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Abstract This paper presents the analysis of the nonlinear dynamics for a composite laminated cantilever
rectangular plate subjected to the supersonic gas flows and the in-plane excitations. The aerodynamic pressure
is modeled by using the third-order piston theory. Based on Reddy’s third-order plate theory and the von
Kármán-type equation for the geometric nonlinearity, the nonlinear partial differential equations of motion
for the composite laminated cantilever rectangular plate under combined aerodynamic pressure and in-plane
excitation are derived by using Hamilton’s principle. The Galerkin’s approach is used to transform the nonlinear
partial differential equations of motion for the composite laminated cantilever rectangular plate to a two-degree-
of-freedom nonlinear system under combined external and parametric excitations. The method of multiple
scales is employed to obtain the four-dimensional averaged equation of the non-automatic nonlinear system.
The case of 1:2 internal resonance and primary parametric resonance is taken into account. A numerical method
is utilized to study the bifurcations and chaotic dynamics of the composite laminated cantilever rectangular
plate. The frequency–response curves, bifurcation diagram, phase portrait and frequency spectra are obtained
to analyze the nonlinear dynamic behavior of the composite laminated cantilever rectangular plate, which
includes the periodic and chaotic motions.

1 Introduction

The expanding use of composite laminated structures in lightweight applications, for example, aircraft and
astronautic engineering, indicates the significance of developing appropriate models in order to predict their
nonlinear dynamic responses. Composite laminated cantilever rectangular plates are widely used as light-
weight components in aeronautic, astronautic, naval and transportation engineering fields due to their excellent
mechanical properties, such as less weight and more stiffness. However, a few research works deal with the
complex nonlinear dynamics of composite laminated cantilever plates subjected to the supersonic gas flows
and in-plane excitations, such as the bifurcations and multi-pulse chaotic dynamics. Therefore, research works
on the complex nonlinear dynamics of composite laminated cantilever plates face the challenge. With the
development of the theories for the nonlinear dynamics and chaos, the prediction, understanding and control
become possible for more complicated nonlinear phenomena in laminated composite cantilever rectangular
plates.

A lot of research works have been done about the flutter of plates subjected to a supersonic flow. Dowell [1,2]
studied the nonlinear oscillations of simply supported fluttering plates by using Galerkin’s method. He [3,4]
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also investigated the nonlinear flutter of doubly curved plates of shallow curvature by using a modified form of
Donnell’s nonlinear shallow shell theory. Recently, the limit cycle nonlinear oscillations of a cantilever plate
were studied by Ye and Dowell [5]. They used a Rayleigh–Ritz approach and the direct numerical integration
to prove that the length-to-width ratio of the cantilever plate is a significant factor on the flutter study. Shiau
and Lu [6] investigated the nonlinear flutter behaviors of a composite laminated plate at high supersonic Mach
number. The results showed that the anisotropic properties have significant effects on the behavior of both
limit cycle nonlinear oscillations and chaotic motions. Chandiramani et al. [7] analyzed the nonlinear dynamic
behavior of a uniformly compressed, composite panel subjected to nonlinear aerodynamic loading. Patil and
Hodges [8] presented a theoretical basis for nonlinear aeroelastic analysis and flight dynamics of an aircraft
with high-aspect-ratio wings. The results obtained from this paper illustrated the effects of the structural
and aerodynamic nonlinearities on the flutter speed, amplitude of limit cycle nonlinear oscillations and flight
dynamics.

Recently, Moon and Kim [9] proposed a new optimal active/passive hybrid control design with piezoceramic
actuators to apply to the suppression of nonlinear panel flutter. Singha and Ganapathi [10] investigated the
effect of the system parameters on supersonic panel flutter behaviors of laminated composite skew plates.
Guo and Mei [11] studied the use of aeroelastic modes, which can reduce drastically the number of coupled
nonlinear modal equations for the nonlinear panel flutter analysis. Haddadpour et al. [12] investigated the
nonlinear aeroelastic behaviors of functionally graded material (FGM) plates in supersonic flow based on the
von Kármán plate and piston theories. Singha and Mandal [13] used a 16-node isoparametric degenerated shell
element to study the supersonic panel flutter behaviors of laminated composite plates and cylindrical panels.
Haddadpour et al. [14] investigated the effect of internal pressure and temperature rise on the flutter boundaries
of the simply supported FGM cylinder with different values of power-law index. Sohn and Kim [15] analyzed the
effect of volume fraction distributions, boundary conditions, temperature changes and aerodynamic pressures
on panel flutter characteristics in detail based on the von Kármán strain–displacement relations. Oh and Kim
[16] investigated the nonlinear vibration characteristics and supersonic flutter of cylindrical laminated panels
subjected to thermal loads by using geometrically nonlinear finite elements. Shin et al. [17] studied the nonlinear
flutter of aerothermally buckled composite shells with damping treatments. Kuo [18] investigated the effect
of variable fiber spacing on the supersonic flutter of rectangular composite plates and found that the flutter
boundary may be increased or decreased due to variable fiber spacing.

Several research works focused on the nonlinear dynamic responses of laminated composite cantilever
plates and shells. Oh and Nayfeh [19] used the experimental method to study the nonlinear combination
resonances of cantilever composite laminated plates with a harmonic transverse excitation. Abe et al. [20]
utilized the combination of Galerkin’s procedure and the shooting method to investigate the nonlinear dynamic
responses of clamped laminated shallow shells with 1:1 internal resonance. Hao et al. [21] investigated the
nonlinear periodic and chaotic responses of a cantilever FGM rectangular plate subjected to the transverse
excitation in the thermal environment. Nejad and Nazari [22] studied the nonlinear vibrations of an isotropic
cantilever plate with viscoelastic laminate. Zhang and Zhao [23] investigated the nonlinear vibrations of a
composite laminated cantilever rectangular plate with one-to-one internal resonance. Zhang et al. [24] studied
the nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-
plane and moment excitations. Guo et al. [25] used the experimental and theoretical methods to analyze a new
kind of energy transfer from high-frequency mode to low-frequency mode in a composite laminated plate.

Many new research works have been done on the nonlinear dynamics of plates. Lee and Reddy [26]
analyzed the nonlinear responses of composite laminated plates under thermomechanical loading by using the
third-order shear deformation plate theory. Onkar and Yadav [27] studied the random nonlinear vibrations of a
simply supported cross-ply laminated composite plate and analyzed the characteristics of the random responses
and sensitivity to the lamina thickness and plate aspect ratio. Zhang [28] studied the global bifurcations and
chaotic dynamics of a parametrically excited, simply supported rectangular thin plate. Awrejcewicz et al.
[29] used the Bubnov–Galerkin method to study the dynamics of flexible plates and shells and analyzed the
chaotic behavior of the system. In addition, Awrejcewicz et al. [30] investigated the complex vibrations and
bifurcations of plates and gave some examples of new nonlinear phenomena exhibited by the systems. Ye et al.
[31] studied the nonlinear oscillations and chaotic dynamics of a simply supported anti-symmetric cross-ply
laminated composite rectangular thin plate under parametric excitation. Zhang et al. [32] further investigated
the nonlinear oscillations and chaotic dynamics of a parametrically excited simply supported symmetric cross-
ply laminated composite rectangular thin plate. Zhang et al. [33] analyzed the nonlinear dynamics and chaos of
a simply supported orthotropic FGM rectangular plate in thermal environment and subjected to parametric and
external excitations. Hosseini and Fazelzadeh [34] analyzed the aero-thermoelastic post-critical and vibration
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characteristics of temperature-dependent functionally graded material panels under the excitation of supersonic
airflow. Alijani et al. [35] investigated the nonlinear forced vibrations of FGM doubly curved shallow shells
with a rectangular base. In addition, Alijani et al. [36] study the nonlinear vibrations of FGM rectangular plates
in thermal environments. In their paper, the bifurcations and complex nonlinear dynamics are investigated by
using bifurcation diagrams.

This paper focuses on studies of the bifurcations and chaotic dynamics of a composite laminated cantilever
rectangular plate subjected to the aerodynamic pressure and the in-plane excitation. Based on the von Kármán-
type plate equation and Reddy’s third-order shear deformation plate theory, we employ Hamilton’s principle
to establish the nonlinear governing equations of motion for the composite laminated cantilever rectangular
plate. The governing equations of motion can be reduced to a two-degree-freedom nonlinear system under
combined parametric and external excitations by using Galerkin’s method. The case of 1:2 internal resonance
and primary parametric resonance is considered. The method of multiple scales is used to obtain the averaged
equation of the original non-autonomous system. A numerical method is utilized to investigate the bifurcations,
periodic and chaotic motions of the composite laminated cantilever rectangular plate. The bifurcation diagrams
are also obtained by using numerical simulation. The frequency–response curves of the composite laminated
cantilever rectangular plate are obtained to indicate the transfer of energy between different modes. It is found
from the numerical results that there exist periodic and chaotic motions of the composite laminated cantilever
rectangular plate under certain conditions.

2 Equations of motion

In this section, the governing equations of motion for the symmetric cross-ply composite laminated rectangular
plate subjected to in-plane excitation and transversal aerodynamic pressure are established. The plate is clamped
supported at edge ob, as shown in Fig. 1. The ply stacking sequence is (0/90)S , and the number of layers of
the plate is N , namely the ply angle of the composite laminated rectangular plate is 90◦ or 0◦, which plays
an important role in the stress–strain relationship. All layers are bonded perfectly. The edge width and length
of the composite laminated cantilever rectangular plate in the x and y directions is, respectively, a and b, and
the thickness is h. A Cartesian coordinate Oxyz is located in the middle surface of the composite laminated
cantilever rectangular plate. Assume that (u, v, w) and (u0, v0, w0) represent the displacements of an arbitrary
point and a point in the middle surface of the composite laminated cantilever rectangular plate in the x, y and z
directions, respectively. It is also assumed that φx and φy represent the rotations of two transverse normals on
the mid-plane about the x- and y- axes, respectively. The in-plane excitation is distributed along the y direction
at y = 0 and b and is of the form F = F0 + F1 cos �1t , where �1 is the frequency of the in-plane excitation.

The third-order piston aerodynamic load, namely transverse excitation, is given by [37]

�P = 4qdγ

M∞

[
1

ν

∂w

∂t
+ ∂w

∂y
+ κ + 1

12
γ 2 M2∞

(
1

ν

∂w

∂t
+ ∂w

∂y

)3
]

, (1)

Fig. 1 The model of a composite laminated cantilever rectangular plate and the coordinate system
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where γ = M∞√
M2∞−1

, M∞ represents free stream Mach number, v is air flow velocity, κ is the adiabatic

exponent, and qd is dynamic pressure.
The stress–strain relationship is obtained as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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, (2)

where the elastic stiffness coefficients of the composite laminated cantilever plate are given by

Q11 = E1

1 − ν12ν21
, Q12 = ν12 E1

1 − ν12ν21
, Q22 = E2

1 − ν12ν21
,

Q66 = G12, Q44 = G23, Q55 = G31.

(3)

According to Reddy’s third-order shear deformation theory (TSDT) given in reference [38], the displacement
field of the composite laminated cantilever rectangular plate is obtained as

u(x, y, z, t) = u0(x, y, t) + zϕx (x, y, t) − z3 4

3h2

(
ϕx + ∂w0

∂x

)
, (4.1)

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) − z3 4

3h2

(
ϕy + ∂w0

∂y

)
, (4.2)

w(x, y, t) = w0(x, y, t). (4.3)

Using the nonlinear strain–displacement relation and the aforementioned displacement field yields
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where c2 = 3c1, c1 = 4
3h2 , and
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According to Hamilton’s principle, the nonlinear governing equations of motion for the composite laminated
cantilever rectangular plate are obtained as

Nxx,x + Nxy,y = I0ü0 + (I1 − c1 I3) φ̈x − c1 I3
∂ẅ0

∂x
, (7.1)

Nyy,y + Nxy,x = I0v̈0 + (I1 − c1 I3) φ̈y − c1 I3
∂ẅ0
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, (7.2)
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+ Nxx

∂2w0

∂x2
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I2 − 2c1 I4 + c2
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)
φ̈x − c1 (I4 − c1 I6)

∂ẅ0
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)
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)
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∂ẅ0
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, (7.5)

where γ is the damping coefficient, a comma denotes partial differentiation with respect to a specified coordi-
nate, a overdot implies partial differentiation with respect to time, and the stress resultants are represented as
follows:
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}
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{
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}
dz, (8.2)

where α and β, respectively, denote x and y.
Substituting the stress resultants of Eq. (8) into Eq. (7), we can write Eq. (7) in terms of generalized

displacements (u0; v0;w0; φx ;φy),

A11
∂2u0

∂x2 + A66
∂2u0

∂y2 + (A12 + A66)
∂2v0

∂x∂y
+ A11

∂w0

∂x

∂2w0

∂x2 + A66
∂w0

∂x

∂2w0

∂y2

+ (A12 + A66)
∂w0

∂y

∂2w0

∂x∂y
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) =
N∑

k=1

zk+1∫
zk

Qk
i j

(
1, z2, z4) dz, (i, j = 4, 5) , (10.2)

Ii =
3∑

k=1

zk+1∫
zk

ρk (z)i dz, (i = 0, 1, 2, . . . , 6) , (10.3)

Ji = Ii − c1 Ii+2, K2 = I2 − 2c1 I4 + c2
1 I6. (10.4)
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The boundary conditions of the composite laminated cantilever rectangular plate can be expressed as

x = 0 : w = v = u = φy = φx = 0, (11.1)

x = a : Nxx = Nxy = Mxx = Mxy − c1 Pxy = Q̄x = 0, (11.2)

y = 0 : Nxy = Myy = Mxy − c1 Pxy = Q̄y = 0, (11.3)

y = b : Nxy = Myy = Mxy − c1 Pxy = Q̄y = 0, (11.4)
h/2∫

−h/2

Nyydz = ±
h/2∫

−h/2

(F0 + F1coc�1t)dz, (y = 0, b) , (11.5)

where

Q̄x = Qx + ∂ Mxy

∂y
− c2 Rx + c1

(
∂ Pxx

∂x
+ ∂ Pxy

∂y

)
, (12.1)

Q̄y = Qy + ∂ Mxy

∂x
− c2 Ry + c1

(
∂ Pyy

∂y
+ ∂ Pxy

∂x

)
. (12.2)

In order to obtain the dimensionless equations, we introduce the transformations of the variables and parameters

wo = �wh, t = t̄

π2

(
E

abρ

)− 1
2

, Ai j = Eh2

(ab)
1
2

Āi j , Bi j = Eh3

(ab)
1
2

B̄i j , Ii = (ab)
i+1

2 ρ Īi ,

γ = π2h4

(ab)2 (ρE)
1
2 γ̄ , Di j = Eh4

(ab)
1
2

D̄i j , Ei j = Eh2

(ab)
1
2

Ēi j , Fi j = Eh6

(ab)
1
2

F̄i j , x = ax̄, (13)

Hi j = Eh8

(ab)
1
2

H̄i j , �i = π2
(

E

abρ

)− 1
2

�̄i , qd = Eh7

(ab)
7
2

q̄d , f = Eh3

b2 f̄ , y = bȳ.

It is our aim to choose a suitable mode function to satisfy the first two modes of transverse nonlinear oscillations
and the boundary conditions for the composite laminated cantilever rectangular plate. Thus, according to the
mode approximation functions given in reference [38], we represent w0 as

w0 = w (t)1 X1 (x) Y1 (y) + w (t)2 X2 (x) Y2 (y) , (14)

where

Xi (x) = sin
λi

a
x − sinh

λi

a
x + αi

(
cosh

λi

a
x − cos

λi

a
x

)
, (15.1)

Y j (y) = sin
βm

b
y + sinh

βm

b
y − αm

(
cosh

βm

b
y + cos

βm

b
y

)
, (15.2)

where λi and μ j (i, j = 1, 2) are the roots of the characteristic equations

cos λi a cosh λi a − 1 = 0, cos βmb cosh βmb − 1 = 0, (16.1)

αi = cosh λi − cos λi

sinh λi + sin λi
, αm = −cosh βm − cos βm

sinh βm − sin βm
, (16.2)

and u, v, ϕx and ϕy in Eq. (9) are supposed to be of the form

u0 = u (t)

[
sin

λ1

a
x − sinh

λ1

a
x + αi

(
cosh

λ1

a
x − cos

λ1

a
x

)]

×
[(

β1

b

)2

sinh
β1

b
y −

(
β1

b

)2

sin
β1

b
y − αm

(
β1

b

)2 (
cosh

β1

b
y − cos

β1

b
y

)]
,
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v0 = v (t)

[
sin

λ1

a
x − sinh

λ1

a
x + αi

(
cosh

λ1

a
x − cos

λ1

a
x

)]

×
[(

β2

b

)2

sinh
β2

b
y −

(
β2

b

)2

sin
β2

b
y − αm

(
β2

b

)2 (
cosh

β2

b
y − cos

β2

b
y

)]
,

ϕx = ϕx (t)

[
sin

λ1

a
x − sinh

λ1

a
x + αi

(
cosh

λ1

a
x − cos

λ1

a
x

)]

×
[(

β2

b

)2

sinh
β2

b
y −

(
β2

b

)2

sin
β2

b
y − αm

(
β2

b

)2 (
cosh

β2

b
y − cos

β2

b
y

)]
,

ϕy = ϕy (t)

[
sin

λ1

a
x − sinh

λ1

a
x + αi

(
cosh

λ1

a
x − cos

λ1

a
x

)]

×
[(

β1

b

)2

sinh
β1

b
y −

(
β1

b

)2

sin
β1

b
y − αm

(
β1

b

)2 (
cosh

β1

b
y − cos

β1

b
y

)]
, (17)

where w1(t), w2(t), u(t), v(t), ϕx (t) and ϕy(t) are the amplitudes of the modes, respectively.
Based on research given by Reddy [38], we neglect all the inertia terms on u0, v0, ϕx and ϕy in (9.1), (9.2),

(9.4) and (9.5) since the deformations in these directions are smaller than that in the transverse direction. Then,
substituting equations (14) and (17) into equations (9.1), (9.2), (9.4) and (9.5), the displacement components
u(t), v(t), ϕx (t) and ϕy(t) can be expressed in terms of w(t). Applying the Galerkin procedure yields the
governing equations of transverse motion for the composite laminated cantilever rectangular plate under
combined aerodynamic pressure and in-plane excitation in dimensionless form,

ẅ1 + μ1ẇ1+ω2
1w1+(γ7ẇ1+γ8w1+γ9w2+γ10ẇ2)ẇ

2
1 +(γ12ẇ2+γ15w1+γ16w2)ẇ2ẇ1

+ (γ11ẇ2 + γ13w1 + γ14w2)ẇ
2
2 + (γ17w

2
1 + γ18w

2
2 + γ19w1w2)ẇ1 + (γ20w1w2+γ21w

2
1

+ γ22w
2
2)ẇ2+γ3w

3
1 + γ4w2w

2
1 +γ5w1w

2
2 +γ6w

3
2 +γ2w2+γ1 f cos �1tw1 = 0, (18.1)

ẅ2 + μ2ẇ2 + ω2
2w2 + (δ7ẇ2 + δ8w2 + δ9w1 + δ10ẇ1)ẇ

2
2 + (δ12ẇ1 + δ15w2 + δ16w1)ẇ1ẇ2

+ (δ11ẇ1 + δ13w2 + δ14w1)ẇ
2
1 + (δ17w

2
2 + δ18w

2
1 + δ19w2w1)ẇ2

+ (δ20w2w1 + δ21w
2
2 + δ22w

2
1)ẇ1 + δ3w

3
2 + δ4w1w

2
2 + δ5w2w

2
1

+ δ6w
3
1 + δ2w1 + δ1 f cos �1tw2 = 0, (18.2)

where all coefficients can be found in the “Appendix”, and the f1 is the magnitude of the in-plane excitation.

3 Perturbation analysis

To guarantee the validity of the perturbation analysis, we use the method of multiple scales [39] to obtain the
averaged equation of system (18). We only consider the case of 1:2 internal resonance and primary parametric
resonance for the composite laminated cantilever rectangular plate,

ω2
1 = 1

4
�2 + εσ1, ω2

2 = �2 + εσ2, �1 = �2 = 1, (19)

where ω1 and ω2 are two linear natural frequencies, and σ1 and σ2 are the two detuning parameters.
The scale transformations may be introduced as

μ1 → εμ1, μ2 → εμ2, γ1 → εγ1, γ2 → εγ2, γ3 → εγ3, γ4 → εγ4, γ5 → εγ5,

γ6 → εγ6, γ7 → εγ7, γ8 → εγ8, γ9 → εγ9, γ10 → εγ10, γ11 → εγ11, γ12 → εγ12,

γ13 → εγ13, γ14 → εγ14, γ15 → εγ15, γ16 → εγ16, γ17 → εγ17, γ18 → εγ18,

γ19 → εγ19, γ20 → εγ20, γ21 → εγ21, γ22 → εγ22, δ1 → εδ1, δ2 → εδ2, δ3 → εδ3,

δ4 → εδ4, δ5 → εδ5, δ6 → εδ6, δ7 → εδ7, δ8 → εδ8, δ9 → εδ9, δ10 → εδ10,

δ11 → εδ11, δ12 → εδ12, δ13 → εδ13, δ14 → εδ14, δ15 → εδ15, δ16 → εδ16,

δ17 → εδ17, δ18 → εδ18, δ19 → εδ19, δ20 → εδ20, δ21 → εδ21, δ22 → εδ22. (20)
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Substituting Eq. (20) into Eq. (18) yields

ẅ1 + εμ1ẇ1 + ω2
1w1 + εγ7ẇ

3
1 + εγ8w1ẇ

2
1 + εγ9ẇ

2
1w2 + εγ10ẇ

2
1ẇ2 + εγ12ẇ

2
2ẇ1 + εγ15w1ẇ2ẇ1

+ εγ16w2ẇ2ẇ1 + εγ17w
2
1ẇ1 + εγ18w

2
2ẇ1 + εγ19w1w2ẇ1 + εγ1 f cos �1tw1

+ εγ11ẇ
3
2 + εγ13w1ẇ

2
2 + εγ14w2ẇ

2
2 + εγ20w1w2ẇ2 + εγ21w

2
1ẇ2 + εγ22w

2
2ẇ2

+ εγ2w2 + εγ3w
3
1 + εγ4w2w

2
1 + εγ5w1w

2
2 + εγ6w

3
2 = 0, (21.1)

ẅ2 + εμ2ẇ2 + ω2
2w2 + εδ7ẇ

3
2 + εδ8w2ẇ

2
2 + εδ9ẇ

2
2w1 + εδ10ẇ1ẇ

2
2 + εδ12ẇ

2
1ẇ2 + εδ15w2ẇ1ẇ2

+ εδ16w1ẇ1ẇ2 + εδ17w
2
2ẇ2 + εδ18w

2
1ẇ2 + εδ19w2w1ẇ2 + εδ1 f cos �1tw2

+ εδ11ẇ
3
1 + εδ13w2ẇ

2
1 + εδ14w1ẇ

2
1 + εδ20w2w1ẇ

+
1 εδ21w

2
2ẇ1 + εδ22w

2
1ẇ1

+ εδ2w1 + εδ3w
3
2 + εδ4w1w

2
2 + εδ5w2w

2
1 + εδ6w

3
1 = 0. (21.2)

We use the method of multiple scales to find the uniform solutions of Eq. (21) in the following form:

w (t, ε) = w0 (T0, T1) + εw1 (T0, T1) + · · · , (22)

where T0 = t, T1 = εt .
The time derivatives used in the method of multiple scales are obtained as

d

dt
= ∂

∂T0

dT0

dt
+ ∂

∂T1

dT1

dt
+ · · · = D0 + εD1 + · · · , (23.1)

d2

dt2 = (D0 + εD1 + · · ·)2 = D2
0 + 2εD0 D1 + · · · , (23.2)

where Dn = ∂

∂Tn
, n = 1, 2, . . ..

Introducing Eqs. (22) and (23) into Eq. (21) and eliminating secular terms, we obtain the averaged equation
in the complex form,

D1 A1 = −1

2
μ1 A1 + iσ1 A1 +

(
3iγ3 + 1

4
iγ8 − 3

8
γ7 − 1

2
γ17

)
A2

1 Ā1

+ (2iγ5 + 2iγ13 − γ12 − γ18) A1 A2 Ā2 + 1

2
iγ1 f Ā1, (24.1)

D1 A2 = −1

2
μ2 A2 + 1

2
iσ2 A2 +

(
3

2
iδ3 + 1

2
iδ8 − 3

2
δ7 − 1

2
δ17

)
A2

2 Ā2

+
(

1

4
iδ13 + iδ5 − 1

4
δ12 − δ18

)
A1 Ā1 A2. (24.2)

Functions A1 and A2 may be denoted in the Cartesian form

A1(T1) = x1(T1) + i x2(T1), (25.1)

A2(T1) = x3(T1) + i x4(T1). (25.2)

Therefore, we achieve the four-dimensional averaged equation in the Cartesian form

ẋ1 = −1

2
μ1x1 − σ1x2 −

(
3

8
γ7 + 1

2
γ17

)
x3

1 −
(

3

8
γ7 + 1

2
γ17

)
x1x2

2 −
(

3γ3 + 1

4
γ8

)
x2

1 x2

−
(

3γ3 + 1

4
γ8

)
x3

2 − (γ12 + γ18)
(
x2

3 + x2
4

)
x1 − 2 (γ13 + γ5) x2

(
x2

3 + x2
4

) + 1

2
γ1 f x2, (26.1)

ẋ2 = −1

2
μ1x2 + σ1x1 −

(
3

8
γ7 + 1

2
γ17

)
x2

1 x2 −
(

3

8
γ7 + 1

2
γ 17

)
x3

2 +
(

3γ3 + 1

4
γ8

)
x3

1

+
(

3γ3 + 1

4
γ8

)
x1x2

2 − (
γ12 + γ18

) (
x2

3 + x2
4

)
x2 + 2 (γ13 + γ5)

(
x2

3 + x2
4

)
x1 + 1

2
γ1 f x1, (26.2)
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ẋ3 = −1

2
μ2x3 − 1

2
σ2x4 −

(
3

2
δ7 + 1

2
δ17

)
x3

3 −
(

3

2
δ7 + 1

2
δ17

)
x3x2

4 −
(

1

2
δ8 + 3

2
δ3

)
x3

4

−
(

1

2
δ8 + 3

2
δ3

)
x2

3 x4 −
(

1

4
δ12 + δ18

) (
x2

1 + x2
2

)
x3 −

(
1

4
δ13 + δ5

) (
x2

1 + x2
2

)
x4, (26.3)

ẋ4 = −1

2
μ2x4 + 1

2
σ2x3 −

(
3

2
δ7 + 1

2
δ17

)
x3

4 −
(

3

2
δ7 + 1

2
δ17

)
x2

3 x4 +
(

1

2
δ8 + 3

2
δ3

)
x3

3

+
(

1

2
δ8 + 3

2
δ3

)
x3x2

4 −
(

1

4
δ12 + δ18

) (
x2

1 + x2
2

)
x4 +

(
1

4
δ13 + δ5

) (
x2

1 + x2
2

)
x3. (26.4)

Based on the average equation, numerical simulations can be done to investigate the characteristic of the
nonlinear dynamics for the composite laminated cantilever rectangular plate.

4 Numerical simulations and discussion

In the following investigation, the fourth-order Runge–Kutta algorithm is utilized to numerically analyze the
periodic and chaotic motions of the symmetric cross-ply composite laminated cantilever rectangular plate
subjected to aerodynamic pressure for the case of 1:2 internal resonance and primary parametric resonance.
The ply stacking sequence is (0/90)s , and the number of players of the plate is N . We consider the averaged
equation (26) to carry out numerical simulations. We choose δ12 and γ12, which are relative to the flow velocity
qd , as the controlling parameters when the periodic and chaotic responses of the composite laminated cantilever
rectangular plate are investigated. By analyzing the bifurcation diagrams, the complicated nonlinear dynamics,
including periodic and chaotic motions, may be observed globally from a range of parameter values. The two-
dimensional phase portrait, waveform, three-dimensional phase portrait and frequency spectrum are plotted to
demonstrate the nonlinear dynamic behaviors of the composite laminated cantilever rectangular plate. It can
be clearly found from the numerical results that the periodic and chaotic motions occur for this system.

It is found from Fig. 2 that multiple solutions of Eq. (26) exist for the first two modes. Figure 2 represents
the frequency–response curves of the first-order and the second-order modes, in which the vertical coordinate
is the amplitude. We note that the detuning parameter σ2 must be between 0 and 3 if the first-order and
second-order modes are excited simultaneously. It is found from Fig. 2 that the phenomena of energy transfer
from the first-order mode to the second-order mode can occur in the nonlinear oscillations of the composite
laminated cantilever rectangular plate. In Fig. 2, the parameters and initial conditions are chosen as: μ2 =

Fig. 2 Nonlinear frequency–response curves of system
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Fig. 3 The bifurcation diagram of the composite laminated cantilever rectangular plate for x1 via the forcing excitation δ12

0.15, σ1 = 2, γ1 = 3, γ3 = 0.08, γ5 = 46, γ7 = 0.5, γ8 = 0.2, f = 90, γ12 = 9, γ13 = 1.5, γ17 =
4.5, γ18 = 5, δ3 = 0.05, δ5 = 4.2, δ7 = 0.05, δ8 = 1.2, δ12 = −185, δ17 = 30, δ13 = 12.5, δ18 = 2.8.
x1 = −0.5, x2 = 0.798, x3 = 0.5, x4 = 0.8.

Figure 3 illustrates the bifurcation diagram of the composite laminated cantilever rectangular plate when
δ12 is chosen as the control parameter. From the “Appendix”, we obtain the expression function of δ12,

δ12 =
(k + 1) qdγ 3h5 M∞B66

a2b3 Ā11V 2

a2π4

h2 Ā11
Ī − 16a3b3

9h6

Ī6π
4

Ā11
− 16a5b

9h6

Ī6π
4

Ā11

. (27)

It is seen from Eq. (27) that the parameter δ12 can be negative. In this case, we may chose that the interval of δ12
is −200 ∼ −60. The other parameters and the initial conditions are, respectively, chosen as μ1 = 0.9, μ2 =
0.15, σ1 = 2, σ2 = 5.3, γ1 = 3, γ3 = 0.08, γ5 = 46, γ7 = 0.5, γ8 = 0.2, f = 90, γ12 = 11.8, γ13 =
1.5, γ17 = 4.5, γ18 = 5, δ3 = 0.05, δ5 = 4.2, δ7 = 0.05, δ8 = 1.2, δ13 = 12.5, δ17 = 30, δ18 = 2.8, x1 =
−0.5, x2 = 0.798, x3 = 0.5, x4 = 0.8. It is observed from Fig. 3 that the parameter δ12 has significant effect
on the nonlinear dynamic responses of the composite laminated cantilever rectangular plate. In Fig. 3, the
longitudinal coordinate denotes the deflection of the plate, while the abscissa denotes the parameter δ12. It
is seen from Fig. 3 that the motions of the composite laminated cantilever rectangular plate change from the
period-2 motion to the multiple period motion, and then from the multiple period motion to chaotic motions.

In the following investigation, we change the parameter δ12 to find the periodic and chaotic motions
of the composite laminated cantilever rectangular plate based on Fig. 3. Figure 4 indicates the existence
of the periodic motion for the composite laminated cantilever rectangular plate when the parameter δ12 is
–160. Figure 4b, c represents the phase portraits on the planes (x1, x2) and (x3, x4), respectively. Fig-
ure 4d, e, respectively, denotes the waveforms on the planes (t, x1) and (t, x3). Figure 4a, f represents
the three-dimensional phase portrait in space (x1, x2, x3) and the frequency spectrum ( f, x3), respectively.
Figure 5 illustrates that the period-4 motion of the composite laminated cantilever rectangular plate occurs
when the parameter δ12 is −120. Figure 6 demonstrates that the quasi-periodic motion of the composite lam-
inated cantilever rectangular plate occurs when the parameter δ12 is -90. Figure 7 shows that the chaotic
motion of the composite laminated cantilever rectangular plate occurs when the parameter δ12 changes to
−60.

Figure 8 demonstrates the other kind of bifurcation of the system when the control parameter is γ12.
The other parameters and the initial conditions are, respectively, chosen as μ1 = 0.9, μ2 = 0.15, σ1 = 2,
σ2 = 5.3, γ1 = 3, γ3 = 0.08, γ5 = 46, γ7 = 0.5, γ8 = 0.2, f = 90, γ13 = 1.5, γ17 = 4.5, γ18 = 5, δ3 =
0.05, δ5 = 4.2, δ7 = 0.05, δ8 = 1.2, δ12 = −185, δ17 = 30, δ13 = 12.5, δ18 = 2.8, x1 = −0.5, x2 =
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Fig. 4 The period-2 motion of the composite laminated cantilever rectangular plate exists when δ12 = −160, a three-dimensional
phase portrait in space (x1, x2, x3) ; b the phase portrait on plane (x1, x2); c the phase portrait on plane (x3, x4); d the waveforms
on the planes (t, x1); e the waveforms on the planes (t, x3); f the frequency spectrum ( f, x3)

Fig. 5 The period-4 motion of the composite laminated cantilever rectangular plate exists when δ12 = −120
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Fig. 6 The quasi-periodic motion of the composite laminated cantilever rectangular plate exists when δ12 = −90

Fig. 7 The chaotic motion of the composite laminated cantilever rectangular plate exists when δ12 = −60

0.798, x3 = 0.5, x4 = 0.8. It is observed from Fig. 8 that the motions of the composite laminated cantilever
rectangular plate change from the periodic motion to the multiple periodic motion, and then to the chaotic
motion with the increase of the parameter γ12.
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Fig. 8 The bifurcation diagram of the composite laminated cantilever rectangular plate for x1 via the forcing excitation γ12

Fig. 9 The period-1 motion of the composite laminated cantilever rectangular plate exists when γ12 = 4

Figures 9, 10, 11 and 12 demonstrate that period-1 motion of the system is altered to period-2 motion, to
the multiple periodic motion and to the chaotic motion, gradually.

5 Conclusions

The bifurcations, periodic and chaotic dynamics of the composite laminated cantilever rectangular plate under
the aerodynamic pressure and the in-plane excitation are investigated. Based on the von Kármán-type equations
and Reddy’s third-order shear deformation plate theory, the governing equations of motion for the composite
laminated cantilever rectangular plate are derived by using Hamilton’s principle. The resonant case considered



Nonlinear dynamics of laminated cantilever plate 1999

Fig. 10 The period-2 motion of the composite laminated cantilever rectangular plate exists when γ12 = 7.8

Fig. 11 The multi-periodic motion of the composite laminated cantilever rectangular plate exists when γ12 = 8.8

here is 1:2 internal resonance and primary parametric resonance. A numerical method is used to investigate
the bifurcations, periodic and chaotic motions of the composite laminated cantilever rectangular plate.

The periodic, quasi-periodic and chaotic motions of the composite laminated cantilever rectangular plate
are found in the numerical results. The parameters are changed to obtain two types of bifurcation diagrams of
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Fig. 12 The chaotic motion of the composite laminated cantilever rectangular plate exists when γ12 = 10

the composite laminated cantilever rectangular plate. The influence of the parameters δ12 and γ12, which are
relative to the flow velocity qd , on the nonlinear dynamic behaviors of the composite laminated cantilever rec-
tangular plate is investigated. Two parameters can control the responses of the composite laminated cantilever
rectangular plate from the period n or quasi-periodic motions to the chaotic motions. The frequency–response
curves are obtained by using numerical simulation. We observe that the energy transfer between the first-order
and second-order modes occurs with the change of the detuning parameter σ2.
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Appendix

All coefficients given in Eq. (18) are presented as follows:

ω2
1 = i5

i25
, μ̇1 = i24

i25
, γ1 = i6

i25
, γ2 = i7

i25
, γ3 = i1

i25
, γ4 = i2

i25
, γ5 = i3

i25
, γ6 = i4

i25
,

γ7 = i4

i25
, γ8 = i8

i25
, γ9 = i11

i25
, γ10 = i15

i25
, γ11 = i17

i25
, γ12 = i9

i25
, γ13 = i12

i25
, γ14 = i10

i25
,

γ15 = i13

i25
, γ16 = i18

i25
, γ17 = i19

i25
, γ18 = i20

i25
, γ19 = i23

i25
, γ20 = i21

i25
, γ21 = i22

i25
,

ω2
2 = x6

x25
, μ2 = x24

x25
, δ1 = x7

x25
, δ2 = x5

x25
, δ3 = x4

x25
, δ4 = x3

x25
, δ5 = x2

x25
, δ6 = x1

x25
,

δ7 = x12

x25
, δ8 = x15

x25
, δ9 = x9

x25
, δ10 = x14

x25
, δ11 = x16

x25
, δ12 = x11

x25
, δ13 = x8

x25
, δ14 = x13

x25
,

δ15 = x10

x25
, δ16 = x22

x25
, δ17 = x21

x25
, δ18 = x23

x25
, δ19 = x20

x25
, δ20 = x21

x25
, δ21 = x18

x25
, (A1)
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where

i1 = A1α1 + C1 A3α1 + C2 A5α1 + C3 A7α1 + C4 A9α1 + C5 A11β1 + C6 A13β1 + C7 A15β1 + C8 A17

+ C9 A21 + C10 A25 + C11 A29 + C12 A33 + C24 A51β1 + C25 A53β1 + C26 A55α1 + C27 A57β1 + C30 A59,

i2 = A1α2 + C1 A3α2 + C2 A5α2 + C3 A7α2 + C4 A9α2 + C5 A11β2 + A2α1 + C1 A4α1 + C2 A6α1

+ C10 A26 + C11 A31 + C12 A35 + C24 A51β2 + C24 A52β1 + C25 A53β2 + C25 A54β1 + C26 A55α2

+ C3 A8α1 + C4 A10α1 + C5 A12β1 + C6 A13β2 + C6 A14β1 + C7 A15β2 + C7 A16β1 + C8 A19 + C9 A23

+ C26 A56α1 + C27 A57β2 + C27 A58β1 + C30 A61,

i3 = A1α2 + A2α2 + C1 A3α3 + C1 A4α2 + C2 A5α3 + C2 A6α2 + C3 A7α3 + C3 A8α2 + C4 A9α3

+ C4 A10α2 + C5 A11β3 + C5 A12β2 + C6 A13β3 + C6 A14β2 + C7 A15β3 + C7 A16β2 + C8 A18 + C9 A22

+ C10 A27 + C11 A30 + C12 A34 + C24 A51β3 + C24 A52β2 + C25 A53β3 + C25 A54β2 + C26 A55α3

+ C26 A56α2 + C27 A57β3 + C27 A58β2 + C30 A62,

i4 = A2α3 + C1 A4α3 + C2 A6α3 + C3 A8α3 + C4 A10α3 + C5 A12β3 + C6 A14β3 + C7 A16β3 + C8 A20

+ C9 A24 + C10 A28 + C11 A32 + C12 A36 + C24 A52β3 + C25 A54β3 + C26 A56α3 + C27 A58β3 + C30 A60,

i5 = C13 A37 + C14 A39 + C15 A41 + C16 A43 + C17 A45ε + C18 A47 + C19 A28ε1 + C19 A49ε1

+ C22 A50ε1 + C29,

i6 = C28, i25 = C35 + C36 + C37,

i7 = C13 A38 + C14 A40 + C15 A42 + C16 A44 + C17 A46ε2 + C19 A48ε2 + C20 A49ε2 + C22 A50ε2,

i8 = C31 A63, i9 = C31 A64, i10 = C31 A65, i11 = C31 A66, i12 = C31 A67, i13 = C31 A68,

i14 = C33 A69, i15 = C33 A70, i16 = C33 A71, i17 = C33 A72, i18 = C32 A73, i19 = C32 A74,

i20 = C32 A75, i21 = C32 A76, i22 = C32 A77, i23 = C32 A78, i24 = C34μ,

x1 = B1α1 + C1 B3α1 + C2 B5α1 + C3 B7α1 + C4 B9α1 + C5 B11β1 + C6 B13β1 + C7 B15β1 + C8 B17

+ C9 B21 + C10 B25 + C11 B29 + C12 B33 + C24 B51β1 + C25 B53β1 + C26 B55α1 + C27 B57β1 + C30 B59,

x2 = B1α2 + B2α1 + C1 B3α2 + C1 B4α1 + C2 B5α2 + C2 B6α1 + C3 B7α2 + C3 B8α1 + C4 B9α2

+ C4 B10α1 + C5 B11β2 + C5 B12β1 + C6 B13β2 + C6 B14β1 + C7 B15β2 + C7 B16β1 + C8 B19 + C9 B23

+ C10 B26 + C11 B31 + C12 B35 + C24 B51β2 + C24 B52β1 + C25 B53β2 + C25 B54β1 + C26 B55α2

+ C26 B56α1 + C27 B57β2 + C27 B58β1 + C30 B61,

x3 = B1α3 + B2α2 + C1 B3α3 + C1 B4α2 + C2 B5α3 + C2 B6α2 + C3 B7α3 + C3 B8α2 + C4 B9α3

+ C4 B10α2 + C5 B11β3 + C5 B12β2 + C6 B13β3 + C6 B14β2 + C7 B15β3 + C7 B16β2 + C8 B18 + C9 B22

+ C10 B27 + C11 B30 + C12 B34 + C24 B51β3 + C24 B52β2 + C25 B53β3 + C25 B54β2 + C26 B55α3

+ C26 B56α2 + C27 B57β3 + C27 B58β2 + C30 B62,

x4 = B2α3 + C1α3 B4 + C2 B6α3 + C3 B8α3 + C4 B10α3 + C5 B12β3 + C6 B14β3 + C7 B16β3 + C8 B20

+ C9 B24 + C10 B28 + C11 B32 + C12 B36 + C24 B52β3 + C25 B54β3 + C26 B56α3

+ C27 B58β3 + C30 B60,

x5 = C13 B37 + C14 B39 + C15 B41 + C16 B43 + C17 B45ε1 + C19 B48ε1 + C20 B49ε1 + C21θ1

x6 = C13 B38 + C14 B40 + C15 B42 + C16 B44 + C17 B46ε2 + C18 B47 + C19 B48ε2 + C20 B49ε2

+ C21θ2 + C22 B50ε2 + C23θ2 + C29,

x7 = C28, x8 = C31 B63, x9 = C31 B64, x10 = C31 B65, x11 = C31 B66, x12 = C31 B67,

x13 = C31 B68, x14 = C33 B69, x15 = C33 B70, x16 = C33 B71, x17 = C33 B72, x18 = C32 B73,

x19 = C32 B74, x20 = C32 B75, x21 = C32 B76, x22 = C32 B77, x23 = C32 B78,

x24 = C34μ, x25 = C35 + C36 + C37, (A2)

where

a11 = a2

b2

Ā66

Ā11
, a12 = Ā12 + Ā66

Ā11
, a13 = h2

a2 , a14 = h2

b2

Ā66

Ā11
, a15 = h2

b2

Ā12 + Ā66

Ā11
,
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b21 = a2

b2

Ā22

Ā66
, b22 = a2

b2

Ā21 + Ā66

Ā66
, b23 = h2

b2 , b24 = h2a2

b4

Ā22

Ā66
, b25 = h2

b2

Ā21 + Ā66

Ā66
,

m1 = D̄11 − 8

3
F̄11 + 16

9
H̄11, d41 = a2

b2

1

m1

(
−8

3
F̄66 + 16

9
H̄66

)
, d42 = 4h

3am1

(
F̄11 − 4

3
H̄11

)
,

d43 = a

h

1

m1

(
16F̄55 − 8D̄55 + Ā55

)
, d44 = a

bm1

(
D̄12 − 8

3
F̄12 + 16

9
H̄12 + D̄66 − 8

3
F̄66 + 16

9
H̄66

)
,

d45 = 4ha

3b2m1

(
F̄12 − 4

3
H̄12 + 2F̄66 − 8

3
H̄66

)
, d46 = a2

h2

1

m1

(−16F̄55 + 8D̄55 − Ā55
)
,

m2 = D̄22− 8

3
F̄22+ 16

9
H̄22, e51 = b2

a2

1

m2

(
D̄66− 8

3
F̄66+ 16

9
H̄66

)
,

e52 = 4hb

3a2m2

(
F̄21− 4

3
H̄21+2F̄66− 8

3
H̄66

)
,

e53 = 4h

3bm2

(
F̄22 − 4

3
H̄22

)
, e54 = b

am2

(
D̄21 − 8

3
F̄21 + 16

9
H̄21 + D̄66 − 8

3
F̄66 + 16

9
H̄66

)
,

e55 = b2

h2m2

(
16F̄44 − 8D̄44 + Ā44

)
, e56 = b

hm2

(
16F̄44 + 8D̄44 − Ā44

)
,

C1 = a2

b2

Ā21

Ā11
, C2 = 2a2

b2

Ā66

Ā11
, C3 = 1, C4 = a2

b2

Ā21 + Ā66

Ā11
, C5 = Ā66

Ā11
, C6 = Ā66 + Ā12

Ā11
,

C7 = a2

b2

Ā22

Ā11
, C8 = 3h2

2a2 , C9 = h2

b2

Ā12 + 2 Ā66

2 Ā11
, C10 = h2

b2

Ā12 + Ā21 + 4 Ā66

Ā11
,

C11 = 3a2h2

2b4

Ā22

Ā11
, C12 = h2

b2

Ā21 + 2 Ā66

2 Ā11
, C13 = Ā55 − 8D̄55 + 16F̄55

Ā11
,

C14 = a2

b2

Ā44 − 8D̄44 + 16F̄44

Ā11
, C15 = −16h2

9a2

H̄11

Ā11
, C16 = −16h2

9b2

H̄12 + H̄21 + 4H̄66

Ā11
,

C17 = a

h

Ā55 − 8D̄55 + 16F̄55

Ā11
, C18 = −16a2h2

9b4

H̄22

Ā11
, C19 = 4h

3a

3F̄11 − 4H̄11

3 Ā11
,

C20 = 4ah

3b2

3F̄21 + 6F̄66 − 4H̄21 + 8H̄66

3 Ā11
, C21 = a2

bh

Ā44 − 8D̄44 + 16F̄44

Ā11
,

C22 = 4h

3b

3F̄12 + 6F̄66 − 4H̄12 − 8H̄66

3 Ā11
, C23 = 4ha2

3b3

3F̄22 − 4H̄22

3 Ā11
,

C24 = Ā12

Ā11
, C25 = 2 Ā66

Ā11
, C26 = a2

b2

Ā66

Ā11
, C27 = a2

b2

Ā22

Ā11
, C28 = a

5
2

b
7
2

h

Ā11
,

C31 = (k + 1) qdγ 3h5 M∞
a2b3 Ā11V 2

, C32 = (k + 1) qdγ 3h6 M∞
a3b3 Ā11V

, C33 = (k + 1) qdγ 3h4 M∞
3ab3 Ā11V 3

,

C34 = 4h2

lb2

γ

Ā11
, C35 = a2π4

h2 Ā11
Ī0, C36 = −16a3b3

9h6

Ī6π
4

Ā11
, C37 = −16a5b

9h6

Ī6π
4

Ā11
,

C38 = 4a
7
2 b

3
2 π4

3h5 Ā11
Ī 3, C39 = 4aπ4

3h5 Ā11

[
(ab)2 Ī4 − 4

3h2 (ab)3 Ī6

]
,

C40 = 4a2π4

3h5 Ā11b

[
(ab)2 Ī4 − 4

3h2 (ab)3 Ī6

]
, C29 = 4qdγ h5

M∞a2b3 Ā11
, C30 = (k + 1) qdγ 3h7 M∞

3a4b3 Ā11
,

α1 = 0.056a12k1 − (0.114 + 0.113b21) y1

�2
, α2 = 0.0056a12k2 − (0.114 + 0.113b21) y2

�2
,

α3 = 0.056a12k3 − (0.114 + 0.113b21) y3

�2
, β1 = 0.000006b22 y1 + (0.05 + 0.052a11) k1

�1
,
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β2 = 0.000006b22 y2 + (0.05 + 0.052a11) k2

�1
, β3 = 0.000006b22 y3 + (0.05 + 0.052a11) k3

�1
,

ε1 = (−0.11 + 9.08e51 − 1.15e55) τ1 + 0.00036d44τ2

�3
,

ε2 = (−0.11 + 9.08e51 − 1.15e55) τ2 + 0.00036d44τ1

�3
,

θ1 = (0.00064 + 25.19d41 + 0.232d46) τ2 + 0.001e54τ1

�3
,

θ2 = (0.00064 + 25.19d41 + 0.232d46) τ1 + 0.001e54τ2

�3
,

�1 = 0.0057 − 0.006b21 − 0.006a11 − 0.006a11b21 − 3.36 × 10−7b22a12,

�2 = 0.0057 + 0.006a11 + 0.006b21 + 0.006a11b21 + 3.36 × 10−7b22a12,

�3 = (−0.11 + 9.08e51 − 1.15e55) × (0.00064 + 25.19d41 + 0.232d46) − 0.36 × 10−6e54d44,

k1 = −0.64 × 10−10b23 − 174.17b24 + 0.036 × 10−8b25,

k2 = −0.04b23 − 0.27b24 + 0.000001b25,

k3 = −0.000061b23 − 0.000014b24 − 0.000028b25,

y1 = −1.944 × 10−14a13 − 96.492 × 10−8a14 + 0.065a15,

y2 = −3.025 × 10−10a13 − 0.0037a14 − 1.3a15,

y3 = −8.74 × 10−7a13 − 2.07 × 10−7a14 − 0.00192a15,

τ1 = −0.000049d42 + 6 × 10−8d43 − 0.0095d45, τ2 = 1.93e52 + 0.007e53 + 0.015e56. (A3)
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