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Abstract Many rubber-like materials present a phenomenon known as Mullins effect. It is characterized by
a difference of behavior between the first and second loadings and by a permanent set after a first loading.
Moreover, this phenomenon induces anisotropy in an initially isotropic material. A new constitutive equation
is proposed in this paper. It relies on the decomposition of the macromolecular network into two parts: chains
related together and chains related to fillers. The first part is modeled by a simple hyperelastic constitutive
equation, whereas the second one is described by an evolution function introduced in the hyperelastic strain
energy. It contributes to describe both the anisotropic stress softening and the permanent set. The model is
finally extended to soft tissues’ mechanical behavior that present also stress softening but with an initially
anisotropic behavior. The two models are successfully fitted and compared to experimental data.

1 Introduction

Despite many different studies, the accurate prediction of rubber-like materials’ mechanical behavior is still
an open issue. These materials have the great capacity to endure large deformations and cyclic conditions.
Nevertheless, they present also highly nonlinear phenomena that make difficult to truly model them. In this
paper, it is proposed to focus on three main phenomena. The first phenomenon is the stress softening [1] that
occurs between the first and second loadings. This stress softening can be imputed to chain microstructure
rearrangements in the material [2] and depends on the maximal strain reached. Indeed, once the previous max-
imum strain is exceeded, the loading curve comes back on the primary curve [3–6]. The second phenomenon
often observed for rubber-like materials is the permanent set. This phenomenon is characterized by a residual
strain that depends on the maximal strain reached and of the composition of the material, i.e., the amount of
fillers [7–9]. The third phenomenon is the induced anisotropy by the stress softening. It has been observed that
the stress softening of a material is maximal for a second loading along the direction of the first loading and
minimum for a second loading along the orthogonal direction to the first loading direction [8,10–14]. These
three phenomena are known as the Mullins effect.

For several years, many authors developed models to predict the behavior of rubber-like materials. The first
models were principally isotropic [15–19]. Later, some constitutive equations taking into account permanent
set were developed. Dorfmann and Ogden [20] proposed a model by means of the pseudo-elasticity, which is an
isotropic model able to take into account the stress softening and the permanent set. This model is one of the most
employed and was implemented into a finite element code. The eight-chain model [21], with its analytical form
more easily usable than other chain models, stimulates the development of micro-physically motivated models.
The micro-spherical models first proposed by [22–24] and then by [8,11,25,26] are constitutive equations that
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allow to describe hyperelasticity, viscoelasticity, and plasticity. But it also permits to describe the induced
anisotropy by stress softening by means of this repartition of directions in space. The space repartition permits
to use different evolution functions or identical evolution functions that would evolve differently. It is to note
that according to the spatial discretization used some unphysical anisotropy can be induced by the model used
[27,28]. But few models are able to take into account stress softening, permanent set, and induced anisotropy
of a material. Recently, Rickaby and Scott [29] developed a constitutive equation to describe stress softening,
permanent set, and relaxation behavior but limited to equibiaxial loading. Itskov et al. [30] also proposed
recently a model to take into account anisotropic softening and permanent set by means of a pseudo-strain
energy. Moreover, Merckel et al. [8,31] developed a tridimensional model describing the permanent set and
the stress softening, but considered then as independent phenomena.

In the last few years, it was observed that the understanding of the behavior of soft tissues gets improved
[32–35], and thus, the multiplication of model appears. It is well known that soft tissues present a similar
behavior to rubber-like materials. Thus, soft tissues present also a stress softening. It was observed, for example,
for arteries [36,37], venas [38], vaginal tissues [39], esophageal [40], etc. Inspired by the rubber-like materials
phenomenological models [20], several authors proposed pseudo-elastic models adapted to soft tissues [41,42].
Phenomenological models based on 3D generalization model were also proposed, and Alastrue et al. [43]
readapted the exponential model and the 8 chains model. Nevertheless, soft tissues present also an initial
anisotropic behavior due to their structure. Most of the soft tissues are composed of a matrix reinforced by
fibers; thus, the models built for them are based on an initially anisotropic constitutive equation that depends
on the orientation of the fibers [40,44–48]. Some models were adapted to take into account the stress softening
and the permanent set [37,49]. Generally, the stress softening is treated by considering that it only occurs in
the fibers and not in the matrix.

Most of the existing models do not treat simultaneously the three phenomena of the Mullins effect. A new
constitutive equation is developed here by means of a micro-spherical model, to take into account the stress
softening with the permanent set and the induced anisotropy for rubber-like materials by using a formulation
with strain invariant and by considering these phenomena as independent. This model is then adapted to soft
tissues by adding an initial anisotropy with fibers. In this way, in Sect. 2 an experimental study lead on a filled
silicone rubber is presented highlighting the stress softening, the induced anisotropy, and the permanent set.
In Sect. 3, constitutive equations are developed to take into account these effects for rubber-like materials.
Section 4 presents a successful comparison of the model with the experimental data. Finally, Sect. 5 presents
the extension of the constitutive equation to soft tissues, and the results are compared to experimental data
from the literature.

2 Experimental data on silicone rubber

2.1 Materials

Two materials are used for this study, an initially isotropic one, a silicone rubber and, an initially anisotropic one,
an ovine vena cava [50]. The silicone rubber used is a heat-cured silicone (HCS) also called Hot Temperature
Vulcanization (HTV) which contains 30 % of fillers (silica). This filled silicone rubber is vulcanized with a
peroxyde starter. A plate of 185 mm length, 170 mm width, and 2.5 mm thick is molded and vulcanized under
an increasing pressure (0.1–0.5 MPa) and a temperature 180 ◦C. No experimental study is lead on the soft
tissues. The experimental data are used from Peña et Doblaré [50].

2.2 Classical tensile tests

Tensile tests were realized on samples of 15 mm length, 2.5 mm width, and 2.5 mm thick cut from the molded
rectangular plate. First, the influence of the strain rate is evaluated. Cyclic tensile tests up to λ = 2.5
(λ represents the actual length of a sample over its initial length) were performed at different strain rates:
0.025, 0.167, 1, 1.667 s−1. For these small variations of the strain rate, there is no significant influence on the
mechanical behavior of rubber-like material. For the study, it is thus chosen to perform all the following tests
at a strain rate of 1 s−1. Second, silicone specimens were submitted to cyclic loading up to a fixed stretch. Each
of the specimens was subjected to two loading unloading cycles up to λ = 2. After completion of the second
unloading cycle, each specimen was then loaded up to a stretch of λ = 2.5. No recovery time was allowed
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Fig. 1 Cyclic tensile test on HTV silicone at a strain rate of 1 s−1

during the two loading–unloading cycles. The results of one test can be observed in Fig. 1. The stress softening
and the permanent set can be observed as an hysteretic behavior, which is not taken into account in this study.

2.3 Induced anisotropy by the Mullins effect

In this section, it is proposed to highlight the induced anisotropy by the Mullins effect in the HTV silicone
rubber. First, a large sample of silicone is prepared for a pure shear test, and it is presented in Fig. 2a. This
sample of 40 mm length, 15 mm width, and 2 mm thick is submitted to a cyclic tensile test up to λ = 2. This test
is performed at a strain rate of 1 s−1. Next, several samples are cut from this sample along different orientations
(α = 0◦, α = 25◦, α = 45◦, α = 90◦) compared to the first tensile direction as illustrated in Fig. 2b. Four
new samples of 15 mm length, 2.5 mm width, and 2 mm thick are obtained. Each specimen is subjected to a
loading–unloading cycle up to λ = 2.5 at a strain rate of 1 s−1.

(a) (b)

(c)

Fig. 2 Experimental device used to highlight induced anisotropy by Mullins effect (a) pure shear test, b geometry of the cut
specimens inside the pure shear specimen, c definition of the configurations, (C0) initial configuration, (C1) configuration after
the pure shear test, (C2) configuration after the pure shear and tensile tests
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(a) (b)

Fig. 3 Influence of the angle between the first and second loadings on the stress softening compared to (a) configuration C1, i.e.,
without taking into account the permanent set after the first loading and (b) compared to configuration C0, i.e., by taking into
account the permanent set after the first loading

The mechanical test realized and described in Fig. 2 can be studied in different configurations (cf. Fig. 2c).
The first configuration C0 is the initial configuration of the sample (before pure shear test). The C1 configuration
is the intermediary configuration (after pure shear test), and C2 is the final configuration where the four samples
cut according to different orientations from the pure shear test sample are submitted to a tensile test. By means of
these tests, several observations can be done. First, the influence of the orientation of the samples is highlighted
in Fig. 3a. For this representation, it is considered that the initial configuration is C1 and not C0 (cf. Fig. 2c).
The reference configuration is thus considered after the pure shear test that means that the stress softening is
studied without initial permanent set induced by the pure shear test. This allows to focus on the influence of
the orientation. It is observed that for an orientation of α = 90◦ the material has the same behavior as a first
loading (i.e., behavior similar to a virgin material). For an orientation of α = 0◦, the mechanical behavior is
a classical second loading without change of direction. The intermediary orientations α = 25◦ and α = 45◦
present a behavior between a first and second loadings; the stress softening is more important for the orientation
of α = 25◦ than for the orientation of α = 45◦, but the two curves come back on the same point on the first
loading curve. These conclusions are the same as previously shown on a RTV silicone [51].

It is also proposed to represent these four tensile tests by taking into account the complete history of the
material i.e., compared to the initial configuration C0 (cf. Fig. 2c), i.e., the permanent set generated by the pure
shear test is now taken into account. The results are presented in Fig. 3b. The same stress softening as in Fig. 3a
is observed, and also the amount of permanent set endured lasting the pure shear test for the different samples.
It is observed that the more the orientation is close to the first loading direction, the more the permanent set
is important. Indeed, for an orientation of α = 0◦, it can be observed that an initial permanent set (due to the
pure shear test) of λresid = 1.136 and at the opposite for the sample cut at α = 90◦ the initial permanent set is
null. These results are similar to those obtained in the literature [51].

3 Constitutive equation

3.1 General form

Recently, Rebouah et al. [26] developed a constitutive equation written with strain invariants to predict the
anisotropic stress softening in filled silicone rubbers but without permanent set. Based on the idea of Govindjee
[53], the strain energy density of the material Wsilicone is additively decomposed into two parts: one that
represents the strain energy of the chains linked to filler Wc f and an other part that represents the strain energy
of the chains linked to other chains Wcc. The total strain energy density is thus Wsilicone = Wcc +Wc f . Rebouah
et al. [26] considered that only Wc f can evolve with the Mullins effect. In our approach, it is also proposed to
describe the permanent set by means of Wc f . Thus, Wc f is represented by an anisotropic strain energy function
that can record the deformation history of the material. Any micro-sphere model defined by a spatial direction
repartition A(i) can be chosen. The dilatation in each direction is defined by means of I4

(i) = A(i).CA(i) where
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C is the right Cauchy–Green deformation tensor, defined by C = FT F, and F is the deformation gradient. The
general form of the model is as follows:

Wsilicone = Wcc(I1, I2) +
n∑

i=1

ω(i)F (i)W (i)
c f (I (i)

4 ). (1)

Wcc is an hyperelastic energy density, and I1, I2 are the first and second strain invariants of C. W (i)
c f is the

hyperelastic strain energy associated with each direction, and ω(i) represents the weight of each direction. They
are given by Bazant and Oh [54], and F (i) is the Mullins effect evolution function. The HTV silicone does not
present strain hardening; thus, it is decided to use a strain energy that is not presenting a large increase in slope
with deformation. The Mooney [15] strain energy function is chosen for Wcc, and a particular form is proposed
for Wc f . Previously, [26] the quadratic equation proposed by Kaliske et al. [52] was used. Nevertheless, for
this material, this equation presents a stress hardening too important to represent the considered material, and
thus, a function with a few hardening is used:

if I4
(i) ≥ 1 W (i)

c f (I (i)
4 ) = K

2

∫
√√√√ I (i)

4 − 1

I (i)
4

d I (i)
4 else 0 (2)

where K is the only material parameter. It is to note that it is considered here that the strain energy in each
direction is considered only in tension.

Rebouah et al. [26] proposed an evolution function which depends on the first and fourth invariants with
only one material parameter η. The evolution function is the product of three terms. The first is an isotropic
term which depends only on the first invariant and represents the global deformation of the material (similar
to isotropic approaches); the second represents the maximal deformation of each direction of the material; and
the third the triaxiality of the loading state. In this paper, it is proposed to adapt the constitutive equation to
represent both stress softening and permanent set. For the HTV silicone rubber, the isotropic part is useless,
and then, it is omitted here. The evolution of the stress softening is then different for this material; the powers
of the two terms of the evolution function are changed and can be considered as parameters. The proposed
function is as follows:

F (i) = 1 − η

(
I (i)
4 max − I (i)

4

I (i)
4 max − 1

)β (
I (i)
4 max

I4 max

)γ

. (3)

As proposed in the literature [55], the stress softening is described by the difference between the current
strain and the maximum strain. The first term of the equation is the ratio of this difference between the current
and undeformed states. The second term represents the triaxiality of the strain by the ratio of the strain in one
direction compared to the maximum one. The powers assigned to each term must be chosen to represent at the
best the mechanical behavior of the material and to avoid numerical problems. It is to note that these functions
are phenomenological, and their form is not motivated by micro-mechanical observations.

The parameters η, β, and γ influence simultaneously the stress softening and the permanent set of the
material. I (i)

4max represents the maximal value of I (i)
4 for the whole material history for each direction, and

I4 max represents the maximal value of I (i)
4 for the whole material history and all directions. To control the

permanent set, a strong restriction proposed by Rebouah et al. [26] is suppressed here, and the evolution function
F (i) is allowed to become negative. That means that the zero stress of a direction is no longer sufficient for
zero deformation but for a deformation depending on the parameter η. It is to note that the evolution function
F (i) depends on two different maximal values of the fourth invariant, i.e., in the considered direction, and for
the whole material. Finally, the Cauchy stress is obtained by the following:

σsilicone = σ cc + σ c f − pI (4)

where σ cc is the part of the Cauchy stress that represents the chains linked to other chains and σ c f the part of
the Cauchy stress that represents the chains linked to fillers, expressed as follows:

σ cc = 2B
∂Wcc

∂ I1
+ 2

(
I1B − B2) ∂Wcc

∂ I2
, (5)
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σ c f = 2
42∑

i=1

ω(i)F (i) ∂Wcf

∂ I (i)
4

(i)

FA(i) ⊗ A(i)FT (6)

where the 42 directions repartition proposed by Bazant and Oh [54] were chosen, in this study.

3.2 Validity of the model

It remains to verify that the presented model is in agreement with the requirements of thermodynamics (see
e.g., Coleman and Gurtin [56]). If only isothermal processes are considered, the Clausius-Duhem inequality
must be satisfied,

− ∂Wsilicone

∂ I (i)
4 max

İ (i)
4 max ≥ 0, (7)

−∂Wsilicone

∂ I4 max
İ4 max ≥ 0 (8)

where İ (i)
4 max ≥ 0 and İ4 max ≥ 0 are the maximum deformation increase rates. By means of manipulations of

Eqs. (7), (8), and (1), it can be easily established the next sufficient relations with the functions F (i):

∂F (i)

∂ I (i)
4 max

≤ 0 ∀i, (9)

∂F (i)

∂ I4 max
≤ 0 ∀i. (10)

Considering the generic form of the evolution constitutive equation (3), it can be explicitly written that

∂F (i)

∂ I (i)
4 max

= −ηα

(
I (i)
4 max − 1

)
−

(
I (i)
4 max − I (i)

4

)

(
I (i)
4 max − 1

)2

(
I (i)
4 max − I (i)

4

I (i)
4 max − 1

)β−1 (
I (i)
4 max

I4 max

)γ

−ηβ
1

I4 max

(
I (i)
4 max − I (i)

4

I (i)
4 max − 1

)β (
I (i)
4 max

I4 max

)γ−1

(11)

∂F (i)

∂ I4 max
= −ηβ I (i)

4 max

(
I (i)
4 max − I (i)

4

I (i)
4 max − 1

)β (
I (i)
4 max

I4 max

)γ−1

(12)

To verify Eqs. (9) and (10), the conditions to verify are α > 0, β > 0, and
(

I (i)
4 max − 1

)
−

(
I (i)
4 max − I (i)

4

)
> 0.

This last condition is automatically verified if I (i)
4 ≥ 1. It is verified for I (i)

4 ≤ 1 by means of Eq. (1) as no
energy is considered in compression that means that this term becomes 0.

4 Simulations of the model

To validate the model, it is proposed to compare its simulations to the different mechanical tests. The values
of the material parameters were fitted on the different mechanical tests. The obtained values are as follows:
C1 = 0.3 MPa, C2 = 0.15 MPa, K = 1.6 MPa, η = 5, β = 0.5, and γ = 2.5.

4.1 HTV on a tensile test

First, the cyclic tensile test presented in Fig. 1 is compared to the prediction of the model. The results obtained
are illustrated in Fig. 4. These results are satisfactory since it can be observed that the Mullins effect and the
permanent set are quite well described by the model.
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Fig. 4 Comparison of the prediction of the model (full lines) to experimental data (dotted lines)

4.2 HTV on a tensile test after a pure shear test

In this section, it is proposed to compare the model to the experimental results of the pure shear test followed
by tensile tests according to different orientations. A comparison between the model and the tests is proposed
in Fig. 5. It is to note that the first and second loadings (and thus the elongation) do not correspond to the
same test. For each test, the definition of λ corresponds to the elongation in the tensile test direction whatever
the experiment. Every simulated orientations present a similar behavior to the experimental results; thus, the
same observation as the one made in paragraph 2.3 can be done. Furthermore, it is shown that the model is
able to take well into account the induced anisotropy. Finally, for the curve at α = 25◦, it is observed that
the second loading curve of the model presents a rupture of slope about λ = 1.8. This phenomenon is due to
the discretization along the 42 directions of Bazant and Oh [54]. The problem is that the discretization in 42
directions creates a numerical anisotropy, as explained in the literature [27]. This phenomenon can be avoided
with a full integration in space; nevertheless, the computational formulation become more complicated, and it
becomes very time-consuming. Despite discretization problems, these results proved the ability of the model
to take into account the induced anisotropy and the permanent set.

4.3 Analysis of the model simulations

In this part, it is proposed to analyze the evolution of the stress softening along the 42 spatial directions. The

principal request directions during a cycling tensile test are observed along the direction of tension
→
x , where the

maximal deformations are reached for different cycles until a maximal elongation of λ = 1.5, then λ = 2 and

λ = 2.5. The 42 directions are represented in projection in the plane (
→
z ,

→
y ) in Fig. 6 as [22]. It is to note that

many directions have the same angle with the
→
x direction. They are summarized by the definition of 4 circles.

The stress σxx corresponds to the stress in the tensile direction. It is by construction the tensorial sum of

stresses along the 42 directions [54]. The more a direction is closer from direction
→
x , the more its contribution

to σxx is important. All the directions that belong to a same circle provide the same contribution in the case

of uniaxial tension in direction
→
x . Thus, for clarity of the figure, only one direction per circle is presented.

The stress strain behavior of each direction is presented in Fig. 7. It appears that the most loaded direction is

direction 1, which is consistent since it corresponds to the tensile direction
→
x . Nevertheless, it is observed that

the directions which belong to the circle 3 (4-5-6-7) and to the circle 4 (18-19-20-21) endure also an important
deformation and generate important stresses. It can also be observed that the directions which belong to the
circle 2 (10-11-12-13-14-15-16-17) have very small influence, and the directions which belong to the circle 1
(2-3-8-9) are equal to zero as they are loaded only in compression. Besides direction 1, circles 3 and 4 present a
negative part of the Cauchy stress during second loadings that means that these directions present a permanent



1692 M. Rebouah, G. Chagnon

Fig. 5 Comparison with experimental oriented data and the model. The black full lines represent the theoretical first loading in
uniaxial tension (1Cmodel); the black dotted lines represent the second loadings (i.e., the tensile test) for the different orientations
(2Cmodel). The red dashed lines represent the experimental results for the different oriented samples of tensile tests after the
pure shear test (2Cexp)

set. The directions that belong to circle 1 and 2 are still superior or equal to zero; thus, they do not present
permanent set.

The evolution function generates a new equilibrium position, meaning that the zero stress state is no longer
reached for zero deformation. This new equilibrium depends on the maximum deformation and is thus more

important for directions close to direction
→
x . This is illustrated by Fig. 8. It is observed that along the direction

1, the circles 3 and 4, the evolution function becomes negative that means that the material presents a zero stress,
and thus a permanent set. It is to note that the directions where the evolution function become negative are
the same directions for which the stresses become negative and thus directions which generate permanent set.
For this study, the 42 directions proposed by Bazant and Oh [54] were used; nevertheless, the other directions
repartition proposed by the same author can also be used. It was proved that the results observed are identical,
but they are not presented in the paper.

5 Adaptation of the constitutive equation to soft tissues

5.1 Adaptation of the model

It is proposed here to adapt the general form of the model previously described to non-initially isotropic
materials, i.e., soft tissues. This anisotropy is imputed to the presence of fibers, often collagen [35], into the
matrix of the tissue. In many soft tissues, there exist two main fibers orientations (the model will be developed
for 2 directions, but the proposed principle would be the same for more directions). The orientation of these
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Fig. 6 Representation of the 42 Bazant and Oh directions in the plane (
→
z ,

→
y )

Fig. 7 Representation of the first component of the stress tensor (σxx ) for cyclic tensile test up to λ = 2.5
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Fig. 8 Representation of the evolution function for cyclic tensile test up to λ = 2.5

fibers depends on the studied soft tissues [40,57–60]. As classically done in the literature, it is proposed to
model the soft tissues mechanical behavior as the sum of three terms. The first part represents the behavior of
the matrix, and the second and third parts represent respectively the mechanical behavior of the fibers oriented
in the two directions,

Wsoft−tissue = Wmatrix + Wfiber1 + Wfiber2. (13)

It is also often assumed that the fibers can only endure tension, i.e., that no stress is generated in compression.
The principle is to propose a strain energy that can simulate the stress softening both in the matrix and in the
fibers. In the matrix, an initially isotropic strain energy is considered, which is similar to the one proposed for
silicone rubbers in part 3. The same form is thus proposed,

Wmatrix = Wcc(I1) +
n∑

i=1

ω(i)F (i)W (i)
c f (I (i)

4 ). (14)

Different hyperelastic strain energies are used, as soft tissues present more strain hardening than silicone
rubber. Classical strain energies are chosen for Wcc(I1) [61,62] and W (i)

c f [52], they are defined as follows:

Wcc(I1) = C1 exp
(
C2(I1 − 3)2 − 1

)
, (15)

W (i)
c f = K (I (i)

4 − 1)2 (16)

where C1, C2, and K are material parameters. The evolution function F (i) of the matrix is the same as the
one used for silicone rubber model, described in Eq. (3).
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The strain energy for fiber j is the product of an hyperelastic strain energy Wcf−fiber j and an evolution
function Ffiber( j) to describe the Mullins effect:

Wfiber1 = Ffiber( j) .Wcf−fiber j . (17)

The hyperelastic strain energy of each fiber is noted Wcf−fiber j [63] and is expressed as follows:

Wcf−fiber j = K f

2
exp(I ( j)

4 − I ( j)
40

)2. (18)

K f is a material parameter and I ( j)
40

matches to the value of I ( j)
4 for which the stress hardening of the

material appears. Finally, due to the hypothesis of tension in the fiber, the evolution function is also adapted
for the fibers, where only I ( j)

4 is necessary. A simplified form of the evolution function is used compared to
the one used in Eq. (3). Indeed, for the fiber, only one direction is considered that means that the third term
that took into account the triaxiality is not necessary. Only the second term is consistent,

Ffiber( j) = 1 − η f

(
I ( j)
4 max − I ( j)

4

I ( j)
4 max − 1

)β

, (19)

where η f and β are the material parameters which allow to take into account the stress softening and the
permanent set of the fibers. It is to note that in this part it is considered that the material cannot endure
compression; thus, the stress cannot become negative in any direction. Nevertheless, it generates the beginning
of the permanent set for the material. This difference compared to the last model (for rubber-like materials) is
due to the stress hardening of soft tissues which is very important, and thus, the evolution function must be
adapted to correctly describe the phenomena.

5.2 Comparison with experimental data

To highlight the ability of the model to mimic soft tissues, it is proposed to compare it by means of the
experimental data of Peña and Doblaré [50] considering first and second loadings at different maximum
deformation in ovine vena cava during uniaxial tension. The orientation of the fibers was chosen at α = 45◦.
These results were obtained for the following values of the different material parameters C1 = 0.28 MPa; C2 =
0.16 MPa; K = 0.13 MPa; K f = 0.5 MPa; η = 2, η f = 5 and β = 2.

As observed in Fig. 9 the experimental data obtained for loading–reloading cycles at different stretches
are well described by the model. Figure 9a represents the theorical tensile test for a tensile test along the axial

Fig. 9 Experimental data and comparison with the model for oriented sample of 45◦ and 135◦ in the tissue
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direction for a value of α = 45◦, and Fig. 9b along the circumferential direction. For both tests, it is observed
that the hyperelastic behavior, the stress softening, the permanent set, and the initial anisotropy are well taken
into account. In this case, the induced anisotropy is not visible on the experimental data; nevertheless, the
model can also take it into account.

6 Conclusion

As explained and shown in the present paper, a simple model is proposed here to take into account several
effects of the Mullins effect. This model is adapted for both rubber-like materials and soft tissues. Compared
to the literature [8,13], the major difference is that the permanent set and the stress softening are considered as
correlated phenomena, and thus, the material parameters allow to represent simultaneously the stress softening
and the permanent set. Due to the use of two different materials (HTV and soft tissues), different expressions
were used for the strain energies and the evolution functions. Nevertheless, the discretization by a micro-sphere
model represents well both the materials. Finally, by means of the extension of the model to soft tissues, the
initial anisotropy of the materials can be taken into account independently of the induced anisotropy due to
the stress softening. For both of these materials, the constitutive equations were successfully compared to
experimental data to take into account simultaneously the stress softening of the material, the permanent set,
the induced anisotropy, or the initial anisotropy of the material. Furthermore, due to the formulation in strain
invariant of the constitutive equations, it can easily be implemented into a finite element code.
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