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Abstract Non-smooth strain gradient fields are studied in bending beams, in the context of strain gradient
elasticity. It is found that strain fields with continuous curvature, but discontinuous curvature derivatives
(evolutes) are possible. The pure bending and buckling problems of a simply supported beam are investigated.

1 Introduction

Ericksen [1], trying to interpret nonelastic phenomena in the context of elasticity such as elastic-plastic states,
suggested the existence of globally stable equilibrium states. On the contrary, the conventional stable equi-
librium states locally minimize the potential energy functional. In fact, Ericksen [2] allowed the existence
of deformations with smooth displacement fields but non-differentiable. This phenomenon was called co-
existence of phases phenomenon. In fact, there exist internal boundaries, phase boundaries, separating the low
strain (elastic) states from the high strain (nonelastic) ones. James [3,4], an Ericksen’s student, studied the
co-existence of phases phenomena in the context of Finite Elasticity and the propagation of phase boundaries
in elastic bars. A flow of research papers appeared then, connecting the co-existence of phases phenomenon in
elastic deformations with crystal deformations and phenomena of twinning, Bhattacharya [5] and James and
Hane [6]. In fact, all these theories were based on minimization procedures using Maxwell’s rule. Another
way to look for minimization procedures with smooth but non-differentiable fields was the application of the
Weierstrass-Erdmann corner conditions, Gelfand and Fomin [7]. Fosdick and James [8] and James [9] studied
non-convex beam bending elastica problems with smooth elastic curves but non-smooth curvature fields. Intro-
ducing a version of the existence of phases phenomena, just to study the elastoplastic buckling, Lazopoulos [10]
presented a model with the strain energy density depending upon non-smooth variable parameters. According
to that model, the displacement and strain fields were smooth but the internal variable material parameters were
non-smooth. Hence, a phase boundary emerges with discontinuity of the material parameters. That idea was
transferred into Finite Elasticity by Lazopoulos and Ogden [11], where co-existence of phases phenomena with
smooth displacement and strain fields was studied. Furthermore, Ogden [12] discussed Mullin’s effect, based
on that theory. In addition, Aifantis and Serrin [13,14] discussed the fluid interfaces using Maxwell’s rule.
Furthermore, it is known that if the problem is non-convex, then it has multiple (local) solutions. To find global
and local optimal solutions is fundamentally difficult by traditional direct methods. Based on the canonical
duality and triality theory, Gao [15], a complete set of analytical solutions for 1-D non-convex problems has
been presented in [16,17], and a complete set of numerical solutions for post-buckling analysis of a nonlinear
beam was recently obtained in [18].

However, regularizing the non-smooth strain solutions, smooth strain diagrams connecting the low and
high values of the strain may be established, invoking strain gradient elasticity, Ru and Aifantis [19].
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An extensive literature exists regarding gradient strain linear elasticity, concerning materials with the influence
of the microstructure which the conventional elasticity fails to introduce, Altan and Aifantis [20]. Consid-
ering that kind of elasticity, many singularities, active in problems of the conventional elasticity, have been
lifted, Aifantis [21]. The question whether non-smooth strain gradient deformations exist with smooth strain
and smooth displacement in the context of gradient elasticity has been posed by Lazopoulos et al. [22]. One-
dimensional bar models have been studied for the uni-axial extension problem of a bar with nonlinear geometric
deformations and non-convex strain energy density function due to a strain gradient. The mathematical varia-
tional problem is similar to the definition of the Weierstrass-Erdmann corner conditions, Fomin and Gelfand
[7]. This problem has been solved, and the conditions for a non-smooth strain gradient have been clarified.
Those conditions require the continuity not only of the balance stress but also the smoothness of the double
stress with convexification of the strain energy density function. Discontinuity of the strain gradient has been
proposed in fiber-reinforced materials, interpreting kinking phenomena, Soldatos [23].

The present problem discusses the bending and buckling problems of a strain gradient elastic beam with
non-convex strain energy densities due to the curvature gradient. Allowing non-smooth curvature gradients, the
relaxation of the strain energy density yields the coexistence of phases phenomena with non-smooth curvature
gradients. Conditions for the strain (curvature) gradient discontinuity are defined. An implementation of the
proposed theory is presented with applications.

2 Revised model of a strain gradient elastic beam under pure bending

A geometrically nonlinear strain gradient Bernoulli beam model will be proposed, adapting linear constitutive
stress–strain relations, nonlinear hyperstrains, but nonlinear geometry. The theory follows the approximations
adopted in the conventional Bernoulli bending theory. Following a simple version of Mindlin’s linear theory of
elasticity with microstructure, a widely used micro-elasticity theory equipped with one additional constitutive
coefficient, apart from the Lamé constants, is adopted. The intrinsic bulk length g is the additional constitutive
parameter that has length dimensions and is called intrinsic length. Indeed, the strain energy density function,
for the present case, is expressed by,

W = 1

2
λεmmεnn + Gεmnεnm + g2

(
1

2
λεkmmεknn + Gεkmnεknm

)
(1)

where εi j denotes the nonlinear strain and εi jk the strain gradient, respectively, with

εi jk = εik j = ∂iεk j (2)

and ui = ui (xk), the displacement field.
The constitutive stresses are defined by the relations,

τi j = ∂W

∂εi j
= λεkkδi j + 2Gεi j (3)

and the hyper-stresses by

μi jk = ∂W

∂εi jk
= g2 (

λεinnδ jk + 2Gεi jk
)
. (4)

For the present study, we consider a beam shown in Fig. 1. The x axis is the axis of the beam, whereas the y
axis is directed along the deflection axis. The elastic line lies on the x–y plane.

Considering Bernoulli–Euler principle, the infinitesimal strain of the beam is defined by

εxx = −yk (5)

with k denoting the curvature of the inextensible elastic line.

Fig. 1 Geometry of the beam
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For the formulation of the present problem, we need the constitutive stress

τxx = ∂W

∂εxx
= Eεxx (6)

where E is the elastic Young’s modulus and the hyperstresses

μxxx = g2 Eεxxx , (7)

μyxx = g2 Eεyxx (8)

with the hyperstrains

εxxx = −y
∂2ϑ

∂s2 and εyxx = −∂ϑ

∂s
. (9)

The total potential requires,

V = Wb − U (10)

where ϑ is the angle of the elastic line with the axis of the beam and s denotes the arc of the inextensible elastic
line, with U denoting the work of the external forces and Wb the strain energy of the beam. Since non-smooth
strain gradient elastic fields will be discussed, the strain energy density should be a non-convex function of
the strain gradient field. Consequently, non-convex terms of the strain gradient should be added. Recalling the
symmetry of the problem, the present beam strain energy is defined by

Wb = 2

L∫
0

h/2∫
−h/2

(
E

2
ε2

xx + g2 E

2

(
ε2

xxx + ε2
yxx

)
− g2βE

4
ε4

xxx

)
dxdy. (11)

Performing the algebra with the help of Eqs. (6–9), the strain energy of the beam becomes,

Wb = 2

L∫
0

(
E I

2

(
1 + cg2)ϑ,2

s +g2 E I

2
ϑ,2

ss −g2 3βE I

16
h2ϑ,4

ss

)
dx (12)

where E is Young’s modulus, I inertia moment, and A area of the cross-section, h the height, 2L the length of
the beam and β the non-convex parameter for the strain energy density, and s is the length of the inextensible
elastic line. Further, c = A

I is the squared inverse of the inertia radius. In addition, the work of the external
forces is expressed in the present case of the pure bending by

U = − [Mϑ]L−L − [mϑ,s]L−L (13)

where M and m denote the bending moments and hypermoments of the beam. Hence, the total potential V
yields

V = 2

L∫
0

(
E I

2

(
1 + cg2)ϑ,2

s +g2 E I

2
ϑ,2

ss −g2 3βE I

16
h2ϑ,4

ss −Mϑ,s −mϑ,ss

)
dx . (14)

Considering the minimum of the potential V with smooth curvature field ϑ,s but non-smooth derivative of the
curvature ϑ,ss , the governing equilibrium equation is defined by,

(
1 + cg2)ϑ,s −g2ϑ,ss +9

4
βg2h2ϑ,2

ss ·ϑ,sss = M

E I
. (15)

Further, the boundary conditions are defined by

m

E I
= −g2ϑ,ss +3

4
βg2h2ϑ,3

ss at x = −L , L (16)

where m denotes the hypermoment.
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In addition, the corner conditions at the point xo corresponding to smooth curvature field but to non-smooth
curvature derivative field are expressed by [

∂W

∂ϑ,ss

]
= 0, (17)

[
W − ϑ,ss

∂W

ϑ,ss

]
= 0 (18)

where the discontinuity [(•)]xo
= (•)xo+ − (•)xo− .

In the present case, the discontinuity conditions, Eqs. (17, 18) yield

ϑ,ss (xo+) − ϑ,ss (xo−) = 3

4
βh2 (

ϑ,ss (xo+)3 − ϑ,ss (xo−)3) , (19)

ϑ,ss (xo+)2 − ϑ,ss (xo−)2 = 9

8
βh2 (

ϑ,ss (xo+)4 − ϑ,ss (xo−)4). (20)

The Eqs. (15, 16, 19, 20) yield the equilibrium of the pure bending problem under a non-smooth curvature
field, caused by non-convex stored energy density function.

A simple symmetric solution for the governing Eq. (15) and the boundary conditions, Eqs. (16), and the
corner conditions corresponding to non-smooth strain gradient field, Eqs. (19, 20), is expressed by

ϑ,s = M

E I
(
1 + cg2

) + B1 cosh (ωx) for 0 < x < xo, (21)

ϑ,s = M

E I
(
1 + cg2

) + A2 sinh (ωx) + B2 cosh (ωx) for xo < x < L (22)

with ω =
√

1+cg2

g2 and x denoting the x1 coordinate. Further, algebra on the corner system, Eqs. (19, 20),
reveals that

ϑ,ss (xo) = ± 2√
3β h

. (23)

Considering that ϑ,ss (xo−) = 2√
3β h

and ϑ,ss (xo+) = − 2√
3β h

that is proved to be the unique solution of the
corner system, the simplified solution, Eqs. (21, 22), yields the following equations:

B1 cosh (ωxo) = A2 sinh (ωxo) + B2 cosh (ωxo) . (24)

Corresponding to the continuity of the curvature, Eqs. (21, 23) yield

B1 ω sinh (ωxo) = 2√
3β h

. (25)

Further, the relation ϑ,ss (xo−) /ϑ,ss (xo+) = −1 yields

(B1 + B2) tanh (ωxo) + A2 = 0. (26)

In addition, the boundary condition, Eq. (16), yields,

m/E I = −g2ω (A2 cosh (ωL) + B2 sinh (ωL)) . (27)

The system of the four Eqs. (24–27) defines the four unknowns B1, A2, B2, and xo.
Implementation of the theory is found in the application that follows. Let us consider a beam with h =

0.02, g = 0.03, 2L = 0.20, and then, with m = −0.030, we get the curvature function defined by

ϑs = 0.55
M

E I
+ B1 cosh (ωx) 0 < x < xo = 0.03, (28)

ϑs = 0.55
M

E I
+ A2 sinh (ωx) + B2 cosh (ωx) xo = 0.03 < x < 0.1. (29)

In this case, ω = 176, 4, and the curvature corresponding to Eq. (28, 29) is shown in Fig. 2.
It is simply evident that at the non-smooth point there is a maximum (peak) of the curvature.
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Fig. 2 Diagram of the continuous curvature θs versus x

3 The buckling of a beam with non-convex strain energy due to non-smooth strain gradient fields

The buckling problem of a strain gradient elastic beam will be studied, with non-convex strain energy density
function. Allowing for non-smooth fields of the strain gradient, the strain fields remain smooth. Let us consider
a beam of inextensible elastic line of length L applying the compressible force P at one end, see Fig. 3. The strain
energy density is similar to the one proposed in the preceding section, and the total potential is expressed by

Ṽ =
L∫

0

(
E I

2

(
1 + cg2)ϑ,2

s +g2 E I

2
ϑ,2

ss −g2 3βE I

16
h2ϑ,4

ss −P (1 − cos ϑ)

)
dx (30)

where ϑ is the angle of the elastic line with the axis of the beam and w is the beam displacement, while s
denotes the arc of the elastic line. Due to the inextensibility condition, the curvature ϑ,s is expressed by

ϑ,s ≈ w′′
√

1 + w′2 (31)

and cos ϑ ≈ √
1 − w′2 while w denotes the beam displacement.

If V = Ṽ /E I , and p = P/E I , then the total potential energy may be approximated by

V = 1

2

(−pw′2 + (
1 + cg2)w′′2 + gw′′′2) + 1

2

(− (
1 + cg2)w′2w′′2 − 2g2w′w′′2w′′′ − g2w′2w′′′2)

− 3

16
βg2h2w′′′4. (32)

A simple variational procedure for the functional V yields the nonlinear governing equation

−g2wV I + (
1 + cg2)w I V + pw′′ = (

1 + cg2) w′′3 − 10g2w′′2w I V − 10g2w′w′′′w I V

+ w′′ (−15g2w′′′2 + w′ (1 + cg2)w′′′ − 6g2wV
)

+ w′2 ((
1 + cg2)w I V − g2wV I

)

− 9

4
βg2h2

(
2w I V 3 + 6w′′′w I V wV + w′′′2wV I

)
(33)

with the boundary conditions

Fig. 3 The buckling beam
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Q/E I = −pw′ − 0.5
(
1 + cg2)w′′′ + g2wV + (

1 + cg2) (
w′w′′2 + w′2w′′′)

−g2(( − 3w′′′(2w′′2 + w′w′′′))) − g2
(

4w′w′′w I V + 9

4
βh2w′′′ (2w I V 2 + w′′′wV

)
+ w′2wV

)

or δw = 0 at x = 0, L , (34)

M/E I = (
1 + cg2) w′′ − g2w I V − (

1 + cg2)w′2w′′ + g2

2

(
4w′w′′w′′′ + 9

2
βh2w I V w(3)2 + 2w′2w I V

)

or δw′ = 0 at x = 0, L , (35)

m/E I = g2w′′′ − g2w′w′′2 − g2w′′′w′2 − 3

4
βh2w′′′3 or δw′′ = 0 at x = 0, L . (36)

Further, the corner type conditions for the non-smooth strain gradient are expressed by Eqs. (17, 18), corre-
sponding to

3βh2 (
w (xo−) ,2

xxx +w (xo−) ,xxx w (xo+) ,xxx +w (xo+) ,2
xxx

) + 4w (xo) ,2
xx −4 = 0 (37)

and

(w (xo−) ,xxx + w (xo+) ,xxx )
(−8 + 8w (xo+) ,2

xx + 9βh2 (
w (xo−) ,2

xxx +w (xo+) ,2
xxx

)) = 0 (38)

where xo is the point of non-smoothness of the strain gradient field. The solution of the system of Eqs. (37,
38) yields

w (xo∓) ,xxx = ±2
√

1 − w (xo) ,2
xx√

3βh
. (39)

Since the buckling problem depends on the solution of the linear problem composed by the governing equation,

− g2wV I + (
1 + cg2)w I V + pw′′ = 0, (40)

and the boundary conditions,

Q/E I = −pw′ − 0.5
(
1 + cg2)w′′′ + g2wV or δw = 0 at x = 0, L , (41)

M/E I = (
1 + cg2)w′′ − g2w I V or δw′ = 0 at x = 0, L , (42)

m/E I = g2w′′′ or δw′′ = 0 at x = 0, L , (43)

the solution to the buckling problem Eq. (40) is defined by the function

w (x) = ξ (c2 + c1x + sin (r1x) + c3 cos (r1x) + c4 sinh (r2x) + c5 cosh (r2x)) (44)

with r1 =
(

−a+
√

a2+4g2 p
2g2

)1/2

, r2 =
(

a+
√

a2+4g2 p
2g2

)1/2

where a = I+g2 A
I , satisfying the boundary con-

ditions, Eqs.(42–44). Details for the buckling solution of the linear problem may be found in Lazopoulos
and Lazopoulos [24]. The critical load po, along with the coefficients ci i = 1, . . . , 5, may be defined by
the system of six equations derived by the substitution of the w (x) function in the six boundary conditions,
Eqs. (42, 43).

Increasing the critical loading,

p = po (1 + λ) , (45)

where λ ≈ O
(
ξ2

)
, the equilibrium system may compactly be denoted by

L (w) = R (λ,w) (46)

Applying the well-known Fredholm Alternative theorem, Troger and Steindl [25] for the buckling of the beam
in the present case, the relation between the applied thrust and deflection of the beam in the post-critical area
is defined. The proposed methodology will be implemented in the simply supported beam.
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4 Buckling of a simply supported beam

The present section clarifies the procedure proposed in the preceding section. The buckling and post-critical
behavior of a simply supported beam, Fig. 3, strain gradient elastic beam with non-smooth strain gradient, will
be studied.

Taking into consideration the symmetry of the problem, we change the boundaries from x = 0, L to
x = −L/2, L/2. The symmetric solution, see Eq. (44), yields, in the present case,

w (x) = c1 + c2 cos (r1x) + c3 cosh (r2x) for 0 < x < xo, (47.1)

w (x) = c4 + c5x + c6 cos (r1x) + c7 cosh (r2x) + c8 sin(r1x) + c9 sinh(r2x)

for xo < x < L/2, (47.2)

The boundary conditions at x = L/2 are corresponding to

Q = M = m = 0. (48)

That is,

Q = −pw′ − 0.5
(
1 + cg2) w′′′ + g2wV = 0 at x = L/2, (49)

M = (
1 + cg2) w′′ − g2w I V = 0 at x = L/2, (50)

m = g2w′′′ = 0 at x = L/2. (51)

Furthermore, we impose the condition:

w(L/2) = 0. (52)

And at point x = x0, the boundary conditions are expressed by:

w (xo∓) ,xxx = ± 2√
3βh

, (53)

w (xo+) = w(xo−), (54)

w′ (xo+) = w′(xo−), (55)

w′′ (xo+) = w′′(xo−). (56)

From these 9 equations, the 9 unknowns c1, c2, c3, c4, c5, c6, c7, c8, c9, will be defined and various
diagrams will be plotted.

Let us first consider a beam with length L, with h the height of the cross-section, and b the breadth of
the cross-section. This beam is loaded by a compressive force at the right end of the beam Fig. (3). The
beam is simply supported at the ends. The displacement equation is given by the Eqs. (47.1) and (47.2). It is
then required to calculate the constant variables c1, c2, c3, c4, c5, c6, c7, c8, c9. To be more specific, a detailed
numerical example is presented, implementing the theory.

The input for this calculation is as follows:
The length of the beam is L = 1 mm, while b = 0.1L is the breadth of the cross-section of the beam, and

h = 0.09L is the height of the cross-section of the beam (Figs. 4, 5, 6).
The area of the cross-section of the beam is A = bh, g = 0.05L is the intrinsic length, x0 = L/10

is the point where we have the discontinuity of w′′′(x), while I = 1/12bh3 is the moment of inertia of the
cross-section.

P = 0.8(3.142 E I )/L2 is the compressive force applied on the beam (where E is Young’s modulus),
p = P/((E I )) is the compressive force of the beam, α = (I + g2bh)/I is the α shape coefficient,

r1 =
(

−a+
√

a2+4g2 p
2g2

)1/2

is the r1 coefficient, r2 =
(

a+
√

a2+4g2 p
2g2

)1/2

is the r2 coefficient of the beam,

β = 0.2 is the non-convex parameter in the strain energy density function, and c = A
I is the c coefficient

denoting the inverse of the square of radius of gyration of the beam cross-section.
This input is mainly inserted in Eqs. (47.1), (47.2) so that we have the corresponding equations for w(xo+)

and w(xo−). Considering the boundary conditions (49)–(56), a linear system consisting of 9 equations with
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Fig. 4 Displacement of the beam versus x diagram
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Fig. 5 First derivative of the displacement versus x diagram
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Fig. 7 Third derivative of displacement versus x diagram

nine unknowns (c1, c2, c3, c4, c5, c6, c7, c8, c9) is formulated. With the help of the computerized algebra Math-
ematica package [26], Eqs. (49)–(56) are solved and the parameters are defined,

c1 = 0.00098 mm, c2 = 0.01356 mm, c3 = −9.160210−6 mm, c4 = 0.00005 mm,

c5 = −0.0001 mm, c6 = 0.01753 mm, c7 = −0.02687 mm, c8 = −0.02319 mm, c9 = 0.02687 mm.

Then, the displacement of the beam w(x) is given by:

w(x) = c1 + c2 cos(r1x) − c3 cosh(r2x) for 0 < x < x0, (57)

w(x) = c4 + c5 x + c6 cos(r1 x) + c7 cosh(r2 x) + c8 sin(r1 x) + c9 sinh(r2 x)

for x0 < x < L/2. (58)

After replacing ci from (57), (58), it is obvious that the displacement w(x) is smooth.
That is shown in the w(x) diagram, Fig. 4.
The first derivative of the displacement of the beam w′(x) is:

w′(x) = −c2 r1 sin(r1 x) + c3r2 sinh(r2 x) for 0 < x < x0, (59)

w′(x) = c5 − c6 r1 sin(r1x) + c7 r2 sinh(r2 x) + c8 r1 cos(r1 x) + c9 r2 cosh(r2 x)

for x0 < x < L/2. (60)

From (59) and (60) (after replacing ci ), it is easy to conclude that the first derivative w′(x) is also continuous.
And the w′(x) is shown in Fig. 5.
The second derivative (the curvature or the strain) w′′(x) of the displacement of the beam is:

w′′(x) = −c2 r2
1 cos(r1 x) + c3 r2

2 cosh(r2 x) for 0 < x < x0, (61)

w′′(x) = −c6 r2
1 cos(r1 x) + c7 r2

2 cosh(r2 x) − c8 r2
1 sin(r1 x) + c9 r2

2 sinh(r2 x)

for x0 < x < L/2. (62)

From Fig. 6, it is obvious that the second derivative of the displacement (the strain) of the beam w′′(x) is
continuous, with discontinuous third derivative at x = xo= L/10.

Finally, the third derivative of the displacement of the beam w′′′(x) is found:

w′′′(x) = c2r3
1 sin(r1x) + c3r3

2 sinh(r2x) for 0 < x < x0, (63)

w′′′(x) = c6r3
1 sin(r1 x) + c7 r3

2 sinh(r2 x) − c8 r3
1 cos(r1 x) + c9 r3

2 cosh(r2 x)

for x0 < x < L/2, (64)

and the discontinuous diagram of w′′′(x) is Fig. 7.
In Fig. 7, the discontinuity of the values w(xo+), w(xo−) is obvious (at xo = L/10).
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5 Conclusions

A new beam bending theory is proposed in the context of strain gradient elasticity. Continuous displacement
with smooth elastic lines with continuous tangent and continuous curvature fields is considered but with discon-
tinuous evolutes. The proposed method extends the strain gradient elastic theory in one-dimensional bars with
smooth displacement and strain fields, but with non-smooth strain gradient fields proposed by Lazopoulos [11].
The proposed theory describes the coexistence of phases phenomena, before the appearance of discontinuous
strain fields.
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