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Abstract We analytically investigate shear horizontal surface acoustic wave (SH-SAW) propagation in layered
piezoelectric structures loaded with viscous liquid, which involves a thin piezoelectric layer imperfectly bonded
to an unbounded elastic substrate. The coupling wave equations are obtained based on the linear piezoelectric
theory. The governing equations are solved by means of the analytical method with consideration of electrically
open and shorted cases, respectively. The dispersive relations are obtained, and the effects of the imperfect
constant on the properties of waves are presented and discussed. From the numerical results, we can find that
the phase velocity decreases with the increase of the interface parameter n, and for a specified viscosity, the
attenuation increases with the interface parameter. The results show that the effects of the imperfect constant
on the properties of SH-SAW are remarkable.

1 Introduction

Surface acoustic waves (SAWs) are widely used in resonators, actuators and sensors since the interdigital
transducers (IDTs) were invented in 1965 [1]. The acoustic energy concentrates in the region under the surface
within a few wavelengths, which results in some important advantages for the microacoustic devices, such
as high sensitivities, fast responses and low cost. Shear horizontal surface acoustic wave (SH-SAW) sensors
are normally used in gas detection, chemical analysis, medical analysis, environmental monitoring and so on.
Studying the effects of the viscous liquid on the propagation of SH-SAW is of great significance in biosensing
or chemical sensing applications. Guo and Sun [2] analyzed the propagation of Bleustein–Gulyaev wave (B-G
wave) in 6-mm piezoelectric materials loaded with viscous liquid. Zhang et al. [3] studied B-G wave for liquid
sensing applications. Zaitsev et al. [4] investigated the acoustic waves in piezoelectric plates bordered with
viscous and conductive liquid. Wu and Wu [5] investigated surface waves in a coated anisotropic medium
loaded with viscous liquid. The propagation of Love waves in prestressed layered piezoelectric structures
loaded with viscous liquid [6] and the SH-SAW propagation in layered functionally graded piezoelectric
material structures loaded with viscous liquid [7] were discussed by Du et al. Chen et al. [8] considered the
viscous effects on shear horizontal surface acoustic waves in semi-infinite superlattices.

L. Yuan · J. Du (B) · T. Ma · J. Wang
Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University,
818 Fenghua Road, Ningbo, 315211 Zhejiang, China
E-mail: dujianke@nbu.edu.cn
Tel.: +86-574-8760-0074
Fax: +86-574-8760-8358

L. Yuan
Faculty of Architectural, Civil Engineering and Environment, Ningbo University, 818 Fenghua Road,
Ningbo, 315211 Zhejiang, China



2 L. Yuan et al.

In the above-mentioned researches, the combination of piezoelectric material and substrate is assumed
to be perfectly bonded, which implies the continuity of stresses and displacements across the interface. In
practice, due to various reasons such as damage, aging of adhesive layers, microcracks and diffusion impurity,
the piezoelectric layer is not perfectly coated on the substrate. Thus, it is of practical importance to take
the possible interface damages into consideration in the designs and applications of piezoelectric sensors.
The imperfection has been taken into account some simplified interfacial models, such as spring-layer mode
[9], multi-layered homogeneous model [10] and spring-mass mode [11]. In these models, the spring–layer
relationship is widely accepted to characterize the constitutive behaviors of imperfect interfaces, which assumes
the stresses are continuous and the displacements are jumped across the interface. Previously, weak bonded
structures with elastic waves have been widely studied [12–18]. Fan et al. [12] studied the piezoelectric waves
near an imperfectly bonded interface between two half-spaces. Li and Lee [13] investigated the effect of the
imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Liu et al. [14] studied
shear horizontal surface waves in a layered piezoelectric half-space with imperfect interface. Huang and Li
[15] analyzed shear waves in two magnetoelectric materials bonded imperfectly. Chen et al. [16] studied shear
horizontal waves in rotated Y-cut quartz with imperfect interface.

In this paper, we focus on the propagation of SH-SAW in imperfectly bonded piezoelectric structures
loaded with viscous liquid. The linear spring model is used to simulate the imperfection of bonding behavior at
the interface. The effects of the imperfect interface on wave propagation are analyzed and discussed in detail.
The method and the results are useful for the design of the acoustic wave sensors in liquid-phase application.

2 Formulation of the problem

A layered piezoelectric structure loaded with viscous liquid involving a thin piezoelectric layer imperfectly
bonded to an elastic substrate is illustrated in Fig. 1. The piezoelectric material and the liquid occupy the
half-space x < 0 and the substrate covers the half-space x > 0. The piezoelectric material and the substrate
are polarized along the z-direction. We here only consider the so-called anti-plane motion, and the coupled
wave equations and the constitutive equations can be given as [7]

c44∇2w + e15∇2φ = ρ
∂2w

∂t2 ,

e15∇2w = ε11∇2φ,

(1)

Txz = c44w,x + e15φ,x ,

Tzy = c44w,y + e15φ,y,

Dx = e15w,x − ε11φ,x ,

Dy = e15w,y − ε11φ,y,

(2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the two-dimensional Laplace operator in Cartesian coordinates,w is the displacement
component in z-direction, φ is electric potential and ρ is the mass density. Ti j and Di are the stress and electric
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Fig. 1 A half-space layered piezoelectric structure loaded with viscous liquid



Study on SH-SAW 3

displacements, respectively. cpq and εik are the elastic constants and dielectric permeability coefficients,
respectively; eiq is the piezoelectric coefficient.

We can define

ψ = φ − e15

ε11
w. (3)

Then, Eq. (1) can be reduced as follows:

c∗
44∇2w = ρ

∂2w

∂t2 , ∇2ψ = 0, (4)

where c∗
44 is given by

c∗
44 = c44 + e2

15

ε11
. (5)

The displacement and electric potential in the substrate tend to zero when the coordinate x approaches infinity
along the positive x-axis, namely

x → +∞, wm = 0, φm = 0, (6)

where the superscript m indicates the quantities in the substrate. The continuity conditions and electrically
open conditions for the interface between liquid and the piezoelectric layer can be given by

ẇ (−h, y, t) = vL (−h, y, t),

Txz (−h, y, t) = T L
xz (−h, y, t),

Dx (−h, y, t) = 0,

(7)

where νL is the liquid particle velocity in the z-direction. The superscript L indicates the quantities in the
liquid. The continuity conditions and electrically shorted conditions for the interface between liquid and the
piezoelectric layer can be given by

ẇ (−h, y, t) = vL (−h, y, t),

Txz (−h, y, t) = T L
xz (−h, y, t),

φ (−h, y, t) = 0.

(8)

For the linear spring model [9], the bond between the piezoelectric layer and the elastic substrate is not perfect,
and it is a “mechanical spring” pattern, i.e., the stress is continuous and the displacements are jumped, so we
can assume the conditions as follows:

Txz (0, y, t) = T m
xz (0, y, t) = α

[
wm(0, y, t)− w (0, y, t)

]
,

φ (0, y, t) = φm (0, y, t) , Dx (0, y, t) = Dm
x (0, y, t),

(9)

where α is the bond coefficient, which indicates the intensity of the bond between the piezoelectric layer and
the elastic substrate. For α → ∞, the bond is perfect, and for α → 0, there is no mechanics bond between the
piezoelectric layer and the elastic substrate, i.e., it is a sliding interface.

In addition to the aforementioned boundary and interface, the displacement and electric potential in the
substrate tend to zero when coordinate x approaches infinity along the negative x-axis, namely

x → −∞, wL , φL → 0. (10)
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3 Solution to the problem

3.1 Solutions in the piezoelectric layer

We consider the following solution forms of (4):

w = w (x) exp [iξ (y − ct)] ,

ψ = ψ (x) exp [iξ (y − ct)] ,
(11)

where ξ is the complex wave number, and ξ = ω
c (1 + γ i) = k(1 + γ i). c and k are the phase velocity and

the real part of the wave number in the y-direction, respectively. γ is the attenuation coefficient, and ω is the
angular frequency. Substituting (11) into (4), we can obtain

w′′ (x)− ξ2b2w (x) = 0, ψ ′′ (x)− ξ2ψ (x) = 0, (12)

where b2 = ρc2

c∗
44

− 1. The solutions to (12) are assumed as

w (x) = C1 cos(ξbx)+ C2 sin(ξbx),

ψ (x) = C3eξ x + C4e−ξ x ,
(13)

where C1,C2,C3 and C4 are unknown constants to be determined. Then, the displacement and electric potential
are given by

w (x, y, t) = [C1 cos(ξbx)+ C2 sin(ξbx)] exp [iξ (y − ct)] ,

φ (x, y, t) =
[

C3eξ x + C4e−ξ x + e15

ε11
(C1 cos(ξbx)+ C2 sin(ξbx))

]
exp [iξ (y − ct)] .

(14)

3.2 Solutions in the viscous liquid

The liquid is assumed to be viscous and nonconductive. Suppose the motion of liquid is induced only by
the wave propagation in the piezoelectric material and also propagates in the form of a harmonic wave. The
embroil inertial term in the Navier–Stokes equation can be omitted for this problem. Moreover, the pressure
gradient also can be ignored since only shear deformation occurs during the wave propagation. Therefore, the
governing equation for the liquid is reduced to be

μL∇2vL = ρL v̇L , (15)

where ρL is the mass density of liquid and μL is the dynamic viscous coefficient of the liquid. The solution
for Eq. (15) is assumed as:

vL = vL (x) exp [iξ (y − ct)] . (16)

Substituting (16) into (15) and considering the radiation conditions in the liquid far from the interface, we can
obtain

vL (x) = D1eλx , (17)

where λ2 = ξ2 − iω ρ
L

μL , Re (λ) > 0 and D1 are unknown constants to be determined. Then, we can obtain

vL = D1eλx exp [iξ (y − ct)]. (18)

The shear stress can be obtained by the Newtonian liquid law, namely

T L
xz = μL ∂v

L

∂x
.
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3.3 Solutions in the elastic substrate

The solutions to the displacement and the electric potential of waves in the substrate are given by

wm = Bm
1 e−ξbm x exp [iξ (y − ct)],

φm = Bm
2 e−ξ x exp [iξ (y − ct)],

(19)

where bm =
√

1 − ρmc2/cm
44, Bm

1 , Bm
2 are unknown constants.

4 The phase velocity equation

From the conditions (9), we can obtain the following:

C1α + C2

(

c44 + e2
15

ε11

)

ξb + C3e15ξ − C4e15ξ − αBm
1 = 0,

− C1α + Bm
1

(
cm

44ξbm + α
) + Bm

2 em
15ξ = 0,

C1
e15

ε11
+ C3 + C4 − Bm

2 = 0,

− C3ε11 + C4ε11 + Bm
1 em

15bm − Bm
2 ε

m
11 = 0.

(20)

4.1 Solutions to the electrically open conditions at the interface between the liquid and the piezoelectric layer

From the electrically open conditions at the interface between the liquid and the piezoelectric layer (7), we
can obtain the following:

iω cos(bhξ)C1 − iω sin(bhξ)C2 + D1 exp(−hλ) = 0,

C1bξ(c44 + e2
15/ε11) sin(bξh)+ C2bξ(c44 + e2

15/ε11) cos(bξh)

+ C3e15ξ exp(−ξh)− C4e15ξ exp(ξh)− D1μ
Lλ exp(−hλ) = 0,

− C3 exp(−hξ)+ C4 exp(hξ) = 0.

(21)

(20) and (21) are the linear algebraic equations about constants C1,C2,C3,C4, D1, Bm
1 , Bm

2 . In order to obtain
the nontrivial solutions to the above-mentioned unknown constants, the determinant of the coefficient matrix
of these linear algebraic equations needs to be zero. Then, the dispersive relation for the electrically open
conditions can be obtained.

4.2 Solutions of the electrically shorted conditions at the interface between the liquid and the piezoelectric
layer

From the electrically shorted conditions at the interface between the liquid and the piezoelectric layer (8), we
can obtain the following:

iω cos(bhξ)C1-iω sin(bhξ)C2 + D1 exp(−hλ) = 0,

C1bξ(c44 + e2
15/ε11) sin(bξh)+ C2bξ(c44 + e2

15/ε11) cos(bξh)

+ C3e15ξ exp(−ξh)− C4e15ξ exp(ξh)− D1μ
Lλ exp(−hλ) = 0,

C1
e15

ε11
cos(bhξ)− C2

e15

ε11
sin(bhξ)+ C3 exp(−hξ)+ C4 exp(hξ) = 0.

(22)

Similarly, (20) and (22) are the homogeneous algebraic equations about constants C1,C2,C3,C4, D1, Bm
1 , Bm

2 .
In order to obtain the nontrivial solutions of the above-mentioned unknown constants, the determinant of the
coefficient matrix of these linear algebraic equations needs to be zero. The dispersive relation for the electrically
shorted conditions can be obtained.
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5 Numerical results and discussion

We can obtain the dispersive relations from (20) and (21) for the electrically open case and from (20) and (22)
for the electrically shorted case. The material constants of piezoelectric layer and elastic substrate are given in
Tables 1 and 2, respectively. Unless specifically mentioned, the thickness of the piezoelectric layer is assumed
to be h = 0.1 mm, and the mass density of the liquid is ρL = 1 × 103 kg/m3 in the following discussion. For
simplicity, we bring in a dimensionless interface parameter n to measure the interfacial imperfection, namely

n = c∗
44/αh, c∗

44 = c44 + e2
15/ε11.

Figures 2 and 3 show the phase velocity of the first mode for electrically open and shorted cases with viscosity
μL = 0.5 N s/m2, respectively. From the results, we can find that the phase velocity decreases with the interface
parameter. Furthermore, it can be seen that for smaller interface parameters, such as n = 0, the phase velocity
curves are monotonous, and the phase velocity decreases with the increase in the nondimensional wave number.
For the larger interface parameters, i.e., for the weaker interfaces, the curves are not monotonous. The phase
velocity decreases with the increase in the wave number at first, and then, it increases until approaching a
horizontal limit value.

As we know, the SH-SAW will attenuate during propagating because of the viscosity of the liquid. Figures 4
and 5 illustrate the electrically open and shorted cases, respectively, in order to show the effect of the imperfect
interface on the relationship between the attenuation (kγ ) and the frequency. For the perfect bond, we can
find that the attenuation increases with the frequency, and the relationship between the attenuation and the
frequency is nonlinear. If the bond is getting to be weaker, it can be seen that the attenuation increases with
the interface parameter n.

The relationships between the phase velocity and the viscosity of the liquid for electrically open and shorted
cases are illustrated in Figs. 6 and 7, respectively. It can be seen that the phase velocity decreases with the
increase in liquid viscosity. No matter the bond is perfect or imperfect, the tendencies of the curves are similar.
In addition, we can see clearly that the phase velocity decreases with the increase of the interface parameter
once more.

Table 1 Material coefficients of the piezoelectric BaTiO3

c44 (109 N/m2) e15 (C/m2) ε11 (10−9 C2/Nm2) ρ (103 kg/m3)

43 11.6 11.2 5.8

Table 2 Material coefficients of the SiO2

cm
44 (109 N/m2) εm

11 (10−9 C2/Nm2) ρm (103 kg/m3)

31.2 3.36 2.2

Fig. 2 Dispersive relationship for electrically open case
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Fig. 3 Dispersive relationship for electrically shorted case

Fig. 4 Attenuation versus frequency for electrically open case

Fig. 5 Attenuation versus frequency for electrically shorted case
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Fig. 6 Phase velocity versus viscosity for electrically open case (kh = 10)

Fig. 7 Phase velocity versus viscosity for electrically shorted case (kh = 10)

Fig. 8 Attenuation versus viscosity for electrically open case
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Fig. 9 Attenuation versus viscosity for electrically shorted case

Fig. 10 Phase velocity versus viscosity with different mass densities of liquid for electrically open case ( f = 40 MHz, n = 1)

Fig. 11 Phase velocity versus viscosity with different mass densities of liquid for electrically open case ( f = 40 MHz, n = 0)
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Fig. 12 Phase velocity versus density ratio ρL/ρ with different interface parameters for electrically open case (kh = 10)

Figures 8 and 9 show that the attenuation increases with the viscous coefficient. In particular, for a specified
viscosity, the attenuation increases with the increase in interface parameter. Whether the bond is perfect or
not, the shapes of different curves are similar.

Figures 10 and 11 show the phase velocity with different mass densities of liquid ρL for interface parameter
n = 1 and n = 0, respectively. From the results, we can see that the phase velocity decreases with the mass
density of the liquid, which can be seen more clearly in Fig. 12.

6 Conclusions

The properties of SH-SAW propagation in layered piezoelectric material structures loaded with viscous liq-
uid are investigated, which involves a thin piezoelectric layer imperfectly bonded to an unbounded elastic
substrate. A generalized linear spring-layer model is used to characterize the interfacial bonding conditions.
The governing equations are solved by means of the analytical method with consideration of electrically open
and shorted cases, respectively. The effects of the imperfect interface on wave propagation are analyzed and
discussed in detail. From numerical results, we can find that the phase velocity decreases with the increase in
the interface parameter, and for a specified viscosity, the attenuation increases with the increase in the interface
parameter. The method and the results are useful for the design of the acoustic wave sensors in liquid-phase
application.
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