
elastically homogeneous system with ci jkl and the properly distributed stress-free strain ε∗

i j

where ci jkl , σi j , ei j , εi j and ε∗
i j are the elastic stiffness, elastic stress, elastic strain, total strain and stress-free

strain, respectively. As shown in Fig. 1, calculating the elastic strain in the original heterogeneous film–substrate
system (Fig. 1a) can be replaced by calculating the elastic strain in the equivalent elastically homogeneous
system with constant ci jkl and the properly distributed stress-free strain (Fig. 1b) by using a phase field
microelasticity model [23,24]. The stress-free strain is zero in the substrate, is equal to the electrostrictive-
related strain ε0

i j in the ferroelectric film, and is equal to the virtual strain εvir tual
i j in the vacuum layer. The

electrostrictive strains are dependent on electric polarization which can be expressed as:

ε0
11 = Q11 P2

1 + Q12
(
P2

2 + P2
3

)
, ε0

12 = Q44 P1 P2,

ε0
22 = Q11 P2

2 + Q12
(
P2

1 + P2
3

)
, ε0

23 = Q44 P2 P3, (6)

ε0
33 = Q11 P2

3 + Q12
(
P2

1 + P2
3

)
, ε0

13 = Q44 P1 P3,

where Q11, Q12 and Q44 are the electrostrictive coefficients. The virtual strains εvir tual
i j are introduced to

satisfy the free surface boundary conditions [23,24].
The surface energy density is given by:

fs = aS
11

(
P2

1 + P2
2 + P2

3

)
, (7)

where aS
11 is the surface Landau expansion coefficient.

When flexoelectric effects in the system are taken into consideration, the additional energy term Fflex
related to flexoelectricity, which should be incorporated in the total free energy, can be expressed as [12,13]:

Fflex = −
∫∫∫

fi jkl

2

(
Pk

∂εi j

∂xl
− εi j

∂ Pk

∂xl

)
dx1dx2dx3, (i, j, k, l = 1, 2, 3), (8)

where fi jkl are the flexoelectric coefficients. Hence, the total free energy can be expressed as F = F0 + Fflex.
The variation of the total free energy with polarizations and strains yield Euler-Lagrange equations incorporated
with the boundary conditions [25–27] as follows:(

aS
i j Pj + gi jkl

∂ Pk

∂xl
n j + fi jkl

2
εkln j

)
|S = 0, (9.1)

(
σi j n j + θi jk,ln j nknl − θi jk, j nk

) |S = 0, (9.2)

where θi jk = −1/2 fi jkl Pl , and n is the outward normal unit vector of the surface. The flexoelectricity-induced
electric field arising from the variation of the free energy with polarization is given by:

Eflex
i = −δFflex

δPi
= fi jkl

∂εkl

∂x j
. (10)

Moreover, the flexoelectricity-induced stress field can be obtained based on the variation of the free energy
with total strain:

σ flex
i j = δFflex

δεi j
= fi jkl

∂ Pk

∂xl
. (11)
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By employing the Voigt notation that f1111 = f11, f1122 = f12, f1212 = f44, c1111 = c11, c1122 =
c12, c1212 = c44, the flexoelectricity-induced electric field can be expressed as:

Eflex
1 = f11
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+ 2 f44

(
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)
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)
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Similarly, the flexoelectricity-related stress can be expressed as:
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The boundary conditions given by Eq. (9.1) can be rewritten as:
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44
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The detailed deduction of the boundary conditions is presented in the “Appendix”.
The dynamic evolution of virtual stress-free strains and polarization are governed by the time dependent

Ginzburg-Landau (TDGL) equations [23,28]:

∂εvir tual
i j (x, t)

∂t
= −K

δF

δεvir tual
i j (x, t)

, (15)

∂ Pi (x, t)

∂t
= −L

δF

δPi (x, t)
, (16)

where K and L are kinetic coefficients.
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3 Simulation parameters and methodology

A two-dimensional simulation system consisting of 192
x1 × 58
x3 discrete grids with grid size 
x1 =

x3 = dl = 1nm in real space is devised for the present study. The system encompasses three parts, i.e., a top
part of 8 layers, a bottom part of 20 layers and a middle portion representing the vacuum region, the substrate
and the BaTiO3 ferroelectric thin film, respectively. Therefore, the thickness of the film is 30nm. The periodic
boundary conditions are applied along the x1 and x3 direction. For simplicity, the film–substrate system is
assumed to be elastically homogeneous. The coefficients used in the simulation are listed below [7,24,29,30]:

α1 = 3.3(T − 110) × 105 C−2m2 N, α11 = 3.6(T − 115) × 106C−4 m6 N,

α12 = 4.9 × 108C−4 m6 N, α111 = 6.6 × 109C−6 m10 N, α112 = 2.9 × 109C−6 m10 N,

Q11 = 0.11C−2 m4, Q12 = −0.043C−2 m4, Q44 = 0.059C−2 m4,

c11 = 1.78 × 1011 Nm−2, c12 = 0.96 × 1011 Nm−2, c44 = 1.22 × 1011 Nm−2,

f11 = 0.2 × 10−9 Cm−1/ε, f12 = 7.0 × 10−9 Cm−1/ε, f44 = 3.0 × 10−9 Cm−1/ε, εr = 1,100.

Due to a lack of experimental data for the complete set of flexoelectric coefficients for BaTiO3, in the present
study, the coefficients of SrTiO3 are adopted, which are expected to produce qualitatively valid results. The
reference value of the gradient energy coefficient is g110 and dl = √

g110/|α0|. The values of gradient coef-
ficients g11/g110 = 3.2 and g44/g110 = g′

44/g110 = 1.6 are adopted. The simulation temperature is as
assumed to be 25 ◦C. The spontaneous polarization is P0 = 0.26 Cm−2, and the extrapolation lengths are
λ1 = g11/aS

1 = 1 nm and λ3 = g44/aS
1 = 0.5 nm. Thus, the boundary conditions given in Eq. (14) can be

expressed in terms of the extrapolation lengths as follows:

∂ Pi

∂x3
|x3=0 = Pi/λi ,

∂ Pi

∂x3
|x3=h f = −Pi/λi , (i = 1, 3). (17)

Note that a positive extrapolation length implies that the polarization in the boundary layer has a smaller value
compared with that in the middle layers. In the simulation system with discrete grids along the x3 axis, the
polarization of the boundary layers can be calculated by [31,32]:

Pi,x3=0 = 4Pi,x3=1 − Pi,x3=2

3 + 2
x3/λi
and Pi,x3=h f = 4Pi,x3=h f −1 + Pi,x3=h f −2

3 + 2
x3/λi
. (18)

In most theoretical works, the misfit strains in the film–substrate system are assumed as constant values based on
the lattice mismatch between the film and substrate. However, there is both theoretical [8,33] and experimental
[16,34] evidence that the misfit strains relax with thickness. Thus, an exponential relaxation is usually adopted
to describe the misfit strain as follow:

ε
misfit
11 = ε

misfit
0 e−x3/δ, (19)

where ε
misfit
0 is the lattice mismatch between the film and substrate, and δ is the thickness at which the

strain has relaxed to 1/e of the said mismatch. The value of δ is varied from hundreds to tens of nanome-
ters. In the present study, the values of 100nm and −0.005 are adopted for δ and ε

misfit
0 , respectively. In the

phase field model, the total strain is composed of both homogenous and heterogeneous strain. The former
describes the macroscopic deformation of the system. For the epitaxial thin film, the homogenous strain is
mainly determined by the misfit strain. Therefore, in the present study, the homogenous strain of the film
is deemed equal to the misfit strain, i.e., ε̄11 = ε

misfit
11 , and ε̄13 & ε̄33 can be obtained from the equation

ci3kl ε̄kl = 0. Note that the ε̄i3 determined here are only part of the total shape deformation of the film
[32,35].

4 Results and discussion

Figure 2 shows the domain structure of a BaTiO3 ferroelectric thin film without considering the flexoelec-
tric effects. The polarization is aligned either upward or downward, forming a typical 180◦ multi-domain
structure. In order to reduce the elastic and electrostatic energy, multi-domain structures rather than single
domain structures are more likely to form in epitaxial thin films. However, for simplicity, most of the existing
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Fig. 2 Multi-domain structure: a BaTiO3 ferroelectric thin film with flexoelectric effect neglected (The arrows denote the
polarization direction)

Fig. 3 Contour plots of the total a in-plane strain ε11 and b out-of-plane strain ε33 in a thin film

theoretical works on flexoelectric effects in nano thin films were carried out based on the assumption of a
single domain structure. Thus, there is a necessity to study the flexoelectric effects in the more realistic sit-
uation of a multi-domain structure. Figure 3a, b presents the contour plots of the in-plane and out-of-plane
total strains, respectively. Although a rough trend of in-plane strain relaxation along the thickness can be
observed, the strain gradient is more visible in the region near the domain wall. Moreover, due to the inter-
facial and surface effects, the film shows a strong inhomogeneous strain state near the interfacial and surface
regions. These results clearly demonstrate that the strain gradient in a multi-domain epitaxial thin film is
no longer dominated by the strain relaxation along the thickness as that in the case of single domain film.
The large strain gradient near the domain wall is expected to produce a large flexoelectricity-induced electric
field that could have significant influence on the domain structure, especially in a film with high domain wall
density.

Figure 4a, b present the flexoelectricity-induced in-plane and out-of-plane electric fields, respectively, in
a BaTiO3 ferroelectric thin film. Note that the electric fields described here and hereafter are normalized
as E/|α0 P0|. Due to the small magnitude of the induced fields, the domain structure shows little change.
Although the in-plane field Eflex

1 is nearly zero in most regions of the thin film, it possesses relatively large
values in the domain wall region near the free surface and film–substrate interface. Similarly, relatively large
values of the out-of-plane field Eflex

3 can be observed in the domain wall region near the free surface and film–
substrate interface. However, Eflex

3 has small positive values in the middle of the film. In order to achieve a
better understanding of the flexoelectric effect, a detailed investigation of the formula for the flexoelectric field
given by Eq. (12.1), i.e., Eflex

1 = f11
∂ε11
∂x1

+ 2 f44
∂ε13
∂x3

+ f12
∂ε33
∂x1

, is carried out. The longitudinal flexoelectric
coefficient f11 is one order of magnitude smaller than the transverse flexoelectric coefficient f12. Although the
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Fig. 4 Flexoelectricity-induced electric field a Eflex
1 and b Eflex

3 in a thin film

Fig. 5 Domain structures arising from different flexoelectric coefficients a fi j and b 5 fi j (the red solid lines denote the domain
walls)

shear flexoelectric coefficient f44 is comparable with the transverse one, the calculated shear strain is one order
of magnitude smaller than the normal strains. Therefore, out of the three attributions which are counted for,
only the last term f12

∂ε33
∂x1

has an important influence on the field Eflex
1 . A similar conclusion can be drawn on

Eflex
3 , i.e., the term f12

∂ε33
∂x3

plays the most important role. Obviously, the misfit strain makes no contributions

to Eflex
1 , but it produces a positive field to Eflex

3 , which is consistent with the distribution of the flexoelectric
field, as shown in Fig. 4.

Figure 5 compares the domain structures arising from two different sets of flexoelectric coefficients. The
second set of coefficients is selected as five times that of the first set to clearly show the influence of the
flexoelectric effect. Thus, an obvious evolution of domain structure can be observed in Fig. 5. First, the
domain regions with positive out-of-plane polarization (c+ domain) are enlarged, while those with nega-
tive out-of-plane polarization (c− domain) are shrunk. Consequently, the ratio of c+/c− is changed from
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Fig. 6 P–E hysteresis loops with different values of flexoelectric coefficients

1.04:1 to 1.24:1. This change is attributed to the positive flexoelectric field along the thickness direction
arising from the in-plane misfit strain gradient. Moreover, by observing the domain structure carefully,
one would find that the enlargement of c+ domains is not homogeneous along the thickness direction. In
fact, the region near the free surface is more enlarged compared with that near the film–substrate inter-
face, as depicted in Fig. 5b. With the increase in the flexoelectricity-induced electric field, it is reason-
able to predict that the domain structure with a stripe pattern would be replaced by a serration domain
pattern. The formation of a serration domain pattern has been demonstrated in a recent experiment, in
which a giant flexoelectricity-induced electric field was produced by manipulating the misfit strain relaxation
length [16].

Figure 6 presents the P-E hysteresis loops plotted for a ferroelectric thin film with different values
of flexoelectric coefficients subjected to an applied electric field along the thickness direction. A shift of
the hysteresis loop along the negative abscissa axis indicates a positive built-in field. Thus, the formula
Ein = −(E+

c + E−
c )/2, where Ein, E+

c and E−
c denote the built-in field and the positive and negative coer-

cive field, respectively, is used to calculate the flexoelectricity-induced built-in field. The calculated built-
in fields for a thin film with one and five times the original flexoelectric coefficients selected for simula-
tion are 0.014 and 0.050, respectively, which are small compared with the coercive field, but by no means
insignificant.

5 Conclusions

A two-dimensional phase field model is devised to study the flexoelectric effects in epitaxial thin films.
A detailed illustration on the existence of flexoelectricity-induced electric fields is presented based on the
precision solution of strain states. Both in-plane and out-of plane electric fields are observed, and their values
are relatively large in the domain wall region near the free surface and film–substrate interface. This result is
quite different from that obtained in the case of a single domain structure, in which only the out-of-plane electric
field is produced due to the misfit strain relaxation along the thickness direction. When the thin ferroelectric
film is subjected to an external electric field, a built-in field arising from the flexoelectric effect can be observed
in the hysteresis loops. It is worth noting that in an epitaxial thin film there are many factors that could influence
the strain gradient, such as the film thickness, the magnitude of lattice mismatch between film–substrate and
the relaxation length of the mismatch strain. Further studies will be carried out in future to investigate the
influence of these factors.
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Appendix

The boundary conditions in Eq. (9.1) can be expressed as:

aS
1 P1 − g44

(
∂ P1

∂x3
+ ∂ P3

∂x1

)
− f44ε13 = 0,

aS
1 P2 − g44

(
∂ P2

∂x3
+ ∂ P3

∂x2

)
− f44ε23 = 0

aS
1 P3 − g11

∂ P3

∂x3
− g12

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
− f12

2
(ε11 + ε22) − f11

2
ε33 = 0,

(x3 = 0), (A1.1)

aS
1 P1 + g44

(
∂ P1

∂x3
+ ∂ P3

∂x1

)
+ f44ε13 = 0,

aS
1 P2 + g44

(
∂ P2

∂x3
+ ∂ P3

∂x2

)
+ f44ε23 = 0

aS
1 P3 + g11

∂ P3

∂x3
+ g12

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
+ f12

2
(ε11 + ε22) + f11

2
ε33 = 0.

(x3 = h f ), (A1.2)

And the boundary conditions in Eq. (9.2) can be written as:

σ13 − f12

2

∂ P3

∂x1
= 0,

σ23 − f12

2

∂ P3

∂x2
= 0

σ33 − f44

2

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
= 0,

(x3 = 0), (A2.1)

σ13 + f12

2

∂ P3

∂x1
= 0,

σ23 + f12

2

∂ P3

∂x2
= 0

σ33 + f44

2

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
= 0.

(x3 = h f ), (A2.2)

From the stress expression:

fi jkl
∂ Pk

∂xl
+ ci jkl

(
εkl − ε0

kl

) = σi j (A.3)

we obtain at x3 = 0

ε13 = 1

c44

(
2σ13 − 2 f44

∂ P1

∂x3
− 2 f44

∂ P3

∂x1

)
+ ε0

13 = 1

c44

(
f12
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− 2 f44

∂ P1

∂x3
− 2 f44

∂ P3

∂x1

)
+ ε0

13,

ε23 = 1

c44

(
2σ23 − 2 f44

∂ P2

∂x3
− 2 f44

∂ P3

∂x2
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+ ε0

23 = 1

c44
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f12

∂ P3

∂x2
− 2 f44
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∂x3
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∂ P3

∂x2

)
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23, (A4.1)
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c12
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∂x3
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∂ P3

∂x3

]
+ ε0

33;

at x3 = h f

ε13 = 1

c44

(
2σ13 − 2 f44

∂ P1

∂x3
− 2 f44

∂ P3

∂x1

)
+ ε0

13 = 1

c44

(
− f12

∂ P3

∂x1
− 2 f44

∂ P1

∂x3
− 2 f44

∂ P3

∂x1

)
+ ε0

13,

ε23 = 1

c44

(
2σ23 − 2 f44

∂ P2

∂x3
− 2 f44

∂ P3

∂x2

)
+ ε0

23 = 1

c44

(
− f12

∂ P3

∂x2
− 2 f44

∂ P1

∂x3
− 2 f44

∂ P3

∂x2

)
+ ε0

23, (A4.2)

ε33 = 1

c12

[
σ11 + σ22 − ( f11+ f12)

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
− 2 f12

∂ P3

∂x3

]
+ 1

c11

[
σ33 − f12

(
∂ P1

∂x1
+ ∂ P2

∂x2

)
− f11

∂ P3

∂x3

]
+ ε0

33.
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By substituting the expressions for strains εi3 in Eq. (A4) into Eq. (A1), the boundary conditions can be
rewritten as:

aS
1 P1 −

(
g44 − 2 f 2

44

c44

)
∂ P1

∂x3
−

[
g44 + f44 ( f12 − 2 f44)

c44

]
∂ P3

∂x1
− f44ε

0
13 = 0

aS
1 P2 −

(
g44 − 2 f 2

44

c44

)
∂ P2

∂x3
−

[
g44 + f44 ( f12 − 2 f44)

c44

]
∂ P3

∂x2
− f44ε

0
23 = 0

aS
1 P3 −

[
g12 − f11

(
f12 − 1

2 f44
)

2c44

](
∂ P1

∂x1
+ ∂ P2

∂x2

)
−

(
g11 − f 2

11

2c11

)
∂ P3

∂x3

− 1
2

(
f12 − c12

c11
f11

)
(ε11 + ε22) − 1

2 f11

(
c12
c11

ε0
11 + c12

c11
ε0

22 + ε0
33

)
= 0;

(x3 = 0), (A5.1)

aS
1 P1 +

(
g44 − 2 f 2

44

c44

)
∂ P1

∂x3
+

[
g44 + f44 (− f12 − 2 f44)

c44

]
∂ P3

∂x1
+ f44ε

0
13 = 0

aS
1 P2 +

(
g44 − 2 f 2

44

c44

)
∂ P2

∂x3
+

[
g44 + f44 (− f12 − 2 f44)

c44

]
∂ P3

∂x2
+ f44ε

0
23 = 0

aS
1 P3 +

[
g12 − f11

(
f12 + 1

2 f44
)

2c44

](
∂ P1

∂x1
+ ∂ P2

∂x2

)
+

(
g11 − f 2

11

2c11

)
∂ P3

∂x3

+ 1
2

(
f12 − c12

c11
f11

)
(ε11 + ε22) + 1

2 f11

(
c12
c11

ε0
11 + c12

c11
ε0

22 + ε0
33

)
= 0.

(x3 = h f ), (A5.2)

By neglecting the nonlinear terms and in-plane polarization gradient terms, which are relatively small for the
case of positive extrapolation length adopted in the present study, we can rewrite the boundary conditions as:

aS
1 P1 −

(
g44 − 2 f 2

44

c44

)
∂ P1

∂x3
= 0

aS
1 P2 −

(
g44 − 2 f 2

44

c44

)
∂ P2

∂x3
= 0

aS
1 P3 −

(
g11 − f 2

11

2c11

)
∂ P3

∂x3
= 0;

(x3 = 0), (A6.1)

aS
1 P1 +

(
g44 − 2 f 2

44

c44

)
∂ P1

∂x3
= 0,

aS
1 P2 +

(
g44 − 2 f 2

44

c44

)
∂ P2

∂x3
= 0

aS
1 P3 +

(
g11 − f 2

11

2c11

)
∂ P3

∂x3
= 0.

(x3 = h f ), (A6.2)
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