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Abstract This paper presents the analysis of the nonlinear dynamics for a composite laminated cantilever
rectangular plate subjected to the supersonic gas flows and the in-plane excitations. The aerodynamic pressure
is modeled by using the third-order piston theory. Based on Reddy’s third-order plate theory and the von
Karman-type equation for the geometric nonlinearity, the nonlinear partial differential equations of motion
for the composite laminated cantilever rectangular plate under combined aerodynamic pressure and in-plane
excitation are derived by using Hamilton’s principle. The Galerkin’s approach is used to transform the nonlinear
partial differential equations of motion for the composite laminated cantilever rectangular plate to a two-degree-
of-freedom nonlinear system under combined external and parametric excitations. The method of multiple
scales is employed to obtain the four-dimensional averaged equation of the non-automatic nonlinear system.
The case of 1:2 internal resonance and primary parametric resonance is taken into account. A numerical method
is utilized to study the bifurcations and chaotic dynamics of the composite laminated cantilever rectangular
plate. The frequency—response curves, bifurcation diagram, phase portrait and frequency spectra are obtained
to analyze the nonlinear dynamic behavior of the composite laminated cantilever rectangular plate, which
includes the periodic and chaotic motions.

1 Introduction

The expanding use of composite laminated structures in lightweight applications, for example, aircraft and
astronautic engineering, indicates the significance of developing appropriate models in order to predict their
nonlinear dynamic responses. Composite laminated cantilever rectangular plates are widely used as light-
weight components in aeronautic, astronautic, naval and transportation engineering fields due to their excellent
mechanical properties, such as less weight and more stiffness. However, a few research works deal with the
complex nonlinear dynamics of composite laminated cantilever plates subjected to the supersonic gas flows
and in-plane excitations, such as the bifurcations and multi-pulse chaotic dynamics. Therefore, research works
on the complex nonlinear dynamics of composite laminated cantilever plates face the challenge. With the
development of the theories for the nonlinear dynamics and chaos, the prediction, understanding and control
become possible for more complicated nonlinear phenomena in laminated composite cantilever rectangular
plates.

Alotof research works have been done about the flutter of plates subjected to a supersonic flow. Dowell [1,2]
studied the nonlinear oscillations of simply supported fluttering plates by using Galerkin’s method. He [3,4]
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also investigated the nonlinear flutter of doubly curved plates of shallow curvature by using a modified form of
Donnell’s nonlinear shallow shell theory. Recently, the limit cycle nonlinear oscillations of a cantilever plate
were studied by Ye and Dowell [5]. They used a Rayleigh—Ritz approach and the direct numerical integration
to prove that the length-to-width ratio of the cantilever plate is a significant factor on the flutter study. Shiau
and Lu [6] investigated the nonlinear flutter behaviors of a composite laminated plate at high supersonic Mach
number. The results showed that the anisotropic properties have significant effects on the behavior of both
limit cycle nonlinear oscillations and chaotic motions. Chandiramani et al. [7] analyzed the nonlinear dynamic
behavior of a uniformly compressed, composite panel subjected to nonlinear aerodynamic loading. Patil and
Hodges [8] presented a theoretical basis for nonlinear aeroelastic analysis and flight dynamics of an aircraft
with high-aspect-ratio wings. The results obtained from this paper illustrated the effects of the structural
and aerodynamic nonlinearities on the flutter speed, amplitude of limit cycle nonlinear oscillations and flight
dynamics.

Recently, Moon and Kim [9] proposed a new optimal active/passive hybrid control design with piezoceramic
actuators to apply to the suppression of nonlinear panel flutter. Singha and Ganapathi [10] investigated the
effect of the system parameters on supersonic panel flutter behaviors of laminated composite skew plates.
Guo and Mei [11] studied the use of aeroelastic modes, which can reduce drastically the number of coupled
nonlinear modal equations for the nonlinear panel flutter analysis. Haddadpour et al. [12] investigated the
nonlinear aeroelastic behaviors of functionally graded material (FGM) plates in supersonic flow based on the
von Karman plate and piston theories. Singha and Mandal [13] used a 16-node isoparametric degenerated shell
element to study the supersonic panel flutter behaviors of laminated composite plates and cylindrical panels.
Haddadpour et al. [14] investigated the effect of internal pressure and temperature rise on the flutter boundaries
of the simply supported FGM cylinder with different values of power-law index. Sohn and Kim [15] analyzed the
effect of volume fraction distributions, boundary conditions, temperature changes and aerodynamic pressures
on panel flutter characteristics in detail based on the von Kdrman strain—displacement relations. Oh and Kim
[16] investigated the nonlinear vibration characteristics and supersonic flutter of cylindrical laminated panels
subjected to thermal loads by using geometrically nonlinear finite elements. Shin et al. [ 17] studied the nonlinear
flutter of aerothermally buckled composite shells with damping treatments. Kuo [18] investigated the effect
of variable fiber spacing on the supersonic flutter of rectangular composite plates and found that the flutter
boundary may be increased or decreased due to variable fiber spacing.

Several research works focused on the nonlinear dynamic responses of laminated composite cantilever
plates and shells. Oh and Nayfeh [19] used the experimental method to study the nonlinear combination
resonances of cantilever composite laminated plates with a harmonic transverse excitation. Abe et al. [20]
utilized the combination of Galerkin’s procedure and the shooting method to investigate the nonlinear dynamic
responses of clamped laminated shallow shells with 1:1 internal resonance. Hao et al. [21] investigated the
nonlinear periodic and chaotic responses of a cantilever FGM rectangular plate subjected to the transverse
excitation in the thermal environment. Nejad and Nazari [22] studied the nonlinear vibrations of an isotropic
cantilever plate with viscoelastic laminate. Zhang and Zhao [23] investigated the nonlinear vibrations of a
composite laminated cantilever rectangular plate with one-to-one internal resonance. Zhang et al. [24] studied
the nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-
plane and moment excitations. Guo et al. [25] used the experimental and theoretical methods to analyze a new
kind of energy transfer from high-frequency mode to low-frequency mode in a composite laminated plate.

Many new research works have been done on the nonlinear dynamics of plates. Lee and Reddy [26]
analyzed the nonlinear responses of composite laminated plates under thermomechanical loading by using the
third-order shear deformation plate theory. Onkar and Yadav [27] studied the random nonlinear vibrations of a
simply supported cross-ply laminated composite plate and analyzed the characteristics of the random responses
and sensitivity to the lamina thickness and plate aspect ratio. Zhang [28] studied the global bifurcations and
chaotic dynamics of a parametrically excited, simply supported rectangular thin plate. Awrejcewicz et al.
[29] used the Bubnov—Galerkin method to study the dynamics of flexible plates and shells and analyzed the
chaotic behavior of the system. In addition, Awrejcewicz et al. [30] investigated the complex vibrations and
bifurcations of plates and gave some examples of new nonlinear phenomena exhibited by the systems. Ye et al.
[31] studied the nonlinear oscillations and chaotic dynamics of a simply supported anti-symmetric cross-ply
laminated composite rectangular thin plate under parametric excitation. Zhang et al. [32] further investigated
the nonlinear oscillations and chaotic dynamics of a parametrically excited simply supported symmetric cross-
ply laminated composite rectangular thin plate. Zhang et al. [33] analyzed the nonlinear dynamics and chaos of
a simply supported orthotropic FGM rectangular plate in thermal environment and subjected to parametric and
external excitations. Hosseini and Fazelzadeh [34] analyzed the aero-thermoelastic post-critical and vibration
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characteristics of temperature-dependent functionally graded material panels under the excitation of supersonic
airflow. Alijani et al. [35] investigated the nonlinear forced vibrations of FGM doubly curved shallow shells
with a rectangular base. In addition, Alijani et al. [36] study the nonlinear vibrations of FGM rectangular plates
in thermal environments. In their paper, the bifurcations and complex nonlinear dynamics are investigated by
using bifurcation diagrams.

This paper focuses on studies of the bifurcations and chaotic dynamics of a composite laminated cantilever
rectangular plate subjected to the aerodynamic pressure and the in-plane excitation. Based on the von Karman-
type plate equation and Reddy’s third-order shear deformation plate theory, we employ Hamilton’s principle
to establish the nonlinear governing equations of motion for the composite laminated cantilever rectangular
plate. The governing equations of motion can be reduced to a two-degree-freedom nonlinear system under
combined parametric and external excitations by using Galerkin’s method. The case of 1:2 internal resonance
and primary parametric resonance is considered. The method of multiple scales is used to obtain the averaged
equation of the original non-autonomous system. A numerical method is utilized to investigate the bifurcations,
periodic and chaotic motions of the composite laminated cantilever rectangular plate. The bifurcation diagrams
are also obtained by using numerical simulation. The frequency—response curves of the composite laminated
cantilever rectangular plate are obtained to indicate the transfer of energy between different modes. It is found
from the numerical results that there exist periodic and chaotic motions of the composite laminated cantilever
rectangular plate under certain conditions.

2 Equations of motion

In this section, the governing equations of motion for the symmetric cross-ply composite laminated rectangular
plate subjected to in-plane excitation and transversal aerodynamic pressure are established. The plate is clamped
supported at edge ob, as shown in Fig. 1. The ply stacking sequence is (0/90)s, and the number of layers of
the plate is N, namely the ply angle of the composite laminated rectangular plate is 90° or 0°, which plays
an important role in the stress—strain relationship. All layers are bonded perfectly. The edge width and length
of the composite laminated cantilever rectangular plate in the x and y directions is, respectively, a and b, and
the thickness is 4. A Cartesian coordinate Oxyz is located in the middle surface of the composite laminated
cantilever rectangular plate. Assume that (u, v, w) and (1, v, wo) represent the displacements of an arbitrary
point and a point in the middle surface of the composite laminated cantilever rectangular plate in the x, y and z
directions, respectively. It is also assumed that ¢, and ¢, represent the rotations of two transverse normals on
the mid-plane about the x- and y- axes, respectively. The in-plane excitation is distributed along the y direction
at y = 0 and b and is of the form F' = Fy + F7 cos 1¢, where 1 is the frequency of the in-plane excitation.
The third-order piston aerodynamic load, namely transverse excitation, is given by [37]
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Fig. 1 The model of a composite laminated cantilever rectangular plate and the coordinate system
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where y = ZZ = , M represents free stream Mach number, v is air flow velocity, « is the adiabatic
exponent, and g4 is dynamic pressure.

The stress—strain relationship is obtained as

o Qi Q2 0 0 O €1
(o)) 021 QO O 0 0 &2
=10 0 Qs 0 O VAt (2)
Ts 0 0 0 0Os5 0 ¥s
T6 0 0 0 0 Qs Y6
where the elastic stiffness coefficients of the composite laminated cantilever plate are given by
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Q66 = G12, Q44 = Go3, Q0s5 =G3y.

According to Reddy’s third-order shear deformation theory (TSDT) given in reference [38], the displacement
field of the composite laminated cantilever rectangular plate is obtained as
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Using the nonlinear strain—displacement relation and the aforementioned displacement field yields
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According to Hamilton’s principle, the nonlinear governing equations of motion for the composite laminated
cantilever rectangular plate are obtained as
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where y is the damping coefficient, a comma denotes partial differentiation with respect to a specified coordi-
nate, a overdot implies partial differentiation with respect to time, and the stress resultants are represented as
follows:
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where « and 8, respectively, denote x and y.
Substituting the stress resultants of Eq. (8) into Eq. (7), we can write Eq. (7) in terms of generalized
displacements (uo; vo; wo; Gx; Py),
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The boundary conditions of the composite laminated cantilever rectangular plate can be expressed as
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In order to obtain the dimensionless equations, we introduce the transformations of the variables and parameters

1

- i (E\? Eh* Eh® _ -
Wo =wh, t=— . Aij = —Aij, Bij=—=Bij, Ii=(ab)* pl,

n? \abp T i (ab)?
72ht I Eh* . Eh? . Eh® _ _
y = 5 (PE)2y, Djj = -Djj, Ejj=——=E;, Fj=—-Fj; x=ax, (13)
(ab) (ab)2 (ab)2 (ab)2
1

EhS - E\ .- Eh’ _ Eh3 - _

Hij = —Hij, Qi =n’ (T) Qi qa=——4a. f=-5f y=0by.
(ab)? abp (ab)?

It is our aim to choose a suitable mode function to satisfy the first two modes of transverse nonlinear oscillations
and the boundary conditions for the composite laminated cantilever rectangular plate. Thus, according to the
mode approximation functions given in reference [38], we represent wg as
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where
A A A A
X;(x) =sin —x —sinh —x + «; { cosh —x —cos —x )}, (15.1)
a a a a
Y (y) = sin %y—i—sinh '%"y —ay (cosh '%"y—i—cos '%’y) (15.2)

where A; and u; (i, j =1, 2) are the roots of the characteristic equations
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and u, v, ¢, and @y, in Eq. (9) are supposed to be of the form
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where w1 (7), wa(?), u(t), v(t), ¢x(¢) and @y (¢) are the amplitudes of the modes, respectively.

Based on research given by Reddy [38], we neglect all the inertia terms on ug, vo, ¢x and @y, in (9.1), (9.2),
(9.4) and (9.5) since the deformations in these directions are smaller than that in the transverse direction. Then,
substituting equations (14) and (17) into equations (9.1), (9.2), (9.4) and (9.5), the displacement components
u(t), v(t), px(¢) and @, (z) can be expressed in terms of w(z). Applying the Galerkin procedure yields the
governing equations of transverse motion for the composite laminated cantilever rectangular plate under
combined aerodynamic pressure and in-plane excitation in dimensionless form,
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where all coefficients can be found in the “Appendix”, and the f] is the magnitude of the in-plane excitation.

3 Perturbation analysis

To guarantee the validity of the perturbation analysis, we use the method of multiple scales [39] to obtain the
averaged equation of system (18). We only consider the case of 1:2 internal resonance and primary parametric
resonance for the composite laminated cantilever rectangular plate,

1
w%:zszuwl, ws=Q% +eon, Q==1, (19)

where w1 and w> are two linear natural frequencies, and o1 and o5 are the two detuning parameters.
The scale transformations may be introduced as
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811 —> €611, S12 —> €012, 813 —> €013, 814 —> €814, 815 — €815, S16 — €16,

517 —> 8817, 813 — 8318, 519 —> 8519, 820 —> 832(), 821 —> 8521, 522 —> 8522. (20)
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Substituting Eq. (20) into Eq. (18) yields
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We use the method of multiple scales to find the uniform solutions of Eq. (21) in the following form:
w(t, &) = wo (To, T1) +ewy (To, T1) +---, (22)

where Ty = t, T| = ¢t.
The time derivatives used in the method of multiple scales are obtained as

d 0 dTy 0 dT

- U, Ty .=D D+, 23.1
& am dr Tam ar T o+ et 23D
d2

0
where D, = —.,n=1, 2, ....
oT,

Introducing ﬁqs. (22) and (23) into Eq. (21) and eliminating secular terms, we obtain the averaged equation
in the complex form,

1 . , 1. 3 1 _
DAy = —EMIAI +io1Al + (311/3 + —iys — Sv1 — —V17) A%Al

4 8 2
. . S T
+ Q2iys +2iyi3 — yi2 — Y18) A1A2As + ElylfAl, (24.1)
DiAy = — 1 A+1'A+3'5+1'3 350~ Ls1,) 24
142 = 2Mzz 21022 213 218 507 = 7017 ) A2
1 1 _
+ (Zi513 + i85 — 1512 — 313) A1A1A. (24.2)
Functions A; and A may be denoted in the Cartesian form
Ai1(T) = xi(Th) + ix2(Th), (25.1)
Ax(Ty) = x3(T1) + ix4(T1). (25.2)

Therefore, we achieve the four-dimensional averaged equation in the Cartesian form
. 1 3 1 3 3 1 ) 1 2
X = o X = o1 = | gV o7 )X =\ gV T T | XXy = 3y3 + 278 ) *1%2

_ 1 3 2, 2y 2, o, b
3y + 118 )% (viz +718) (x5 +x5) x1 —2(y13 + ¥5) x2 (x5 + x5) + 2J/1fX2, (26.1)

‘ S+ S 2 SIS N VR P
X2 = —— X o1xX) — |\ = b X1X2 — | = b X — X
2 211«1 2 1X1 8V7 2)/17 1X2 8)’7 23/17 2 V3 43/8 1

1 1
+ (3)’3 + ZVS) xix3 — (vi2 + Vis) (x32 + Xf) X2+ 23+ vs) (23 +xf) X1+ Eylfxl, (26.2)
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i ! ! 2514 L517) 2 3+5 2 (Lo v 25) a2
X3 = ——U2X3 — =02X4 — | = = X3 — xX3x5 — | = = X
3 2M23 224 27 217 3 7 17 3X4 28 23 4

1 3 1 1
- (538 + 553) x3xy — (4—1512 + 813) (x7 +x3) x3 — (—513 + 55) (xf +x3) x4, (26.3)
, 1 1 301 I 5
X4 = _EMZM + 562X3 — 557 + 5317 37 + 517 X3X4 + 538 + 83 X3
1.3 1 .,
+ 538 + 583 x3x4 812 + 318 (x1 + xz) x4 + 312 + 85 ) (xf + x3) x3. (26.4)

Based on the average equation, numerical simulations can be done to investigate the characteristic of the
nonlinear dynamics for the composite laminated cantilever rectangular plate.

4 Numerical simulations and discussion

In the following investigation, the fourth-order Runge—Kutta algorithm is utilized to numerically analyze the
periodic and chaotic motions of the symmetric cross-ply composite laminated cantilever rectangular plate
subjected to aerodynamic pressure for the case of 1:2 internal resonance and primary parametric resonance.
The ply stacking sequence is (0/90),, and the number of players of the plate is N. We consider the averaged
equation (26) to carry out numerical simulations. We choose 812 and y12, which are relative to the flow velocity
qa, as the controlling parameters when the periodic and chaotic responses of the composite laminated cantilever
rectangular plate are investigated. By analyzing the bifurcation diagrams, the complicated nonlinear dynamics,
including periodic and chaotic motions, may be observed globally from a range of parameter values. The two-
dimensional phase portrait, waveform, three-dimensional phase portrait and frequency spectrum are plotted to
demonstrate the nonlinear dynamic behaviors of the composite laminated cantilever rectangular plate. It can
be clearly found from the numerical results that the periodic and chaotic motions occur for this system.

It is found from Fig. 2 that multiple solutions of Eq. (26) exist for the first two modes. Figure 2 represents
the frequency—response curves of the first-order and the second-order modes, in which the vertical coordinate
is the amplitude. We note that the detuning parameter oo, must be between 0 and 3 if the first-order and
second-order modes are excited simultaneously. It is found from Fig. 2 that the phenomena of energy transfer
from the first-order mode to the second-order mode can occur in the nonlinear oscillations of the composite
laminated cantilever rectangular plate. In Fig. 2, the parameters and initial conditions are chosen as: puy =

e,
ha
B g ° ‘%‘b
%b% Ell
® o o
@,
Q%@

%, al

-10 -5

Fig. 2 Nonlinear frequency-response curves of system
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Fig. 3 The bifurcation diagram of the composite laminated cantilever rectangular plate for x; via the forcing excitation §1»

0.15,01 = 2,1 = 3,y3 = 0.08,ys = 46,97 = 05,3 = 0.2, f = 90,y12 = 9,913 = 1.5, y17 =
45,718 = 5,83 = 0.05,85 = 4.2,87 = 0.05,83 = 1.2,8120 = —185,817 = 30,813 = 12.5,818 = 2.8.
x1 = —0.5,x =0.798, x3 = 0.5, x4 = 0.8.

Figure 3 illustrates the bifurcation diagram of the composite laminated cantilever rectangular plate when
812 is chosen as the control parameter. From the “Appendix”, we obtain the expression function of 812,

(k + 1) gay>h® Moo Bes
a2b3A11V2
a2n41- 164363 Ign*  16a°b Ign*
KAy 9% A, 9K Ay

812 = (27

Itis seen from Eq. (27) that the parameter 81, can be negative. In this case, we may chose that the interval of 512
is —200 ~ —60. The other parameters and the initial conditions are, respectively, chosen as | = 0.9, up =
0.15,01 = 2,00 = 53,y1 = 3,3 = 0.08,y5 = 46,7 = 05,3 = 02, f = 90, y12 = 11.8, y13 =
1.5, y17 = 45,718 = 5,863 = 0.05,85 = 4.2,87 = 0.05,83 = 1.2,813 = 12.5,817 = 30,8183 = 2.8, x1 =
—0.5,x0 = 0.798, x3 = 0.5, x4 = 0.8. It is observed from Fig. 3 that the parameter 612 has significant effect
on the nonlinear dynamic responses of the composite laminated cantilever rectangular plate. In Fig. 3, the
longitudinal coordinate denotes the deflection of the plate, while the abscissa denotes the parameter 815. It
is seen from Fig. 3 that the motions of the composite laminated cantilever rectangular plate change from the
period-2 motion to the multiple period motion, and then from the multiple period motion to chaotic motions.

In the following investigation, we change the parameter 81> to find the periodic and chaotic motions
of the composite laminated cantilever rectangular plate based on Fig. 3. Figure 4 indicates the existence
of the periodic motion for the composite laminated cantilever rectangular plate when the parameter 817 is
—160. Figure 4b, c represents the phase portraits on the planes (xj, x2) and (x3, x4), respectively. Fig-
ure 4d, e, respectively, denotes the waveforms on the planes (¢, x1) and (¢, x3). Figure 4a, f represents
the three-dimensional phase portrait in space (x1, x2, x3) and the frequency spectrum (f, x3), respectively.
Figure 5 illustrates that the period-4 motion of the composite laminated cantilever rectangular plate occurs
when the parameter 81 is —120. Figure 6 demonstrates that the quasi-periodic motion of the composite lam-
inated cantilever rectangular plate occurs when the parameter 81 is -90. Figure 7 shows that the chaotic
motion of the composite laminated cantilever rectangular plate occurs when the parameter §;» changes to
—60.

Figure 8 demonstrates the other kind of bifurcation of the system when the control parameter is yi3.
The other parameters and the initial conditions are, respectively, chosen as w; = 0.9, u» = 0.15, 01 = 2,
00 =53, y1=3,y3 =0.08,y5s =46, =05,y = 0.2, f =90, y13 = 1.5, 17 = 4.5, 718 = 5,8 =
0.05,85 = 4.2,867 = 0.05,83 = 1.2,8120 = —185,817 = 30,6813 = 12.5,818 = 2.8,x1 = —0.5,x2 =
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Fig. 4 The period-2 motion of the composite laminated cantilever rectangular plate exists when §12 = —160, a three-dimensional

phase portraitin space (x1, x2, x3); bthe phase portraiton plane (x;, x2);cthe phase portraiton plane (x3, x4);d the waveforms
on the planes (¢, x); e the waveforms on the planes (¢, x3); f the frequency spectrum (f, x3)
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Fig. 5 The period-4 motion of the composite laminated cantilever rectangular plate exists when 81 = —120
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Fig. 7 The chaotic motion of the composite laminated cantilever rectangular plate exists when §12 = —60

0.798, x3 = 0.5, x4 = 0.8. It is observed from Fig. 8 that the motions of the composite laminated cantilever
rectangular plate change from the periodic motion to the multiple periodic motion, and then to the chaotic

motion with the increase of the parameter y15.
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Fig. 9 The period-1 motion of the composite laminated cantilever rectangular plate exists when y» = 4

Figures 9, 10, 11 and 12 demonstrate that period-1 motion of the system is altered to period-2 motion, to
the multiple periodic motion and to the chaotic motion, gradually.

5 Conclusions

The bifurcations, periodic and chaotic dynamics of the composite laminated cantilever rectangular plate under
the aerodynamic pressure and the in-plane excitation are investigated. Based on the von Karman-type equations
and Reddy’s third-order shear deformation plate theory, the governing equations of motion for the composite
laminated cantilever rectangular plate are derived by using Hamilton’s principle. The resonant case considered
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Fig. 10 The period-2 motion of the composite laminated cantilever rectangular plate exists when y12 = 7.8
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Fig. 11 The multi-periodic motion of the composite laminated cantilever rectangular plate exists when y12 = 8.8

here is 1:2 internal resonance and primary parametric resonance. A numerical method is used to investigate

the bifurcations, periodic and chaotic motions of the composite laminated cantilever rectangular plate.

The periodic, quasi-periodic and chaotic motions of the composite laminated cantilever rectangular plate
are found in the numerical results. The parameters are changed to obtain two types of bifurcation diagrams of
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Fig. 12 The chaotic motion of the composite laminated cantilever rectangular plate exists when y12 = 10

the composite laminated cantilever rectangular plate. The influence of the parameters 817 and y1», which are
relative to the flow velocity g4, on the nonlinear dynamic behaviors of the composite laminated cantilever rec-
tangular plate is investigated. Two parameters can control the responses of the composite laminated cantilever
rectangular plate from the period n or quasi-periodic motions to the chaotic motions. The frequency-response
curves are obtained by using numerical simulation. We observe that the energy transfer between the first-order
and second-order modes occurs with the change of the detuning parameter o7.
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Appendix

All coefficients given in Eq. (18) are presented as follows:

s s ) i24 i6 i7 i i i3 iq
wy = —, 1= Y11= =T YV3=T—, V4=, 5= Y6 = T)
i25 i25 i25 025 i25 i25 i25 i25
i4 ig i1 i15 i17 i9 i i10
=T M= T V=T, YIO=T—" YII=7T—, VYR=7T—", VYI3=7—, YI4=—,
i25 i25 i25 i25 i i i25 i25
i13 i18 i19 i20 23 i21 2
)/15 = T V16 = T, V17 = T, )/18 = T V19 = T, )/20 = T V21 =T
i25 i25 i25 i25 i25 025 i25
) X6 X24 X7 X5 X4 X3 X2 X1
Wy =—, p=—, S =—, SH=—, B=—, f4=—, 65=—, fg=—,
X253 X25 X253 X25 X253 X25 X25 X253
X12 X15 X9 X14 X16 X X13
87 = — 8 = —, 89 = 510 = ), 811 =, 61 = —, 813 = -, 514 = —,
X253 X253 X25 25 25 X25 25 X253
X10 X22 X21 X23 X20 X X18
815 =—, dl6=—, 017 =—, di1g=—, 519—x—, 8o =—, &1 =—, (A1)

X25 X25 X25 X25 25 X25 X25
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where

i1 = A1y + C1Aza) + CrAsay + C3Az0q + C4Agay + C5A1181 + CeAr3fr + C7A 1581 + CgAqg
+ CoAzj + CioA2s + C11 A2 + C12A33 + CaAsi B1 + CosAsz B + CasAssay + Cr7As781 + C30Aso,
ir = Aoy + C1Azan + CrAsan + C3A7an + CaAgar + CsA 1152 4+ Azt + CrAsay + CrAgoy
+ CioAz6 + C11431 + C12A35 + C24As182 + Co4A52B1 + CosAszfr + CosAsaf + CogAssan
+ C3Aga1 + C4A 001 + CsAB1 + CeAr3fa + CoArapfr + C7A 1582 + C7A1681 + CsArg + CoAns
+ CasAsear + C27A5782 + Ca7AsgB1 + C30461,
i3 =Ajo + Arap + C1Azaz + CrAgap + CrAsaz + CrAgan + C3A7a3 + C3Agan + CaAgas
+ CsA10a2 + C5A1183 + CsA12f2 + CeA13B3 + CeA1afo + C7A1583 + C7A16P2 + CgA1g + CoAx
+ Ci10A27 + C11A30 + C12A34 + C24As51 83 + CoaAsp B + Co5A5383 + CasAsafr + CorsAssas
+ CasAsear + Ca1As5783 + Co7As8B2 + C30A62,
i4 = Araz + C1Asa3 + CrAeas + C3Agas + C4A 1903 + C5A1283 + CoA1afz + C7A1683 + Cs Ao
+ CoAzg + CioA28 + C11A32 + C12A36 + Co4As5a B3 + CasAsafs + CasAseas + Ca7Asg B3 + C30A60,
is = C13A37 + C14A3z9 + Ci5A41 + Ci6A43 + C17A456 + C1gAg7 + Cr9Ange) + Cr9Agoe;
+ CxnAsper + Coo,
ig = Cag, 125 =C35+ C36+ C37,
i7 = C13A38 + C14A40 + C15A40 + C16A44 + C17A4682 + Cr9Asger + CroAs9er + CanAsper,
is = C31463, 19 =C31A64, i10=C3146s5, 11 =C31466, i12=C31467, i13 = C31A68,
i14 = C33A¢69, i15=C33A70, i16=C33A71, i17=C33A7n, i183=CxnA7, ij9=CpAn,
i20 = C3A7s5, 121 = C3A76, i = C3A77, 123 = C3A78, i = Caup,
X1 = Biay + C1Bsay + CyBsay + C3Byay + C4Byay + CsBy1B1 + CeB13B1 + C7B1sp1 + Cs By
+ C9Ba1 + CioBas + C11Bag + C12B33 + Coa Bs1 1 + Cas Bs3 f1 + Coe Bssay + C27Bs781 + C30Bso,
X2 = Biag + Bray + C1Bzan + Cy By + CoBsap + C2Beay + C3Byan + C3Bgay + Cq4 By
+ CyBioa; + CsB11B2 + CsB12B1 + Ce B3z + CeB1aB1 + C7B15B2 + C7BisB1 + CsBrg + CoBas
+ Cr0B26 + C11B31 + C12B3s + C4Bs1 B2 + C24B5y 1 + CasBsz o + CasBsafi + Cog Bssan
+ Ca6Bsea1 + C27Bs5782 + C27Bsg 1 + C30Bei s
x3 = Braz + Bray + C1B3az + C1Byay + CoBsaz + CoBgao + C3Braz + C3Bgan + CqBoos
+ C4Bjoaz + CsB11B3 + CsB12f2 + CeB13f3 + CeB1afa + C7B1563 + C7BisP2 + CgBig + Co B2
+ Ci0B27 + C11B30 + C12B34 + C24Bs1 B3 + C24Bsp B2 + Ca5Bs3 s + CasBsafa + CogBssas
+ Ca6Bsear + Ca7B5783 + C27Bss 2 + C30Be2,
x4 = Byaz + Cra3 By + CaBgas + C3Bgas + CyBioaz + CsB12fs + CeB1afs + C7B16B3 + CsBao
+ CoBog + C1oBag + C11B32 + C12B36 + C24B5283 + Ca5B5483 + Co Bsea3
+ C27B5383 + C30Be0,
x5 = C13B37 + C14B39 + C15B41 + C16Ba3 + C17Byser + CroBager + CaoBage + C210,
x6 = C13B38 + C14B4g + C15Bap + C16Bas + C17Bager + C18Bag + C19Bager + CooBager
+ C2102 + CoBspez + Ca36h + Co,
x7=Cg, x3=0C31B63, x9=C31Bea, x10=C31Bes, x11 =C31Be6, x12 = C31B67,
x13 = C31B6s, x14 = C33Bey, x15 = C33B70, x16 = C33B71, x17 = C33B72, x18 = C3B73,
x19 = C32B74, x20 = C30B7s, x21 = C32B76, x22 = C32B77, x23 = C32B7s,

x24 = C340, x25 = C35 + C36 + C37, (A2)
where
i a’® Ags Apr + Ags ais 2 » h? Ags s h? Ay + Ags
= 75 = 12 = = ’ = 5, = 5= = Ty =
b Ay A a? b? Ay, b Ay
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C3y
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Cyo

aq
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a? Ay a? Ay + Age h? ha® Ay h? Ay + Age
Zﬁfi—%’ 22=ﬁ1‘i—66’ b23=b_2’ b24=b_4A_66, 25:ﬁ1§_667
=511—§F11+E1‘_I11 da =£i (_§F66+§I:I66) d42=ﬂ(1511—‘—‘1‘_111)

3 9 ’ b% m 3 9 ’ 3am; 3 ’

a 1l

= _Sha_ (Flz - L—Lf_]lz + 2Fg6 — §H66) dse =
3b2m, 3 3 ’ h2 m
= 522—§F22+§1:122 651=b—2—1
3 9 ’ a’my

—— (16Fss — 8Dss + Ass), das =
h ni

a

bm]

(

3 9

a’ 1

_ 8 - 16 -
D66_§F66+—H66 )

9

_ 8 - 16 - _ 8 - 16 -
Di» — =Fj2+ —Hi2 + De¢s — §F66 + —Heg ),

9

1 (—16Fss + 8Dss — Ass)

= b (le—iﬁ21+2ﬁ66—§1:166)
3a2my 3 3 ’
= ﬂ (Fzz - 4—117_[22) , €54 = L ([)21 - §1‘?21 + 1—61L_121 + De6 — §F66 + 1—61:166) )
3bmy 3 amy 9 3 9
2
= h2bm2 (16F44 — 8Dyy + A44) . es56 = hsz (16F44 +8Dyy — 544) ,
=£&, :2;42&’ Ci3=1, C4=fm C5=&, C6=M,
b Ay b Ay b2 Ay A A
a® Ax 3h? h? A1z + 2Ae6 h? A1z + Az + 4Aes
T WA, YT 22 U7 24, 0 TR An ’
3a?h* A h? Ay + 2Ae6 Ass — 8Dss + 16Fss
= A, PTeoaa, o T A
a? A44 — 8D44 + 16F44 16K 1:111 16h? 1:112 + HZI + 41:166
=17 AL , ISZ_WA_H’ 16=~""52 AL ,
a Ass — 8Dss + 16Fss 16a’h? Ho» 4h 3F); — 4Hy,
=5 a0 T qy T n oan,
4ah 3F>; + 6Fss — 4H>, + 8Hgg a? Ass — 8Dys + 16Fy
B 3A1 C T b Aq ’
4h 3F» + 6Fgs — 4Hy» — 8Heg 4ha® 3F» — 4Hy
- % 3A1] ' 2= 3b3 3A1] ’
An 2A¢6 a? Ags a? Ay a h
=A—11, 25=A—11, CZGZﬁA_U’ C27=b—2A—11, 28=b—%A—11,
_(k+ 1) qay*h° Moo (k4 1) qay’h® Mo (k4 1) gqay’h* Mo
N a2b3A11V2 ' N a3b3A11V ' N 3ab3A11V3
_4h? oy _alnt _16a’b? Ign* _ 16a%b Iem*
= WA Css = hz—ﬁnlo’ Ci6 =45 an T T A
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_ 0.056a12k1 — (0.114 4+ 0.113b31) y1

Ar

_ 0.056a12k3 — (0.114 + 0.113b31) y3

Ar

0.0056a12ks — (0.114 + 0.113b21) y2
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Ar
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0.000006522y> + (0.05 + 0.052a11) k> 4 0.000006525y3 4 (0.05 + 0.052a11) k3
= 3= s

(—0.11 4+ 9.08¢s5, — 1.15¢55) 71 + 0.00036d447
&1 = As )
(—0.11 4+ 9.08e51 — 1.15¢e55) 72 + 0.00036d44 71
& = As )
6, = (0.00064 + 25.19d41 + 0.232d46) T2 + 0.001es547]
A3 ’
g, (0:00064 + 25.19d41 +0.232dsg) 71 +0.001e5472
2 = A3 y

A1 = 0.0057 — 0.006b21 — 0.006a1; — 0.006a;11b21 — 3.36 % 10_7b22a12,
Ar = 0.0057 4+ 0.006a;1 + 0.006b,; + 0.006a11by1 + 3.36 x 10_7b22a12,
A3 = (—0.11 +9.08e51 — 1.15¢e55) x (0.00064 + 25.19d41 4+ 0.232d46) — 0.36 x 10_6654d44,

ki = —0.64 x 1071953 — 174.17b24 + 0.036 x 10 3bs,

k2 = —0.04b23 - 0.27b24 + 0.000001b25,

k3 = —0.000061523 — 0.000014b24 — 0.000028b,s,

yi = —1.944 x 10~a;3 — 96.492 x 10 3a14 + 0.065a;5,

vy = —3.025 x 10703 — 0.0037a14 — 1.3a;5s,

y3 = —8.74 x 107 7aj3 — 2.07 x 10~ a14 — 0.001924a;5,

71 = —0.000049d4; 4+ 6 x 1073d43 — 0.0095dys5, T2 = 1.93e57 + 0.007es53 + 0.015¢56. (A3)
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