
Acta Mech 224, 2453–2469 (2013)
DOI 10.1007/s00707-013-0948-5

C. Spieler · M. Kästner · J. Goldmann · J. Brummund ·
V. Ulbricht

XFEM modeling and homogenization of magnetoactive
composites

Received: 15 October 2012 / Revised: 17 December 2012 / Published online: 14 August 2013
© Springer-Verlag Wien 2013

Abstract This paper addresses the application of the extended finite element method (XFEM) to the modeling
of two-dimensional coupled magneto-mechanical field problems. Continuum formulations of the stationary
magnetic and the coupled magneto-mechanical boundary problem are outlined, and the corresponding weak
forms are derived. The XFEM is applied to generate numerical models of a representative volume element,
characterizing a magnetoactive composite material. Weak discontinuities occurring at material interfaces are
modeled numerically by an enriched approximation of the primary field variables. In order to reduce the
complexity of the representation of curved interfaces, an element local approach is proposed which allows an
automated computation of the level set values. The composite’s effective behavior and its coupled magneto-
mechanical response are computed numerically by a homogenization procedure. The scale transition process
is based on the energy equivalence condition, which is satisfied by using periodic boundary conditions.

1 Introduction

The present study is motivated by the need to develop a multi-scale modeling approach for novel composite
materials with magnetically switchable rheological properties. On the microscale, the proposed composite
material consists of a polymeric matrix with embedded magnetizable particles as shown in Fig. 1a. Such
materials are called magnetorheological or magnetosensitive elastomers. The rheological properties of the
composite can be altered by the application of an external magnetic stimulus. This so-called “magnetorhe-
ological effect” is caused by magnetic and mechanical interactions between the micron-sized magnetizable
particles. During the manufacturing process, before curing the elastomer, the particles are disordered in the
absence of an external magnetic induction (|B| = 0). Such a particle configuration is presented by a photo-
micrograph of a magnetorheological fluid, without an applied magnetic field, in Fig. 1b. A magnetorheological
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(a) (b) (c) (d)

Fig. 1 Composite materials with magnetically switchable properties: a hierarchical material structure at two distinct length scales;
macroscopic stiffness C is linked to magnetic induction B, b photo-micrograph of disordered particles in a magnetorheological
fluid without any external magnetic induction (|B| = 0), c chain-like clusters of magnetized particles aligned with the external
magnetic induction |B| �= 0 and d computed tomography (CT) scan of a magnetorheological elastomer

fluid is chosen for illustrative purposes only and is supposed to demonstrate the movability of the particles in
the noncured elastomer. When a magnetic field is applied, forces acting between the individual particles result
in the formation of particle clusters, which are aligned with the direction of the magnetic induction B (Fig. 1c).
If a magnetic field of a certain amount is present during the curing process of the elastomeric matrix, the
particles arrange in chain-like structures and keep their position in the polymeric network, see Fig. 1d. These
microstructural formations influence the effective magnetic and mechanical properties of the composite.

In order to predict the effective material behavior of the described composite, a modeling approach using
a staggered numerical homogenization algorithm based on finite element (FE) simulations of a representative
volume element (RVE) is to be presented in this article. There are several techniques to realize the transition
between the various length scales, which physically determine the macroscopic material behavior. The group of
Billardon considers the level of the magnetic domains, to incorporate the domain evolution and microscopically
motivated effects on magnetostriction and magnetization in polycrystalline media, for reversible behavior in [1,
2]. Miehe et al. [3] account for dissipative processes at the grain scale, which results in effective magnetization
curves with hysteresis and the butterfly curve (known from ferroelectric materials) for the magnetostrictive
strain. In a more phenomenological treatment and with attention to special structural aspects, the effective
behavior in the context of small strains is obtained by asymptotic homogenization, for instance in [4] for
piezoelectric composites, and in [5] with an exact matrix method for multilayered magneto-electro-thermo-
elastic structures. The majority of works are specified on electro-mechanically coupled problems, see for
example [6], but can also be applied to magnetoactive materials in a similar manner [7]. Aboudi [8] uses
an asymptotic expansion accounting for quadratic terms of the fluctuating fields in electro-magneto-thermo-
elastic composites. A variational formulation of the homogenization problem characterizes the macroscopic
response of the reversible [9] and dissipative [10] material behavior. An extension to finite strain is proposed by
Ponte Castañeda and Galipeau in [11,12] for magnetorheological elastomers limited to nondissipative processes
with rigid magnetizable particles of ellipsoidal shape and assuming an “ellipsoidal symmetry”. Brigadnov and
Dorfmann present a purely phenomenological model for magnetorheological elastomers in [13] without taking
any microstructural aspects into account, which results in an isotropic behavior. A continuum formulation of
nonlinear magneto-elastostatics is also presented in [14].

For the computational homogenization, a numerical model of the RVE has to be generated which is a
particular problem if complex local material structures are considered. In this case, the application of the
standard finite element method (FEM) tends to result in an extensive modeling and meshing effort, including
problems related to distorted element shapes. The extended finite element method (XFEM) [15,16] offers the
possibility to use nonconforming meshes, which do not have to be adapted to internal details, e.g., cracks or
material interfaces, of the structure under consideration. The location of discontinuities is independent of the
mesh. It is therefore used to model the local heterogeneous material structure of the composite mentioned above.

The paper is organized as follows: In Sect. 2, the stationary magnetic and the magneto-mechanical boundary
value problems are presented. By illustrating XFEM in Sect. 3, with a special focus on the element local level
set computation and the implementation, a modeling strategy for the homogenization problem of Sect. 4
is available. Section 5 provides, in addition to a nonlinear magnetic material model, results concerning the
convergence behavior of numerically computed homogenized linear material parameters as well as macroscopic
nonlinear magnetization curves. The last part of the results demonstrates the magneto-mechanical coupling
effect by analyzing mechanical stresses, which are induced by magnetic loadings. The paper is closed by some
concluding remarks and an outlook to necessary future work in Sect. 6.
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2 Continuum formulation of the boundary value problems

In this section, the governing equations of the stationary magnetic and the coupled magneto-mechanical
boundary value problems (BVP) will be outlined. They describe the local response of the aforementioned
magnetoactive composite material. Index notation with respect to a Cartesian frame and the Einstein summation
convention is applied. The material body covers the domainΩ , its boundary is labeled ∂Ω and material points
are identified by their position vector x.

2.1 Stationary magnetic boundary value problem

The continuum formulation of the electromagnetic field problem is given by the Maxwell equations [17]. In
the stationary case considered here, the equations for the electric and the magnetic field quantities decouple.
The corresponding stationary magnetic problem is described by

Bi,i = 0 and (1)

ei jk Hk, j = Ji , (2)

with the vectors of the magnetic induction B, the magnetic field H and the free current density J as well as the
third order permutation tensor e. The partial derivative of (•)with respect to the coordinate xi is abbreviated by
(•),i := ∂(•)

∂xi
. The magnetization M is related to the magnetic induction, the magnetic field and the permeability

of free space μ0 by

Bi = μ0(Hi + Mi ). (3)

It is essential to state a constitutive relation between two vectors out of B, H and M for solving the local
magnetostatic BVP. This is achieved for two different materials in Sect. 5.1, where two models, a linear and
a nonlinear isotropic constitutive relation, are used for modeling the magnetic material behavior. At a surface
of discontinuity Γd, the jump conditions

[[Bi ]]ni = 0 and (4)

ei jk[[Hk]]n j − Ki = 0, (5)

hold for the magnetic induction and the magnetic field. In the equations above, [[ψ]] = ψ+ −ψ− is the jump of
a physical quantity ψ across Γd according to Fig. 2a. Equation (4) mathematically represents the continuity of
the normal component of the magnetic induction. If no current density K acts on Γd, the tangential components
of the magnetic field have to be continuous according to Eq. (5).

By introducing the magnetic vector potential A using

Bi = ei jk Ak, j , (6)

(a) (b) (c)

Fig. 2 Magnetic and mechanical boundary value problems: a surface of discontinuity Γd, with associated unit normal vector n,
separating the domain Ω of the material body into two domains Ω+ and Ω−, b magnetic boundary value problem—prescribed
vector potential Â on ∂ΩA, surface current K̂ on ∂ΩK and current J in Ω , and c coupled magneto-mechanical boundary value
problem—prescribed displacements û on ∂Ωu , surface tractions p̂ on ∂Ωp as well as mechanical body force density ρf in Ω
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Eq. (1) is fulfilled, and only Eq. (2) has to be considered for the solution of the stationary magnetic BVP. An
additional condition, for example the Coulomb gauge

Ai,i = 0, (7)

is necessary to obtain a unique solution, because Eq. (6) only defines the rotational part of A. Using this gauge,
the essential boundary condition can be formulated by the vector potential A, which serves as the primary
variable for the FE implementation. On the part ∂ΩA of the external boundary (cf. Fig. 2b), the essential
condition

Ai = Âi (8)

is imposed for the i th coordinate of the vector potential. The part of the boundary with the natural boundary
condition

ei jk Hkn j = −K̂i (9)

is labeled ∂ΩK . The prescribed values K̂i have to represent the effects of any external magnetic field outside
the domain Ω and of surface currents K applied on ∂ΩK . For the well-posed definition of the boundary
conditions, ∂ΩA ∩ ∂ΩK = ∅ and ∂ΩA ∪ ∂ΩK = ∂Ω have to be valid for each coordinate direction.

2.2 Coupled magneto-mechanical boundary value problem

The here considered and implemented coupling is weak. This enables deformations caused by static magnetic
fields, but the other way around there are no changes in the magnetic variables due to strains or displacements.
For the stationary mechanical case, the balances of linear momentum

t tot
i j,i + ρ f j = 0 (10)

and angular momentum

ei jk t tot
jk = 0 (11)

equilibrate the total stress tensor ttot and a mechanical body force density ρf . According to Eq. (11), the total
stress tensor is symmetric. It can be split into t tot

i j = ti j + tm
i j , the sum of a mechanical stress tensor t and a

magnetic stress tensor tm. This decomposition is not free of arbitrariness. We use the magnetic stress tensor tm,
which is microscopically motivated by de Groot and Suttorp in [18], and specified in this work subsequently.
Furthermore, the used decomposition is compatible with phenomenological requirements. In general, i.e., for
anisotropic magnetic material behavior, Eq. (11) results in an unsymmetric mechanical stress tensor. This can be
understood by a couple density, which equals the unsymmetric part of the dyadic product of the magnetization
and the magnetic induction ei jk tm

jk = ei jk M j Bk . In this case, it is advantageous, from a numerical point of

view,1 to decompose the symmetric total stress according to [17] into the symmetric pseudo-mechanical stress
Et and the pseudo-magnetic stress tensor

t̂i j = Hi B j − Bi M j − 1

2

(
1

μ0
Bq Bq − 2Mq Bq

)
δi j . (12)

The symmetric stress tensors Et and t̂ are related to the mechanical and the magnetic stresses by

Eti j = ti j + Mi B j and t̂i j = tm
i j − Mi B j , (13)

which does not affect the sum t tot
i j = Eti j + t̂i j . As a consequence of the presence of the magnetic stresses,

accounted for by t̂i j or tm
i j , the jump condition

[[t tot
i j ]]ni + p j = 0 (14)

1 If the constitutive relation for the magnetic material behavior is isotropic, the vectors of magnetization and magnetic induction
will be parallel, and thus, no magnetic couple density exists. This preserves the symmetry of all introduced stress tensors.
Nevertheless, the formulation of the BVP and the implementation of XFEM are realized by the decomposition ttot = Et + t̂, in
order to be able to account for more sophisticated magnetic constitutive relations.
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for the traction vector at an internal surface of discontinuity Γd is formulated for the total stress tensor. If no
mechanical surface load p is applied on Γd, the sum of the mechanical and the magnetic tractions has to be
continuous.

There is another part which couples the magnetic and the mechanical BVP. This is expressed by the linear
elastic constitutive relation [17]

Eti j = Ei jklεkl , (15)

formulated with the pseudo-mechanical stress tensor and the fourth order elasticity tensor E. The infinitesimal
strain tensor ε is defined by the linear kinematic relation

εi j = 1

2

(
ui, j + u j,i

)
, (16)

which connects the strain to the symmetric part of the gradient of the displacement u. From Eq. (13)1, it is
obvious that a body which is free of mechanical stresses t but is magnetized deforms according to Eq. (15).

The magneto-mechanical BVP is completed by suitable boundary conditions according to Fig. 2c. On ∂Ωu ,
the essential condition

ui = ûi (17)

is formulated for the i th coordinate of the displacement vector. The natural boundary condition

t tot
i j ni = p̂ j (18)

is prescribed on ∂Ωp, where the effective surface load p̂i has to account for any contribution from mechanical
and magnetic tractions outsideΩ as well as an applied mechanical surface load p. In addition, ∂Ωu ∩∂Ωp = ∅

and ∂Ωu ∪ ∂Ωp = ∂Ω hold for each coordinate.

3 XFEM modeling of weak discontinuities

Generating numerical models of RVEs is a problem in particular if complex local material structures are
considered. In this case, the application of the standard FEM tends to result in an extensive modeling and
meshing effort including problems related to distorted element shapes.

XFEM [15,16] offers the possibility to use nonconforming meshes, which do not have to be adapted to
internal details, e.g., cracks or material interfaces, of the structure under consideration, see Fig. 3a. Hence, it
is used to model the local heterogeneous material structure of the composite mentioned above.

The following section explains the application of XFEM to model discontinuities in the magnetic and the
mechanical field problem and to capture the magneto-mechanical coupling due to magnetic loadings and the
material behavior.

Originally, XFEM was applied to model strong discontinuities (jumps) in the primary field variables as they
occur at a crack [15,19]. The features of XFEM allow for the simulation of crack growth without remeshing as
the mesh is independent of the crack topology. In rapid succession, the method has been used to model material
interfaces [16,20–22], which represent weak discontinuities in the mechanical BVP. In this context, XFEM and

(a) (b) (c)

Fig. 3 XFEM modeling of discontinuities: a intersection of a surface of discontinuity Γd with a regular mesh defines the location
of X-elements and the nodes with additional degrees of freedom, b computation of level set by signed distance, and c modified
abs-enrichment F according to [21] depending on local coordinates ξ
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level sets have been applied to image-based modeling of heterogeneous materials [23,24]. A comprehensive
review, concerning the methodological issues of XFEM and various applications, is given for instance in [25].

In this section, an XFEM formulation for weak discontinuities in the stationary magnetic and the coupled
magneto-mechanical BVP is developed. The location of the discontinuities is assumed to be identical for the
stationary magnetic and the coupled magneto-mechanical field problem. For simplicity and demonstration
purposes, only problems homogeneous in the x3-direction will be considered. In these two-dimensional prob-
lems, A1 = A2 = 0 is an appropriate choice, and the vector potential A contains only one nonzero component
A3 = A. Since there are no gradients in the third direction, the Coulomb gauge (7) is fulfilled and does not
have to be considered furthermore.

3.1 XFEM fundamentals

By a local enrichment of the FE approximation

ψh,XFEM =
∑

I∈N FEM

NIψ I

︸ ︷︷ ︸
FEM

+
∑

J∈N enr

NJψ
∗
J F

︸ ︷︷ ︸
Enrichment

, (19)

of the primary field variables ψ = {A, u}, where h characterizes the mesh size, discontinuities can be
modeled within a nonconforming mesh. The first sum over the product of shape functions NI and the nodal
vectorψ I of ordinary degrees of freedom at node I represents the standard FE approximation. The enrichment
consists of additional degrees of freedom ψ∗

J and an enrichment function F , which accounts for the physical
behavior at a surface of discontinuity. By a suitable choice of the enrichment function, strong (jump) and
weak (kink) discontinuities in the approximating function can be modeled. The different summation indices in
Eq. (19) indicate that only those nodes J ∈ N enr have additional degrees of freedom, whose support contains
a discontinuity.

The implementation of XFEM is realized by the definition of special X-elements, which replace the ordinary
finite elements intersected by a discontinuity (cf. Fig. 3a). We assume that the local enrichment can be restricted
to a single element domain, so that no further elements (blending elements [26]) have to be enriched. This has
to be ensured by the formulation of the enrichment function F .

In order to represent surfaces of discontinuity within the nonconforming mesh, the standard XFEM pro-
cedure is to compute the signed distance

ϕI = (xI − xmin) · nmin (20)

of the node I with the position vector xI to Γd (Fig. 3b), whereas nmin is the unit normal vector to the interface
at xmin pointing in the direction of Ω+. By interpolating the nodal values ϕI using the shape functions NI

ϕh =
∑

I

NIϕI =
⎧⎨
⎩

= 0 on Γd
< 0 in Ω−
> 0 in Ω+

, (21)

the values of the discretized level set function ϕh can be computed for every point in the element domain.
Hence, the surface of discontinuity Γd is located by ϕh = 0. The works of Belytschko et al. [16], Sukumar et
al. [20] and Stolarska et al. [27] closely link the concept of implicitly represented internal surfaces by level
sets [28] to the XFEM. In addition to the localization of the interface, the level set representation ϕh is used
to formulate an enrichment function F . In both, the magnetic and the mechanical field problem, a material
interface represents a surface of weak discontinuity. While the potential A and the displacement vector u have
to be continuous in the element, jumps of the magnetic induction B (tangential to Γd) and the strain ε (normal
to Γd) will occur and have to be modeled by the enrichment function. Although the governing equations of
both problems are different, the enrichment function

F =
∑

I

NI |ϕI | −
∣∣∣∣∣
∑

I

NIϕI

∣∣∣∣∣ (22)

proposed by Moës et al. [21] (Fig. 3c) for modeling weak discontinuities in mechanical BVP is also suitable for
the magnetic case. Regarding the implementation of elements with enriched approximations into a commercial
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FE code, the so-called “modified abs-enrichment” (22), also known as ridge function, is of special interest,
as the influence of additional degrees of freedom at node I is limited to the element domain intersected by a
material interface. It can be seen that F = 0 for all elements, whose nodal values of the signed distance satisfy
ϕIϕJ > 0, I �= J . Due to this feature of the enrichment, no blending elements are required. The superior
convergence of the modified abs-enrichment F over a simple abs-enrichment

∣∣ϕh
∣∣ is reported in [21,26,29].

3.2 Representation of curved interfaces

In order to model complex microstructures using XFEM, a level set representation of the material interfaces
has to be obtained, which is an easy task if the shape of the interface can be described by an analytical function,
e.g., an ellipse or a sphere. Because analytical expressions for the geometry of interfaces, boundaries, etc.,
are rarely available for realistic microstructures, robust algorithms are required to convert microstructural
information, such as computed tomography (CT) scans, into a level set representation. In a first step, relevant
and irrelevant information have to be separated in a process known as image segmentation. Typical algorithms
are edge detection [30,31], marching cubes [32,33] or level set based procedures [34–37]. While the latter
produces a single level set value for each voxel which can be mapped to the nodes of a finite element mesh
and directly used in an XFEM approach as proposed by Legrain et al. [23,24], the other methods will deliver
a set of discrete points and their connectivity.

In the following, we will briefly outline the idea of an element local level set representation obtained from
such a set of discrete points. Compared to the commonly used global level set representation, the computation
of nodal level set values is accomplished with respect to a parameter function fitted to the discrete points
representing the interface in a single element (Fig. 4). Hence, no information from neighboring elements has
to be considered. Since only a set of discrete points is required, the method is applicable to virtually any kind
of input data for the interface.

The procedure will be introduced for the case of bilinear quadrilaterals and is subsequently extended
to higher-order interface representations, allowing for a significant reduction of the geometric discretization
error. A mesh of four regular quadrilaterals, three of them intersected by a discontinuity Γd of circular shape
according to Fig. 4a, is considered as an illustrative example. The following algorithm is applied element by
element:

1. Obtain a set of discrete points defining the interface in the element J , e.g., the points of intersection of
the interface Γd with the element edges as they are available from marching cube algorithms for image
segmentation, indicated by crosses in Fig. 4a.

2. Obtain a linear parameter representation for the straight segment connecting the intersection points.

(a) (b) (c)

Fig. 4 Element local level set representation of a discontinuity Γd: a bilinear approximation of original interface by straight
segments and computation of different nodal level set values for two adjacent elements, b bilinear elementwise level set approx-
imation ϕh,J = 0 and subdivision into integration subdomains, and c biquadratic elementwise level set approximation ϕh,J = 0
and subdivision into curved integration subdomains
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3. For each node I in element J compute the element local nodal level set values ϕ J
I as signed distance to

the parameter function of step 2 (compare elements 1 and 2 in Fig. 4a). The interface is hence implicitly
represented by ϕh,J = ∑

I NIϕ
J
I = 0 (Fig. 4b).

4. Subdivide the element domain into triangular and quadrilateral integration subdomains, whereas the ver-
tices of the tessellation are given by the points of intersection and the element nodes.

In the bilinear case of Fig. 4a, b, the interface is, irrespectively of its original shape, converted into straight
segments defined by the intersection points of Γd with the edges of the regular approximation mesh, which
reduces the geometric complexity and facilitates the computation of the nodal level set values. In addition,
using this approach, the implicit interface approximation will be consistent with the subdivision of the element
domain used for integration purposes as shown in Fig. 4b.

Although the combination of XFEM and level sets originated from linear or bilinear discretizations of
the level set function, curved interfaces are of major importance, especially with respect to the generation of
complex microstructure models, and have motivated quadratic or higher-order XFEM formulations. Two major
approaches to the representation of curved interfaces have been developed. While Cheng and Fries [29], and
Kästner et al. [38] use the same order for the interface representation and the approximation of field variables,
several authors [39–41] propose to use higher-order approximations of field variables on a coarse mesh, in
combination with a discretization of the level set which is defined on a highly refined subgrid, derived from
the approximation mesh (background mesh) in the vicinity of the discontinuity.

Following the ideas in [29,38], the previously introduced level set representation can be applied in con-
junction with higher-order approximations (Fig. 4c). Compared to the bilinear elements, additional discrete
points are required to describe the interface location within the element. In the biquadratic case, for instance,
the midpoints of the interface could be used. The nodal values ϕ J

I are the signed distances to a higher-order
parameter function passing through the discrete points. Hence, the straight edges of the integration subdomains
are replaced by curved domains defined by the representation ϕh,J and the element edges. They are obtained
from a geometric map as used for isoparametric FE. In Sect. 5.2, the numerical performance of bilinear and
biquadratic approximations is compared in terms of a convergence study.

The quadrature of the weak form can be realized using a subdivision into curved integration subdomains as
proposed by [29]. Because curved interfaces result in convex and concave material subdomains, the subdivision
into such curved integration subdomains can be problematic for three-dimensional problems. We have therefore
proposed and investigated advanced numerical integration techniques for curved interfaces in [38]. All results
of the present contribution are obtained using Lasserre’s integration [42] in conjunction with the higher-order
element local level set representations. This integration method offers equal performance, compared to the use
of curved integration subdomains, but reduces the complexity of element subdivision.

3.3 X-elements for weak discontinuities in magneto-mechanical problems

Due to the considered weak coupling, which is limited to magnetic loads (12) entering the mechanical equilib-
rium condition and a constitutive coupling resulting from Eq. (15), the finite element analyses of both problems
are performed consecutively, starting with the magnetic boundary value problem. The magnetic loads are then
computed from the obtained solution and applied in the mechanical pass.

Starting with the weak form of Eq. (2), the principle of virtual magnetic work,∫
Ω

HiδBi dV −
∫
Ω

JiδAi dV −
∫

∂ΩK

K̂iδAi dS = 0, (23)

can be derived. The first term represents the internal virtual work, and the latter two are the external virtual
works of the currents J and K̂, respectively.
A weak form of the mechanical equilibrium condition∫

Ω

(
Eti j + t̂i j

)
δεi j dV −

∫
Ω

ρ f jδu j dV −
∫
∂Ωp

p̂ jδu j dS = 0 (24)

is obtained by Eq. (10) and can be interpreted as the internal virtual work of the pseudo-mechanical
and -magnetic stresses and the external virtual work of the mechanical body forces and surface loads accounting
for mechanical and magnetic contributions from the exterior of the domain Ω .
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The spatial discretization of the domain Ω ≈ Ωh = ⋃ne
I=1ΩI e is performed by a regular mesh with ne

quadrilateral elements, both ordinary isoparametric FE and X-elements with an enriched approximation.
The ordinary isoparametric elements use the same shape functions NI (ξ) for mapping the element geometry

from the natural ξ (with |ξi | ≤ 1, i = 1, 2) to the physical coordinates x as well as for the approximation of
the primary field variables ψ = {A, u} in the element domain Ωe.

While the mapping of the geometry is retained for the X-elements, the enriched approximation

ψh,X-element(ξ) =
nn∑

I=1

NI (ξ)
[
ψ I + ψ∗

I F (ξ)
] = N∗

ψ
(ξ)ψ∗

e
(25)

of the field variables is used to model discontinuities within the element domain. As a consequence, all nodes
of the element have a vector of additional degrees of freedom ψ∗

I , resulting in a subparametric finite element
formulation. Contrasting the isoparametric elements, N∗

ψ
is a matrix containing the shape functions and the

products of shape and enrichment functions. The components of the row vector ψ∗
e

are the ordinary and
additional degrees of freedom of the X-element.

The necessary approximations of the magnetic induction and the strain in the ordinary and the X-elements
are given by

Bh(ξ) = B
A
(ξ)Ae, Bh,X-element(ξ) = B∗

A
(ξ)A∗

e and (26)

εh(ξ) = B
u
(ξ)ue, ε

h,X-element(ξ) = B∗
u
(ξ)u∗

e , (27)

whereas the matrices B∗
A

and B∗
u

contain the partial derivatives of the shape and enrichment functions with
respect to the natural coordinates and account for the mapping of the geometry.

The required element matrices and vectors of the X-elements are obtained from inserting the approxima-
tions according to Eqs. (25)–(27) into the corresponding weak forms of the magnetic (23) and the magneto-
mechanical BVP (24) given in vector-matrix notation by∫

Ω

δBT H dV −
∫
Ω

δAT J dV −
∫

∂ΩK

δAT K̂ dS = 0 and (28)

∫
Ω

δεT
Et dV −

∫
Ω

(
δuT ρf − δεT t̂

)
dV −

∫
∂Ωp

δuT p̂ dS = 0. (29)

The discrete Ritz formulations of the problems in a single X-element,

δA∗T
e

{ ∫
Ωe

B∗T
A

C
A

B∗
A

dV

︸ ︷︷ ︸
K∗

A,e

A∗
e−

∫
Ωe

N∗T
A

J dV −
∫
∂Ωe

N∗T
A

K̂ dS

︸ ︷︷ ︸
−P∗

A,e

− J∗
e

}
= 0 and (30)

δu∗T
e

{ ∫
Ωe

B∗T
u

C
u
B∗

u
dV

︸ ︷︷ ︸
K∗

u,e

u∗
e−

∫
Ωe

(
N∗T

u
ρf − B∗T

u
t̂
)

dV −
∫
∂Ωe

N∗T
u

p̂ dS

︸ ︷︷ ︸
−P∗

u,e

− F∗
e

}
= 0, (31)

result from the approximation of the virtual quantities by the same matrices as the field variables by Eq. (25)
and their derivatives according to Eqs. (26) and (27). In the equations above, a vector matrix notation of linear
magnetic material behavior and the constitutive relation (15) involving the constitutive matrices C

A
and C

u
has been used. The vectors J∗

e and F∗
e account for discrete nodal loads typically used in FE analyses. Finally,

the systems of discrete equations for a single X-element,

K∗
A,e

A∗
e = P∗

A,e + J∗
e and K∗

u,e
u∗

e = P∗
u,e + F∗

e , (32)

follow from the argument of arbitrary virtual potentials and displacements. The global systems of equations
are obtained by the assembly of the element matrices and vectors, and the incorporation of the boundary
conditions.
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By using a nonlinear constitutive relation to model the magnetic material behavior, e.g., the Langevin
function in Sect. 5.1, the algorithmic tangent modulus and the magnetic field strength have to be provided for
an iterative solution of the stationary magnetic BVP.

4 Homogenization approach

In this section, an algorithm for computing the macroscopic magnetic and the coupled magneto-mechanical
response of magnetoactive composite materials is presented. The underlying microscopic structure is repre-
sented by a two-dimensional RVE of rectangular shape with two pairs of opposing boundaries ∂Ω I±, I = 1, 2,
cf. Fig. 5a. All nodes at the boundary of the discretized model can be grouped into node pairs, which are con-
nected by the two vectors �xI . Volume averages

〈(•)〉 := 1

VRVE

∫
Ω

(•) dV (33)

over the RVE domain Ω with the volume VRVE are used to determine macroscopic values, which are labeled
by ¯(•). Feasible boundary conditions for the RVE problem arise from the Hill-Mandel energy equivalence
theorem [43], also known as the macro-homogeneity condition,

H̄i B̄i = 〈Hi 〉〈Bi 〉 = 〈Hi Bi 〉 and t̄ tot
i j ε̄i j = 〈t tot

i j 〉〈εi j 〉 = 〈t tot
i j εi j 〉, (34)

together with the balance equations (2) and (10), excluding the volume loads J andρf . The basis of the presented
scale transition process is the equivalence of the macroscopic energy and the one stored in the heterogeneous
microstructure. The macroscopic induction B̄ and the macroscopic strain ε̄ are prescribed as control variables.
The boundary conditions for the vector potential and the displacement consist of a linear term and a periodic
fluctuation part, whereas the conjugated variables of the tangential magnetic field and the total traction have
to be antiperiodic—altogether commonly called periodic boundary conditions. The local field problem of the
RVE is formulated according to Sect. 2, and a numerical model is generated using XFEM as said above in
the context of Sect. 3. Figure 5b schematically shows the nonconforming mesh together with two additional
master nodes M I and a support to prevent rigid body motions. According to [44], periodic boundary conditions
are realized by prescribing the potential and the displacement, corresponding to the macroscopic induction
and strain state, to only two master nodes which are coupled to the opposing node pairs. The linear or the
linearized (for nonlinear magnetic material behavior) system of equations is solved by an elimination procedure
and partitioning.

4.1 Effective magnetic response

By choosing the vector potential according to the mentioned periodic boundary conditions

A3 = e3pq B̄pxq + Ã3, (35)

the macro-homogeneity condition (34)1

(a) (b)

Fig. 5 Two-dimensional representative volume element: a pairs of opposing surfaces ∂Ω I± and characteristic vectorsΔxI with
I = 1, 2, and b nonconforming regular XFEM mesh with nodal degrees of freedom coupled to two additional master nodes M I

and support to prevent rigid body motions
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1

VRVE

∫
Ω

Hl Bl dV = 1

VRVE

∫
∂Ω

Hlelmn

(
δn3e3pq B̄pxq + δn3 Ã3

)
nm,

dS = 1

VRVE

∫
Ω

Hl B̄l − H3 B̄3 + Hlelm3 Ã3,m dV (36)

is fulfilled. The second term on the right-hand side of the equation above vanishes, because we restrict the
condition of homogeneity in the x3-direction to H3 = 0. The last term in Eq. (36) is equal to zero, if an
antiperiodic surface current density K I+

3 = −K I−
3 and a periodic fluctuation of the vector potential ÃI+

3 = ÃI−
3

are assumed. In addition to this fluctuation term Eq. (35) contains a linear part e3pq B̄pxq .
The macroscopic field strength H̄ can be computed by the volume average (33), which simplifies for the

addressed RVE to

H̄k = 1

VRVE

∫
Ω

Hk dV = 1

2VRVE

∫
∂Ω

ekmneqsn Hq xmns dS = 1

ARVE

∑
I=1,2

ekl3Δx I
l I I

3 , (37)

with the area of the RVE ARVE, the vectors connecting the opposing nodes �xI and the master node reaction
currents

I I
3 =

∫

l I+

e3qs Hqns dl, (38)

calculated from a one-dimensional boundary integral. The effective magnetization M̄ can be obtained using
Eq. (3) in a macroscopic manner with the known values B̄ and H̄.

4.2 Effective magneto-mechanical response

Similar to Eq. (36), it is easy to show that the two-dimensional displacement field

ui = ε̄i j x j + ũi (39)

satisfies the Hill–Mandel lemma (34)2, together with the condition that the total traction has to be antiperiodic,
i.e., pI+

i = −pI−
i . The equation above consists of a linear term ε̄i j x j and a periodic fluctuation part ũ I+

i = ũ I−
i .

A macroscopic as well as a microscopic state of plane strain are assumed.
With the mechanical master node reaction forces

F I
j =

∫

l I+

ti j ni dl, (40)

one calculates the macroscopic mechanical stress of the RVE by

t̄i j = 1

ARVE

∑
I=1,2

Δx I
i F I

j , (41)

the dyadic product of the characteristic RVE vectors ΔxI and the master node reaction forces divided by the
area of the RVE.

5 Demonstration of magneto-mechanical homogenization with XFEM

In this section, the introduced homogenization algorithm together with the local numerical XFEM modeling
is validated for one particular periodic microstructure. Furthermore, the nonlinear magnetization behavior of
one composite’s constituent is modeled. After the definition of the considered microstructure, a convergence
study on the effective linear magnetic and linear mechanical properties demonstrates the applicability of the
XFEM modeling strategy. Macroscopic magnetization curves with anisotropic effects and mechanical actuation
stresses, these are the macroscopic mechanical stresses caused by a magnetic stimulus with no macroscopic
deformation ε = 0, are analyzed for three different load cases.
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(a) (b) (c)

Fig. 6 Idealized periodic microstructure: a RVE containing three circular inclusions with diameter d , b nonlinear magnetization
behavior of Basf CIP CC powder assumed for the circular inclusions—experimental results and models according Eqs. (42) and
(43), and c three macroscopic magnetic load cases

5.1 Definition of the problem and modeling the nonlinear magnetic material behavior

The considered idealized two-dimensional microstructure is shown in Fig. 6a. Its internal structure is motivated
by the chain-like arrangement of magnetizable particles, which is formed due to particle interactions during
the curing process of the composite’s polymeric matrix with an applied magnetic field (cf. Fig. 1d). The RVE in
Fig. 6a contains three circular inclusions. All inclusions are assigned with the material behavior of the carbonyl
iron powder Basf CIP CC and have the diameter d . In the x1–x2-system, the centers of the inclusions are
located at (3; 12) µm, (9; 8) µm and (9; 16) µm.

Some experimental results concerning the magnetic material behavior of the BASF CIP CC are presented
in Fig. 6b. For the composite’s constituents, it is a convenient choice to postulate the isotropic relation Ml =
Hl
H M(H), where H = √

Hq Hq and M = √
Mq Mq . The analyzed material BASF CIP CC exhibits a nonlinear

magnetization curve with negligible hysteresis effects, cf. Fig. 6b. Within a group of four reviewed models,
the Langevin function [45]

M = MS

[
coth(δH)− 1

δH

]
(42)

points out to be the most suitable approximation for the phenomenological modeling of the nonlinear magnetic
material behavior under consideration. This function has two parameters which have to be determined by
experiments, the saturation magnetization MS and a scaling parameter δ. The result obtained for the Basf CIP
CC with MS = 8.4 × 105 A m−1 and δ = 2.2 × 105 m A−1 is plotted in Fig. 6b by a solid line. A linearization
of Eq. (42) in the neighborhood of H = 0 yields the constant relative permeability

μr = MSδ

3
+ 1, (43)

and Eq. (3) can be rewritten in the simple form Bl = μ0μr Hl , which describes linear isotropic magnetic
material behavior. As expected, the dashed line in Fig. 6b, with μrI = 7.2, shows that this approximation is
only reasonable for small values of the magnetic field. The composite’s elastomeric matrix consists of Wacker
Chemie AG Elastosil® RT 745, which is assumed to be nonmagnetizable μrM = 1.

Both constituents are modeled linear elastic according to Eq. (15) with the isotropic parameters Young’s
moduli EI = 2.1 × 105 MPa and EM = 0.2 MPa as well as the Poisson ratios νI = 0.3 and νM = 0.4 for the
inclusions (I) and the matrix (M), respectively.

5.2 Convergence study regarding the effective linear magnetic and linear mechanical composite response

At first, the effective magnetic behavior is analyzed using the relative permeabilitiesμrI = 7.2 andμrM = 1 for
the constituents of the RVE. All inclusions have a diameter of d = 3.8 µm, which results in a volume fraction
of approximately 12 %. The RVE is meshed with either bilinear or biquadratic elements and six discretizations
with 8 × 16, 16 × 32 (cf. Fig. 7a), 32 × 64, 64 × 128, 128 × 256 and 256 × 512 elements. The mesh resolution
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(a) (b) (c)

Fig. 7 Selected results of a convergence study for the effective material behavior using bilinear and biquadratic elements with
different discretization h: a meshed RVE with d = 3.8 and h = 0.75 µm—ordinary FE together with triangular and quadrilateral
integration subdomains of the XFE, b relative permeability μ̄r 11, and c stiffness C̄11

is specified by the size of the element edge h. According to the geometrical arrangement of the circular
inclusions, the macroscopic magnetic behavior becomes anisotropic resulting in the second order tensor of
effective relative permeability μ̄r. With the linear relation B̄ = μ0μ̄rH̄, the computed macroscopic magnetic
field corresponding to Eq. (37) and the prescribed macroscopic magnetic induction, the sought-after tensor of
relative permeability is evaluated. To characterize the composite’s anisotropic response, two magnetic load
cases are defined and solved, one with B̄ parallel to the x1-axis and the second one parallel to the x2-direction.
In Fig. 7b, the representative component μ̄r 11 is plotted using either bilinear or biquadratic elements for all six
mesh resolutions. A monotonic convergence is observed for both element types, the bilinear and the biquadratic.
Even with the coarsest mesh, the results obtained with the higher-order elements produce errors of <0.2 %.
All results lie in between the Reuss [46] μ̄R

r 11 = 1.1 and Voigt bound [47] μ̄V
r 11 = 1.7.

To obtain the effective stiffness matrix C̄, which is the linear mapping between the strain vector and the
stress vector, a purely mechanical homogenization (B = 0) is performed under the assumption of plane strain.
Three macroscopic states of strain are prescribed to the RVE and are solved numerically, i.e., two uniaxial strain
and one shear mode. The RVE’s effective linear elastic stiffness matrix is computed from the corresponding
macroscopic stresses according to Eq. (41) together with the prescribed strain. The results of the convergence
study by means of the component C̄11 are plotted in Fig. 7c. It is noticeable that the coarse discretizations
produce higher relative errors compared to the effective magnetic behavior at the same resolution. This is due
to the large difference between the used Young’s moduli of almost six orders of magnitude, the relative perme-
abilities of both components differ only by the factor 7.2. Such a high stiffness ratio results in relatively stiff
element matrices of the X-elements, which is recognizable by the large overestimation with coarse resolutions
for both, the bilinear and the biquadratic elements. Again, all values obtained numerically, lie in between the
Reuss C̄R

11 = 0.49 MPa and the Voigt bound C̄V
11 = 3.34 × 104 MPa. Because the matrix is very soft and has

a high volume fraction, compared to the inclusions, together with the geometrical arrangement (inclusions are
entirely embedded in the matrix material), the computed results using periodic boundary conditions are close
to the Reuss bound, where a homogeneous stress field is assumed.

The magnetic and the mechanical macroscopic properties converge from different directions, cf. Fig. 7b, c.
This is because in the macroscopic magnetic material behavior, the tensor of the relative permeability μ̄r has
the nature of a compliance rather than a stiffness, since B̄ can be interpreted as a kinematic and H̄ as the
conjugated kinetic variable.

5.3 Effective magnetization of the composite

The composite’s macroscopic magnetic behavior is characterized by effective magnetization curves M̄(H̄).
In the following, all circular inclusions have a diameter of d = 5 µm, resulting in a volume fraction of
approximately 20 %, and the RVE is meshed with 49 × 98 biquadratic elements. Both introduced models for
the magnetization are used, the nonlinear according to the Langevin function (42) and the linearized model
corresponding to Eq. (43). A macroscopic magnetic induction with an intensity of 2 T is applied to the RVE
within 20 increments for three different directions: parallel, perpendicular and under an angle of 45◦ to the
internal chain direction, cf. Fig. 6c. Applying such a high magnetic induction, which is experimentally hardly
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Fig. 8 Numerically computed effective magnetization curves for three different load cases with nonlinear (solid lines) and linear
(dashed lines) behavior of the circular inclusions and a magnetic linear matrix material

(a) (b)

Fig. 9 Macroscopic mechanical actuation stresses for magnetic loading |B̄| = 2T within 20 increments and ε̄ = 0: a macroscopic
magnetic induction applied parallel, and b perpendicular to the internal chain-like structure. Nonlinear magnetic response of the
inclusions is displayed with solid lines and the linear approximation with dashed lines

achievable without losing the often required homogeneity of the macroscopic field and the essential stationarity,
is motivated by discovering the full range of the composite’s inherent physical nonlinearity.

The results in Fig. 8 show the obtained effective magnetization curves for the nonlinear magnetic material
of the inclusions (solid lines) and the linear approximation (dashed lines). As a consequence of the internal
composite structure, the effective magnetic material behavior is anisotropic. This effect decays for strong
magnetic fields due to the magnetic saturation characteristic of the circular inclusions in the nonlinear case.
For the linearized local material behavior, the magnetization stays anisotropic even for high values of the
magnetic field, and the difference to the nonlinear solution increases for rising values of H̄ .

5.4 Coupled macroscopic magneto-mechanical behavior

The coupled effective magneto-mechanical behavior is analyzed by evaluating mechanical actuation stresses
according to Eq. (41). These stresses occur in the coupled magneto-mechanical problem, if the macroscopic
deformation is fixed to zero, i.e., ε̄ = 0, and the composite is loaded magnetically. As a consequence of the
periodic boundary condition expressed by Eq. (39), the RVE is allowed to deform only due to the fluctuation
terms.

At first, two load cases are considered with the effective magnetic induction either aligned with or per-
pendicular to the internal chain-like structure. Again, the macroscopic induction of |B̄| = 2T is applied to the
RVE within 20 increments. Figure 9a shows the mechanical actuation stresses for the macroscopic magnetic
induction aligned with the inner chain-like structure. The small inserted picture of the local displacement field
u2 illustrates that the inclusions lying upon each other are attracted. In this contour plot, red corresponds to
positive and blue to negative values of the local u2-coordinate. Because the macroscopic deformation is set
to zero, an expansion of the RVE in the x1-direction is prevented, which is reflected by a negative actuation
stress t̄11 < 0. In the x2-direction, the attraction of the inclusions is compensated by a tensile stress t̄22 > 0.
In accordance to [12], the initial behavior of the actuation stresses versus the magnetic induction is quadratic.
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(a) (b)

Fig. 10 Magnetic loading |B̄| = 2T with an angle of 45◦ and ε̄ = 0: a local magnetic induction of deformed RVE, and
b macroscopic mechanical actuation stresses with the nonlinear (solid lines) and linear (dashed lines) magnetic material behavior
of the inclusions

This can also be understood by Eq. (12), as the pseudo-magnetic stress t̂ depends quadratically on the magnetic
field variables and is applied as a load in the weakly coupled magneto-mechanical problem. For |B| � 0.6T,
the saturation becomes dominant in the nonlinear case, but in the linearized regime (μrI = const.) the behavior
remains quadratic in |B̄|. If the macroscopic induction is applied perpendicular to the inner structure, the
circular inclusions move away from each other, cf. Fig. 9b. Consequently, the actuation stresses t̄11 > 0 and
t̄22 < 0 equilibrate the stresses corresponding to the local deformation field. Again, the initial dependence is
quadratic in |B̄|, and then, saturation becomes relevant. The plotted shear stress components t̄12 and t̄21 are
almost zero for the linear and the nonlinear magnetic case and both loading directions.

The last results shown in Fig. 10 correspond to the macroscopic induction applied with an angle of 45◦.
In Fig. 10a, the contour plots of the local magnetic induction with a sigmoidal deformed RVE are displayed.
The actuation stresses in Fig. 10b are qualitatively different from the stresses discussed for the parallel and
the perpendicular magnetic field. Here, the normal stress components t̄11 and t̄22 are smaller than the shear
stresses t̄12 and t̄21. An essential aspect of the results is that the macroscopic mechanical stress tensor is
unsymmetric with t̄12 < 0 and t̄21 > 0. Both shear stress components equilibrate a macroscopic torque, which
acts counterclockwise on the structure, since the magnetic induction is not applied in parallel to the principal
axis of the composite. The internal chain-like structure of the composite, cf. Fig. 6a, intends to rotate and align
to the external magnetic stimulus. Hence, this causes a macroscopic torque acting on the composite. Again,
the initial behavior is quadratic in |B̄| for the nonlinear magnetic model and quadratic over the whole range of
|B̄| for the linear approximation.

6 Conclusion

We have presented one of the first applications of XFEM to magnetic and coupled magneto-mechanical BVP. By
using XFEM for the discretization of a RVE, a homogenization problem for analyzing the macroscopic response
of magnetoactive composite materials is numerically solved. An element local approach has been developed,
which allows for an automated computation of the level set values and also ensures the compatibility of the
level set representation and the integration subdomains. We proved the convergence of bilinear and biquadratic
approximations with mesh refinement, regarding the effective linear magnetic and linear mechanical material
behavior. Based on magnetization experiments of carbonyl iron powder, a nonlinear and isotropic material
model was adapted and compared to a linearized approximation. The analyzed microstructure exhibits a
mechanical and a magnetic anisotropy. In general, the latter results in an unsymmetric effective mechanical
stress tensor. Actuation stresses for three different magnetic loading directions are found to be in qualitative
agreement with experiments on magnetorheological elastomers. Our model predicts an elongation of the
composite, if the magnetic stimulus is applied parallel to the chain-like clusters of magnetizable particles.

The methods developed and applied in this work are to be extended to finite strain, to account for large
deformations of the matrix material. In the same context, the deformation update of the structure should enable
a coupling back to the stationary magnetic BVP.
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