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Abstract This paper presents the theory of fractional order generalized thermoelasticity with microstructure
modeling for porous elastic bodies and synthetic materials containing microscopic components and micro-
cracks. Built upon the micromorphic theory, the theory of fractional order generalized micromorphic ther-
moelasticity (FOGTEmm) is firstly established by introducing the fractional integral operator. To generalize the
FOGTEmm theory, the general forms of the extended thermoelasticity, temperature rate dependent thermoelas-
ticity, thermoelasticity without energy dissipation, thermoelasticity with energy dissipation, and dual-phase-lag
thermoelasticity are introduced during the formulation. Secondly, the uniqueness theorem for FOGTEmm is
established. Finally, a generalized variational principle of FOGTEmm is developed by using the semi-inverse
method. For reference, the theories of fractional order generalized micropolar thermoelasticity (FOGTEmp)
and microstretch thermoelasticity (FOGTEms) and the corresponding generalized variational theorems are also
presented.

1 Introduction

The generalized thermoelasticity theories are a series of theoretical models capable of predicting a finite speed
of heat conduction in thermoelastic media. The first of such modeling is the extended thermoelasticity theory
(ETE) of Lord and Shulman [1], who introduced the concept of thermal relaxation time into the classical
Fourier law of heat conduction. Subsequently, modifying the stress versus strain relationship as well as the
entropy relationship with relaxation time, Green and Lindsay [2] proposed the temperature rate dependent
thermoelasticity (TRDTE) theory. Green and Naghdi [3–5] introduced further two such theories: thermoelas-
ticity without energy dissipation (TEWOED) and thermoelasticity with energy dissipation (TEWED). There
exist also other generalized thermoelasticity theories, such as the two-temperature generalized thermoelas-
ticity [6], the low-temperature thermoelasticity [7,8], the dual-phase-lag thermoelasticity (DPLTE) [9], and
the three-phase-lag thermoelasticity [10]. Recently, upon introducing the fractional integral operator into the
generalized heat conduction law of ETE, Youssef [11,12] established the fractional order generalized ther-
moelasticity (FOGTE): both weak and strong heat conductivity in the context of generalized thermoelasticity
were considered, and the corresponding variational theorem for FOGTE was developed. The theory was sub-
sequently employed to solve two-dimensional thermal shock problems using Laplace and Fourier transforms
[13] as well as half-space problems for elastic materials subjected to ramp-type heating by using Laplace
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transform and state-space methods [14]. Abouelregal [15] also established a model of fractional order gener-
alized thermopiezoelectricity and used it to solve one-dimensional boundary value problems for semi-infinite
piezoelectric media.

By implicitly averaging atomic scale dynamics over space and time domains, traditional continuum
approaches for material deformation modeling are valid only for relatively large systems [16] and are fur-
ther subjected to long acoustic wave limit [17]. As such, it has been established that continuum theories cannot
explain experimental observations at microscale, especially in materials such as porous elastic bodies (e.g.,
bones and ceramics) and synthetic materials containing microscopic components and microcracks. This has
motivated the rapid development of microscale modeling in recent years, leading to various microcontinuum
field theories (or extensions of classical field theories to microscopic space and time scales), including the
Cosserat theory [18], the couple stress theory [19], the micromorphic (mm) theory [20], the microstructure
theory [21], the micropolar (mp) theory [22], the microstretch (ms) theory [23], and the nonlocal theory
[24].

For materials containing microelements that can deform independently from their centroidal motions,
Eringen [20] developed the micromorphic theory, which has been regarded as the most successful top-down
formulation of a two-level continuum model [16]. While the deformation is expressed as a sum of macro-
scopic continuous deformation and internal microscopic deformation of the inner structure, the material body
itself is envisioned as a continuous collection of deformable particles [25]. Each particle possesses finite size
and directions representing its microstructure and has nine independent degrees of freedom describing both
stretches and rotations, in addition to the three classical translational degrees of freedom of its center [26].
Subsequently, the concept of material forces was extended to micromorphic thermoelasticity, with detailed
expressions of the Eshelby stress tensor, pseudo-momentum, and material forces derived [26]. Constitutive
theories for generalized micromorphic solids and fluids were formulated by Lee and Wang [16]. Later, Eringen
extended the theory to include thermal and memory effects [27], while Lee and Chen formulated a consti-
tutive theory in Lagrangian form of micromorphic thermoplasticity [28]. Establishing a reciprocity relation
for linear dynamic micromorphic thermoelasticity, Iesan [29] obtained uniqueness results with no definiteness
assumption and derived the reciprocal theorem. For micromorphic thermoelastic solids of degree 1, Iesan [30]
formulated a nonlinear theory of micromorphic elastic solids in Lagrangian description as well as a theory
of prestressed micromorphic thermoelastic bodies with initial heat flux. Nappa [31] established a Gurtin-type
variational theory for linear dynamic micromorphic thermoelasticity.

While Eringen and co-workers [32–34] established the micropolar theory, Kadowaki and Liu [35]
introduced a multiscale approach for micropolar continuum modeling. The micropolar theory was sub-
sequently generalized by Diebels [36] to porous media and fluid-saturated granular materials and further
extended by Eringen [37], Nowacki [38], and Iesan [39] to include thermal effects. Passarella and Zam-
poli [40] established the reciprocal and variational theorem for micropolar thermoelasticity. The theory of
micropolar generalized thermoelasticity was established by Boschi and Iesan [41] and Sherief et al. [42].
Ezzat and Awad [43] developed the linear theory of micropolar generalized thermoelasticity involving two
temperatures, whereas Othman and Singh [44] studied the effect of rotation on generalized micropolar
thermoelasticity.

To study the deformation and motions of such materials as animal bones, solids weakened by micro-
cracks, cellular foams, and synthetic materials with pores or microreinforcements, Eringen [23] proposed
the theory of microstretch elasticity. Typically, a microstretch elastic solid possesses seven degrees of free-
dom: three for translation, three for rotations, and a stretch required by the substructures [45]. To account
for thermal effects in microstretch media, Eringen [23] introduced further the thermomicrostretch elastic-
ity theory while Cicco and Nappa [46] derived the governing equations of the linear theory for thermomi-
crostretch elastic solids. Following these studies, Aouadi [47] established the linear theory for microstretch
thermoelastic bodies with microtemperatures, and Othman et al. [48] formulated the equations of generalized
thermomicrostretch elasticity with temperature dependent properties considered. Plane waves of a general-
ized thermomicrostretch elastic half-space were considered by Othman and Lotfy [49]. Interactions caused by
thermal and mechanical sources in generalized thermomicrostretch elastic media were investigated by Aouadi
[50].

As theoretical models in the fields of chemistry, physics, aerodynamics, etc. are increasingly expressed in
terms of fractional order, investigations concerning fractional derivatives and fractional integrals have become
increasingly important. As previously mentioned, to consider both weak and strong heat conductivity in the
context of generalized thermoelasticity, Youssef [11] developed the FOGTE theory. However, on one hand,
a fractional order generalized micromorphic thermoelasticity (FOGTEmm) theory is yet to be established;
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on the other hand, although studies in the context of generalized micropolar or microstretch thermoelasticity
do exist, little work with respect to fractional order can be found in the open domain. Further, the general-
ized variational theorem of generalized thermoelasticity with micromodeling is not available. Consequently,
the systematic framework of generalized thermoelasticity with micromodeling is at present incomplete. To
address these deficiencies, this study firstly proposes the theory of fractional order generalized micromorphic
thermoelasticity. To generalize the theory, the unified forms of several degenerated generalized thermoelastic-
ity theories are introduced. Subsequently, the uniqueness theorem of the developed theory is established, so is
a generalized variational theorem. For reference, the fractional order generalized micropolar and microstretch
thermoelasticity theories and the corresponding generalized variational principles are listed in the Appendix.

2 Governing equations and general theory

Consider a body occupying regionv and bounded by piecewise smooth surface s in Euclidean three-dimensional
space. The classical summation and differentiation conventions are followed: Latin subscripts range over
integers (1, 2, 3), summation over repeated subscripts is implied, suffix preceded by a comma denotes material
derivative, while the superposed dot denotes derivative with respect to time. Following the linear theory for
micromorphic solids, the equations governing motion may hence be written as [25]:

σ j i, j + fi = ρüi , (1)

mki j,k + σ j i − s ji + Li j = ρ I jk ϕ̈ik (2)

whereσi j is the stress tensor, si j is the microstress tensor, mi jk is the stress moment tensor, ui is the displacement
vector, ϕi j is the microdeformation tensor, fi is the body force, Li j is the body moment tensor, ρ indicates mass
density, and Ii j is the micro-inertia. Correspondingly, the generalized strain versus displacement relations are
given by [25]:

εi j = u j,i − ϕ j i , (3)

2ei j = ϕi j + ϕ j i , (4)

γi jk = ϕi j,k (5)

where εi j , ei j and γi jk are the linear strain tensors, respectively.
Upon introducing the fractional integral operator, the generalized heat conduction law may be expressed

as:

w1qi + (w2τ1 + w3) q̇i = −w4k I α−1θ,i − w5k∗ I α−1θ,i − w6k I α−1θ̇,i − w7kτ2 I α−1θ̇,i (6)

where qi , τ1, k, k∗, θ and τ2 are the heat flux vector, the thermal relaxation time in ETE or phase lags of the
heat flux in DPL (dual-phase-lag), the coefficient of thermal conductivity, the material constant characteristic
in TEWOED or TEWED, the conductive temperature, and the phase lags of conductive temperature gradient
in DPL, respectively, with wi (i = 1, 2, . . . , 7) introduced here to generalize the model proposed in this study.
By sequentially setting wi (i = 1, 2, . . . , 7) as zero or unity, the corresponding theories degenerated from the
present generalized theory are summarized in Table 1. In addition, I indicates an integral operator defined as
[51,52]:

I α−1 f(t) = 1

Γ (α − 1)

t∫

0

(t − τ)α−2 f(τ ) dτ (7)

Table 1 Illustration of FOGTEmm, FOGTEmp and FOGTEms (see Appendices A and B)

Theories Based on wi = 1 Theories (α = 1)

FOGTEmm ETE i = 1, 2, 4 GTEmm
TRDTE i = 1, 4, 8
TEWOED i = 3, 5
TEWED i = 3, 5, 6
DPLTE i = 1, 2, 4, 7

FOGTEmp Based on GTE (generalized thermoelasticity) as above GTEmp [41–43]
FOGTEms GTEms [47–49]
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where Γ (α) is the gamma function, 0 < α ≤ 2, and

I 0 f(t) = f (t), I −α f(t) = ∂α

∂tα
f(t) . (8)

Youssef [11] addressed the physical meaning of fractional order: 0 < α < 1 indicates weak conductivity;
α = 1 normal conductivity; 1 < α < 2 strong conductivity. Ghazizadeh et al. [53] evaluated the fractional
order basing on the experimental results of heat conduction implemented on processed meat by Mitra et al.
[54] and found that 0 < α < 1 for meat, which may be suitable for the porous materials and synthetic materials
containing microscopic components and microcracks. In the absence of any inner heat source, the equation
for energy conservation is

qi,i = −ρT0η̇ (9)

where T0 and η are separately the reference temperature and entropy density.
The constitutive relations may be described as [25]:

σi j = Ai jklεkl + Ei jklekl + Fi jklmγklm − χσi j

(
θ + w8τ3θ̇

)
, (10)

si j = Ekli jεkl + Bi jklekl + Gi jklmγklm − χ s
i j

(
θ + w8τ3θ̇

)
, (11)

mki j = Flmi jkεlm + Glmi jkelm + Ci jklmnγlmn − χm
i jk

(
θ + w8τ3θ̇

)
, (12)

ρη = χσi jεi j + χ s
i j ei j + χm

i jkγ i jk + ρcE

T0

(
θ + w8τ4θ̇

)
(13)

where Ai jkl , Bi jkl , Ci jklmn, Ei jkl , Fi jklm, Gi jklm, χ
σ
i j , χ

s
i j and χm

i jk are the constitutive coefficients, respec-
tively; cE indicates the specific heat at constant deformation; τ3 and τ4 are the relaxation times in TRDTE;
and w8 is introduced to include the TRDTE theory, serving the same purpose as wi (i = 1, 2, . . . , 7).

Equations (1) to (13) are fundamental equations governing the force and temperature fields. Substituting
Eq. (10) into Eq. (1) and considering Eqs. (3) to (5), one obtains the governing equations for the deformation
vector, as:

[
A jikl

(
uk,l − ϕlk

) + 0.5E jikl (ϕkl + ϕlk)+ Fjiklmϕkl,m − χσj i
(
θ + w8τ3θ̇

)]
, j

+ fi = ρüi . (14)

Similarly, introducing Eqs. (10)–(12) into Eq. (2) and considering Eqs. (3) to (5), one obtains the governing
equations for the microdeformation tensor, as:

[
Flmi jk

(
ul,m − ϕml

) + 0.5Glmi jk (ϕlm + ϕml)+ Ci jklmnϕlm,n − χm
i jk

(
θ + w8τ3θ̇

)]
,k

+ (
A jikl − Ekl ji

) (
uk,l − ϕlk

) + 0.5
(
E jikl − B jikl

)
(ϕkl + ϕlk)+ (

Fjiklm − G jiklm
)
ϕkl,m

−
(
χσj i − χ s

ji

) (
θ + w8τ3θ̇

) + Li j = ρ I jk ϕ̈ik . (15)

Combining Eqs. (6), (8) and (9) and then introducing Eq. (13), one obtains the following governing equation
for the temperature field:

T0β

[
χσi j

(
ui, j − ϕ j i

) + 0.5χ s
i j

(
ϕi j + ϕ j i

) + χm
i jkϕi j,k + ρcE

T0

(
θ + w8τ4θ̇

)]

= w4kθ,i i + w5k∗θ,i i + w6kθ̇,i i + w7kτ2θ̇,i i (16)

where

β = w1
∂α

∂tα
+ (w2τ1 + w3)

∂α+1

∂tα+1 .

In addition to the system of field equations, suitable boundary and initial conditions need to be introduced. On
surfaces s1 and s2, the displacement and traction are prescribed as:

ui = ūi , on s1 × [0,∞) ; σi j n j = Fi , on s2 × [0,∞) . (17)
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On surfaces s3 and s4, the microdisplacement and stress moment satisfy:

ϕi j = ϕ̄i j , on s3 × [0,∞) ; mki j nk = m̄i j , on s4 × [0,∞) . (18)

On surface s5 and s6, the temperature and heat flux satisfy:

θ = θ̄ , on s5 × [0,∞) ; qi ni = q̄, on s6 × [0,∞) . (19)

Note that, in the above boundary conditions, s1 + s2 = s3 + s4 = s5 + s6 = s covers the total boundary
surface, while ūi , Fi , ϕ̄i j , m̄i j , θ̄ and q̄ are the prescribed functions. Moreover, the initial conditions may be
introduced as:

ui (x, 0) = u0
i (x), u̇i (x, 0) = u̇0

i (x) ,
ϕi j (x, 0) = ϕ0

i j (x), ϕ̇i j (x, 0) = ϕ̇0
i j (x) ,

θ (x, 0) = θ0 (x), θ̇ (x, 0) = θ̇0 (x)
(20)

where u0
i (x), u̇0

i (x), ϕ
0
i j (x), ϕ̇

0
i j (x), θ

0(x) and θ̇0(x) represent also the prescribed functions.
Thus far, the initial boundary value problem in the context of the present FOGTEmm theory has been

proposed. As summarized in Table 1, the FOGTEmm theory can be simplified into several special theories
of generalized micromorphic thermoelasticity by neglecting the fractional integral operator and assigning
wi (i = 1, 2, . . . , 8) as zero or unity. For clarity, it is necessary to illustrate the exact meaning of each
degenerated theory in Table 1: ETEmm, taken as the example, indicates the micromorphic ETE theory, which
will be described in detail in Sect. 3.

3 Uniqueness theorem

This section presents the uniqueness results obtained for the above-mentioned initial boundary value problem.
Let M and N be nonnegative integers. If function h is continuous on s × [0,∞) and the following functions:

∂m

∂xi∂x j . . . ∂xr

(
∂nh

∂tn

)
m ∈ {0, 1, . . . ,M}, n ∈ {0, 1, . . . , N }, m + n ≤ max {M, N }

exist and are continuous on s × [0,∞), h is of class C M,N on s × [0,∞). For conciseness, let C M,M be
denoted as C M .

We denote the external data system, using an ordered array, as:

X =
{

fi , Li j , ūi , Fi , ϕ̄i j , m̄i j , θ̄ , q̄, u0
i , u̇0

i , ϕ
0
i j , ϕ̇

0
i j , θ

0, θ̇0
}

which satisfies the following properties: (1) u0
i , u̇0

i , ϕ
0
i j , ϕ̇

0
i j , θ

0, θ̇0 are continuous on s; (2) ūi are of class C0

on s1 × [0,∞); (3) Fi are of class C0 on s2 × [0,∞); (4) ϕ̄i j are of class C0 on s3 × [0,∞); (5) m̄i j are of
class C0 on s4 × [0,∞); (6) θ̄ are of class C0 on s5 × [0,∞); (7) q̄ are of class C0 on s6 × [0,∞); and (8)
fi , Li j are of class C0 on s × [0,∞).

Similarly, an admissible process may be expressed, as:

P = {
ui , ϕi j , θ, εi j , ei j , γi jk, σi j , si j ,mi jk, qi

}

in which the variables satisfy: (i) ui , ϕi j are of class C1,2 on s × [0,∞); (ii) θ are of class C2,1 on s × [0,∞);
(iii) εi j , ei j , γi jk, si j are of class C0 on s × [0,∞); (iv) σi j ,mi jk are of class C1,0 on s × [0,∞); and (v) qi

are of class C1 on s × [0,∞).
We note that a solution of the initial boundary problem with external data system X is an admissible process

P that successfully satisfies Eqs. (14) to (20).
For illustration but without loss of generality, only the uniqueness results for the ETEmm theory shown in

Table 1 are established here. For clarity, we needs to restate the ETEmm theory. Equations (1) to (5) and (9)
remain unchanged, while Eq. (6) needs to be rewritten as the generalized Fourier law of heat conduction, as:

qi + τ1q̇i = −kθ,i . (21)

Further, Eqs. (10) to (13) are expressed in the new form, as:
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σi j = Ai jklεkl + Ei jklekl + Fi jklmγklm − χσi jθ, (22)

si j = Ekli jεkl + Bi jklekl + Gi jklmγklm − χ s
i jθ, (23)

mki j = Flmi jkεlm + Glmi jkelm + Ci jklmnγlmn − χm
i jkθ, (24)

ρη = χσi jεi j + χ s
i j ei j + χm

i jkγ i jk + ρcE

T0
θ. (25)

Equations (1) to (5), (9) and (21) to (25) represent the fundamental equations of the ETEmm theory. The
governing equations of ETEmm, which can be straightforwardly formulated, read as:[

A jikl
(
uk,l − ϕlk

) + 1

2
E jikl (ϕkl + ϕlk)+ Fjiklmϕkl,m − χσj iθ

]
, j

+ fi = ρüi , (26)

[
Flmi jk

(
ul,m − ϕml

) + 1

2
Glmi jk (ϕlm + ϕml)+ Ci jklmnϕlm,n − χm

i jkθ

]
,k

+ (
A jikl − Ekl ji

) (
uk,l − ϕlk

) + 1

2

(
E jikl − B jikl

)
(ϕkl + ϕlk)

+ (
Fjiklm − G jiklm

)
ϕkl,m −

(
χσj i − χ s

ji

)
θ + Li j = ρ I jk ϕ̈ik, (27)

χσi j

(
u̇i, j − ϕ̇ j i

) + 1

2
χ s

i j

(
ϕ̇i j + ϕ̇ j i

) + χm
i jk ϕ̇i j,k + ρcE

T0
θ̇ + 1

T0
qi,i = 0, (28)

qi + τ1q̇i = −kθ,i . (29)

Corresponding to the process P, the following energies and function W are considered [54,55]:

Ξ = 1

2

(
Ai jklεi jεkl +Bi jklei j ekl +Ci jklmnγi jkγlmn

)+Ei jklεi j ekl +Fi jklmεi jγklm + Gi jklmei jγklm, (30)

Υ = 1

2

ρcE

T0
θ2, (31)

K = 1

2
ρ

(
u̇i u̇i + Ii j ϕ̇mi ϕ̇mj

)
, (32)

M = 1

2
Qi j qi q j , (33)

W =
∫

v

(
fi u̇i + Ii j ϕ̇i j − 1

τ1
Qi j qi q j

)
dv +

∫

s

(
σi j u̇i + mi jk ϕ̇ jk − 1

T0
qiθ

)
ni ds (34)

and

Π =
∫

v

(Ξ + Υ + K + M)dv.

Lemma Let X be an external data, and P the corresponding admissible process that satisfies the governing
Eqs. (26) to (29) and the initial boundary conditions (17) to (20). The following energy conservation law then
holds for t ∈ [0,∞):

Π (t) = Π (0)+
t∫

0

W (τ ) dτ. (35)

Proof Multiplying Eqs. (26) to (28) sequentially by u̇i , ϕ̇i j and θ and summing, then integrating over v and
making use of the divergence theorem, one obtains:

d

dt

∫

v

(Ξ + Υ + K )dv =
∫

v

(
fi u̇i + Ii j ϕ̇i j + 1

T0
qiθ,i

)
dv

+
∫

s

(
σi j u̇i + mi jk ϕ̇ jk − 1

T0
qiθ

)
ni ds. (36)
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Following Ciarletta and Scarpetta [57], one derives from Eq. (29) that:

Qi j qi q j + τ1 Bi j qi q̇ j = − τ1

T0
qiθ,i

from which there follows:
d

dt

∫

v

Mdv = − 1

τ1

∫

v

Qi j qi q j dv − 1

T0

∫

v

qiθ,i dv. (37)

Considering Eqs. (36) and (37), one gets:

d

dt
Π =

∫

v

(
fi u̇i + Ii j ϕ̇i j − 1

τ1
Qi j qi q j

)
dv +

∫

s

(
σi j u̇i + mi jk ϕ̇ jk − 1

T0
qiθ

)
ni ds = W, (38)

Integrating Eq. (38) over v×[0,∞), one obtains the identity equation of (35), and hence, the proof is complete.

Theorem Assume that:

(i) ρ is positive, namely:

ρ > 0; (39)

(ii) Ii j are positive, namely:

Ii j > 0; (40)

(iii) For any admissible process P the quadratic form Ξ + Υ is positive semi-definite, namely:

Ξ + Υ ≥ 0. (41)

Then, the problem defined by the governing Eqs. (26) to (29) and the initial boundary conditions (17) to (20)
has at most one solution.

Proof Due to linearity, one only needs to show that null data imply null solution, and hence, the initial boundary
value problem with vanishing external data, X = {0, 0, . . . , 0}, is considered. As a result, one has:

Π (0) = 0, (42)

W = − 1

τ1

∫

v

Qi j qi q j dv. (43)

One obtains hence from Eqs. (35), (42) and (43) that:

∫

v

(Ξ + Υ + K + M)dv =
t∫

0

⎛
⎝− 1

τ1

∫

v

Qi j qi q j dv

⎞
⎠dτ. (44)

Following Ciarletta and Scarpetta [57], one has:

1

τ1
Qi j qi q j ≥ 0. (45)

Combining (33) and (45) (or (44) and (45)), one obtains:

M ≥ 0, (46)
∫

v

(Ξ + Υ + K + M)dv =
t∫

0

⎛
⎝− 1

τ1

∫

v

Qi j qi q j dv

⎞
⎠dτ ≤ 0. (47)

Considering Eqs. (39) to (41), (46) and (47), one gets:

Ξ = Υ = K = M = 0. (48)

Finally, in view of Eqs. (30) to (33), one obtains:

P = {0, 0, . . . , 0} ,
and the proof is complete.
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4 Generalized variational theorem

In Sect. 3, a uniqueness theorem for the newly proposed FOGTEmm theory is established. To provide a complete
rationale for formulating numerical methods with FOGTEmm, a generalized variational principle is needed. In
what follows, we aim to formulate such a principle using the semi-inverse method [58].

To make the problem self-adjoint and avoid the Gurtin-type variational theorem, the time-derivative term
in the fundamental equations should be expressed as [55]:

∂ψ

∂t
= ψ (t)− ψ (tn−1)

�t
=written as= ψ − ψ(n−1)

�t
(49)

where ψ indicates an arbitrary function and �t = t − tn−1 is the equal step length. In view of (49), the
constitutive Eqs. (10) to (12) can be rewritten as:

σi j = Ai jklεkl + Ei jklekl + Fi jklmγklm − Z1χ
σ
i jθ + Z2, (50)

si j = Ekli jεkl + Bi jklekl + Gi jklmγklm − Z1χ
s
i jθ + Z3, (51)

mki j = Flmi jkεlm + Glmi jkelm + Ci jklmnγlmn − Z1χ
m
i jkθ + Z4 (52)

where

Z1 = 1 + 1

�t
w8τ3, Z2 = 1

�t
w8τ3χ

σ
i jθ

(n−1),

Z3 = 1

�t
w8τ3χ

s
i jθ

(n−1), Z4 = 1

�t
w8τ3χ

m
i jkθ

(n−1),

Upon considering (49), the energy conservation equation (9) has the new form, as:

�tqi,i = −T0

(
χσi jεi j + χ s

i j ei j + χm
i jkγi jk

)
− Z5θ + Z6 (53)

where

Z5 = (�t + w8τ4) ρcE , Z6 = T0

(
χσi jε

(n−1)
i j + χ s

i j e
(n−1)
i j + χm

i jkγ
(n−1)
i jk

)
+ w8τ4ρcEθ

(n−1).

When 0 < β ≤ 1, Caputo’s definition of time fractional derivative gives:

Dβ f(t) = 1

Γ (1 − β)

t∫

0

∂ f

∂t
(t − τ)−τdτ. (54)

Replacing the integral term in (54) with a summation, and approximating the first-order time derivative by
first-order backward difference, one has:

Dβ f(t) = 1

Γ (1 − β)

n∑
i=1

ti∫

ti−1

∂ f

∂t
(t − τ)−βdτ

= 1

Γ (1 − β)

n∑
i=1

ti∫

ti−1

f (i) − f (i−1)

�t
(t − τ)−βdτ

= 1

Γ (1 − β)

n∑
i=1

f (i) − f (i−1)

�t

ti∫

ti−1

(t − τ)−βdτ

= 1

Γ (1 − β)

1

1 − β

1

�tβ

n∑
i=1

(
f (i) − f (i−1)

) [
(n − i + 1)1−β − (n − i)1−β]. (55)
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In view of Eq. (55), Eq. (6) (0 < α ≤ 1) has the alternative form:

w1qi + (w2τ1 + w3) q̇i + Z7

αΓ (α)�t1−α θ,i + Z8

αΓ (α)�t1−α θ̇,i = Z9(0<α≤1) (56)

where

Z7 = w4k + w5k∗, Z8 = k (w6 + w7τ2) ,

Z9(0<α≤1) = −Z7
1

Γ (α)

1

α

1

�t1−α
[
− (
θ,i

)(n−1)
]

− Z8
1

Γ (α)

1

α

1

�t1−α
[
− (
θ̇,i

)(n−1)
]

−Z7
1

Γ (α)

1

α

1

�t1−α
n−1∑
i=1

[(
θ,i

)(i) − (
θ,i

)(i−1)
]

× [
(n − i + 1)α−1 − (n − i)α−1]

−Z8
1

Γ (α)

1

α

1

�t1−α
n−1∑
i=1

[(
θ,i

)(i) − (
θ,i

)(i−1)
]

× [
(n − i + 1)α−1 − (n − i)α−1].

Given Eq. (49), Eq. (56) may be further expressed as:

Z10(0<α≤1)qi + Z11(0<α≤1)θ,i = Z12(0<α≤1) (57)

where

Z10(0<α≤1) = �tw1 + w2τ1 + w3, Z11(0<α≤1) = �t Z7 + Z8

Γ (α)

1

α

1

�t1−α ,

Z12(0<α≤1) = �t Z9(0<α≤1) + (w2τ1 + w3) q(n−1)
i + Z8

Γ (α)

1

α

1

�t1−α
(
θ,i

)(n−1)
.

When 1 ≤ α ≤ 2, Eq. (6) may be written:

w1 Dα−1qi + (w2τ1 + w3) Dα−1q̇i = −w4k∇θ − w5k∗∇θ − w6k∇ θ̇ − w7kτ2∇ θ̇ . (58)

Considering Eq. (55), one obtains:

w1

Γ (2 − α) (2 − α)�tα−1 qi + w2τ1 + w3

Γ (2 − α) (2 − α)�tα−1 q̇i + Z7θ,i + Z8θ̇,i = Z9(1≤α≤2) (59)

where

Z9(1≤α≤2) = w1
1

Γ (2 − α)

1

2 − α

1

�tα−1

[
−q(n−1)

]
+ (w2τ1 + w3)

1

Γ (2 − α)

1

2 − α

1

�tα−1

[
−q̇(n−1)

]

−w1
1

Γ (2 − α)

1

2 − α

1

�tα−1

n−1∑
i=1

[
q(i) − q(i−1)

]
× [
(n − i + 1)α−1 − (n − i)α−1]

− (w2τ1 + w3)
1

Γ (2 − α)

1

2 − α

1

�tα−1

n−1∑
i=1

[
q̇(i) − q̇(i−1)

]
× [
(n − i + 1)α−1 − (n − i)α−1].

In view of (49), Eq. (59) has the form:

Z10(1≤α≤2)qi + Z11(1≤α≤2)θ,i = Z12(1≤α≤2) (60)

where

Z10(1≤α≤2) = �tw1 + w2τ1 + w3

Γ (2 − α) (2 − α)�tα−1 , Z11(1≤α≤2) = �t Z4 + Z5,

Z12(1≤α≤2) = �tZ9(1≤α≤2) + w2τ1 + w3

Γ (2 − α) (2 − α)�tα−1 q(n−1) + Z8
(
θ,i

)(n−1)
.
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For convenience, the general form of (57) and (60) may be written, as:

Z10qi + Z11θ,i = Z12 (61)

which will be used in the following derivation.
An energy-like trial functional with independent variables

(
σi j , ui , εi j , si j ,mi jk, ϕi j , ei j , γi jk, θ, qi

)
may

be established as:

J
(
σi j , ui , εi j , si j ,mi jk, ϕi j , ei j , γi jk, θ, qi

) =
t (n)∫

t (n−1)

∫

v

Ldvdt + I B (62)

where

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + F,

IB =
6∑

i=1

t (n)∫

t (n−1)

∫

si

Gi dsdt (63)

for which F and Gi (i = 1, 2, . . . , 8) are unknown functions to be determined below.
The stationary condition with respect to ui in Eq. (62) has the form:

σ j i, j + fi − ρüi + δF

δui
= 0. (64)

To satisfy Eq. (1), one has:

δF

δui
= 0

which indicates that F is not related to ui and its derivatives.
The stationary condition for σi j appearing in (62) may be expressed as:

− u j,i + δF

δσi j
= 0. (65)

In view of (3), one has:

F = εi jσi j + ϕ j iσi j + F1. (66)

Introducing (66) into (63) leads to:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j + F1. (67)

The trial Euler equation for εi j in (62) may be written as:

σi j + δF1

δεi j
= 0. (68)

Upon setting

F1 = −1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j + Z1χ

σ
i jθεi j − Z2εi j + F2 (69)

one finds that (68) satisfies (50). Substitution of (69) into (67) results in:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j

−Ei jkleklεi j − Fi jklmγklmεi j + Z1χ
σ
i jθεi j − Z2εi j + F2. (70)

The stationary condition with respect to ϕ j i in (62) is:
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σ j i + δF2

δϕi j
= 0.

Considering (2), one gets:

F2 = mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + F3. (71)

Combination of (70) and (71) yields:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + F3. (72)

The trial Euler equation for ei j in (62) has the form:

−Ei jklεkl + δF3

δei j
= 0.

Given (51), one has:

F3 = si j ei j − 1

2
Bi jkleklei j − Gi jklmγklmei j + Z1χ

s
i j ei jθ − Z3ei j + F4. (73)

Substitution of (73) into (72) leads to:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + si j ei j − 1

2
Bi jkleklei j

−Gi jklmγklmei j + Z1χ
s
i j ei jθ − Z3ei j + F4. (74)

The stationary condition for mki j may be written as:

− ϕi j,k + δF4

δmki j
= 0. (75)

Combination of (5) and (75) yields:

F4 = γi jkmki j + F5. (76)

Introducing (76) into (74), one obtains:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + si j ei j − 1

2
Bi jkleklei j

−Gi jklmγklmei j + Z1χ
s
i j ei jθ − Z3ei j + γi jkmki j + F5. (77)

The trial Euler equation with respect to si j in (62) is:

−1

2

(
ϕi j + ϕ j i

) + ei j + δF5

δsi j
= 0.

Together with Eq. (4), it follows that:

δF5

δsi j
= 0 (78)

which indicates that F is not related to si j and its derivatives.
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The stationary condition with respect to γklm in Eq. (62) has the form:

−Fi jklmεi j − ei j Gi jklm + mklm + δF5

δγklm
= 0.

In view of (52), one gets:

F5 = −1

2
Ci jklmnγlmnγi jk + Z1χ

m
i jkγi jkθ − Z4γi jk + F6

from which it follows that:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + si j ei j − 1

2
Bi jkleklei j

−Gi jklmγklmei j + Z1χ
s
i j ei jθ − Z3ei j + γi jkmki j − 1

2
Ci jklmnγlmnγi jk + Z1χ

m
i jkγi jkθ − Z4γi jk + F6.

(79)

The trial Euler equation for θ in Eq. (62) reads:

Z1χ
σ
i jεi j + Z1χ

s
i j ei j + Z1χ

m
i jkγlmn + δF6

δθ
= 0. (80)

Considering (53) and (80), one has:

F6 = Z1θ

T0

(
�tqi,i + 1

2
Z5θ − Z6

)
+ F7. (81)

Introducing (81) into (79), one obtains:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + si j ei j − 1

2
Bi jkleklei j

−Gi jklmγklmei j + Z1χ
s
i j ei jθ − Z3ei j + γi jkmki j − 1

2
Ci jklmnγlmnγi jk + Z1χ

m
i jkγi jkθ − Z4γi jk

+ Z1θ

T0

(
�tqi,i + 1

2
Z5θ − Z6

)
+ F7. (82)

The stationary condition with respect to qi may be written as:

−�t Z1

T0
θ,i + δF7

δqi
= 0.

In view of (61), one gets:

F7 = −�t Z1qi

Z11T0

(
1

2
Z10qi − Z12

)

from which it follows that:

L = ui
(
σ j i, j + fi

) + 1

2
ρu̇i u̇i + εi jσi j + ϕ j iσi j − 1

2
Ai jklεklεi j − Ei jkleklεi j − Fi jklmγklmεi j

+Z1χ
σ
i jθεi j − Z2εi j + mkji,kϕ j i − si jϕ j i + L jiϕ j i − 1

2
ρ Iik ϕ̇ jk ϕ̇ j i + si j ei j − 1

2
Bi jkleklei j

−Gi jklmγklmei j + Z1χ
s
i j ei jθ − Z3ei j + γi jkmki j − 1

2
Ci jklmnγlmnγi jk + Z1χ

m
i jkγi jkθ − Z4γi jk

+ Z1θ

T0

(
�tqi,i + 1

2
Z5θ − Z6

)
− �t Z1qi

Z11T0

(
1

2
Z10qi − Z12

)
. (83)
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Applying Green’s theory on the boundary results in:

δui : ∂Gi

∂ui
= 0,

δσi j : − ui ni + ∂Gi

∂σi j
= 0,

δϕi j : ∂Gi

∂ϕi j
= 0,

δmki j : − ϕi j n j + ∂Gi

∂mki j
= 0,

δθ : ∂Gi

∂θ
= 0,

δqi : − Z1�t

T0
θni + ∂Gi

∂qi
= 0.

(i = 1, 2, . . . , 6) (84)

Considering the boundary equations on si (i = 1, 2, . . . , 8), one obtains from (84) that:

G1 = ui
(
σi j n j − Fi

)
, G2 = σi j ūi n j ,

G3 = ϕi j
(
mi jknk − m̄i j

)
, G4 = mi jk ϕ̄i j nk,

G5 = Z1�t

T0
θ (qi ni − q̄) , G6 = Z1�t

T0
qi θ̄ni .

(85)

Finally, substitution of (83) and (85) into (62) results in the generalized variational principle for the FOGTEmm
theory. Note that several special variational theorems can be obtained by introducing suitable constraints.

5 Conclusion

Built upon the micromorphic theory, a theory of fractional order generalized micromorphic thermoelastic-
ity (FOGTEmm) is developed by employing the fractional integral operator. To generalize the new the-
ory, the general forms of several generalized thermoelastic theories, such as the extended thermoelasticity
(ETE), the temperature rate dependent thermoelasticity (TRDTE), the thermoelasticity without energy dissi-
pation (TEWOED), the thermoelasticity with energy dissipation (TEWED), the two-temperature generalized
thermoelasticity (TTGTE), and the dual-phase-lag thermoelasticity (DPLTE), are introduced. Corresponding
uniqueness results are given and proven completely. For illustration, the generalized variational principle of
the FOGTEmm theory is developed by using the semi-inverse method. In addition, the fractional order gen-
eralized micropolar (FOGTEmp) and microstretch thermoelasticity (FOGTEms) as well as the corresponding
generalized variational principles are also presented (see Appendices A and B).

Acknowledgments This study was supported by National Science Foundation of China (11172230), the National Basic Research
Program of China (2011CB6103005), Science & Technology Projects of Shaanxi (2010K10-10), the National 111 Project of
China (B06024), and the Fundamental Research Funds for the Central Universities.

Appendix A: Theory of the fractional order generalized micropolar thermoelasticity (FOGTEmp)
and the corresponding variational principle

Here, with the linear theory of micropolar solids in mind, we introduce firstly the FOGTEmp theory and then
propose the corresponding variational principle. The equations of motion may be written as [42]:

σ j i, j + fi = ρüi , (A.1)

m ji, j + εi jkσ jk + Gi = ρ Ii j φ̈ j (A.2)

where σi j is the stress tensor, fi is the body force, ρ is the mass density, ui is the displacement vector, mi j is the
moment of couple stresses, εi jk is the alternating tensor, Gi is the body couple tensor, Ii j are the coefficients
of inertia, and φi represents the micro-rotations field.
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The generalized strain versus displacement relations are:

ei j = u j,i − εi jkφk, (A.3)

κi j = φ j,i (A.4)

where ei j and κi j are the linear strain tensors, respectively.
Upon introducing the fractional integral operator, the generalized heat conduction law may be expressed
as:

w1qi + (w2τ1 + w3) q̇i = −w4k I α−1θ,i − w5k∗ I α−1θ,i − w6k I α−1θ̇,i − w7kτ2 I α−1θ̇,i . (A.5)

In the absence of any inner heat source, the equation for energy conservation is:

qi,i = −ρT0η̇. (A.6)

The constitutive relations may be described as:

σi j = Ai jklekl + Ei jklκkl − χσi j

(
θ + w8τ3θ̇

)
, (A.7)

mi j = Ei jklekl + Ci jklκkl − χm
i j

(
θ + w8τ3θ̇

)
, (A.8)

ρη = χσi j ei j + χm
i j κ i j + ρcE

T0

(
θ + w8τ4θ̇

)
(A.9)

where Ai jkl , Bi jkl , Ci jkl , Ei jkl , χ
σ
i j , and χm

i j are separately the constitutive coefficients; cE indicates specific
heat at constant deformation; τ3 and τ4 represent relaxation times in TRDTE.

A typical problem in the context of FOGTEmp may be formulated, combining Eqs. (A.1)–(A.9) and cor-
responding initial and boundary conditions. Considering the conciseness of the micropolar theory among all
the micromodeling theories, the reader is referred to [42] for the case of isotropic media, which is commonly
existing in practical engineering. As shown in Sect. 4, an energy-like trial functional with independent variables(
σi j , ui , ei j ,mi j , ϕi , κi j , θ, qi

)
may be given as follows:

J
(
σi j , ui , ei j ,mi j , ϕi , κi j , θ, qi

) =
t (n)∫

t (n−1)

∫

v

Ldvdt + IB (A.10)

where

L = ui
(
σi j, j + fi

) + 1

2
ρu̇i u̇i + ei jσi j + εi jkφkσi j − 1

2
Ai jkleklei j − Ei jklκklei j + Z1χ

σ
i jθei j

−Z2ei j − m ji, jφi − Giφi + 1

2
ρ Ii j φ̇ j φ̇i + mi jκi j − 1

2
Ci jklκklκi j + Z1χ

m
i j θκi j − Z13κi j

+ Z1θ

T0

(
�tqi,i + 1

2
Z5θ − Z14

)
− �tZ1qi

Z11T0

(
1

2
Z10qi − Z12

)
, (A.11)

IB =
6∑

i=1

t (n)∫

t (n−1)

∫

si

Gi dsdt (A.12)

in which

Z13 = 1

�t
w8τ3χ

m
i j θ

(n−1),

Z14 = T0

(
χσi j e

(n−1)
i j + χm

i j κ
(n−1)
i j

)
+ w8τ4ρcEθ

(n−1).

The variational operation of the energy-like trial functional J implies the generalized variational theorem of
FOGTEmp.
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Appendix B: Theory of the fractional order generalized microstretch thermoelasticity (FOGTEms)
and the corresponding variational principle

Given that the microstretch theory is extended from the micropolar theory by considering microstretch, for
conciseness, there is no need to restate the part shown in Appendix A. Consequently, to formulate the FOGTEms
theory, we just supplement or modify some contents of the FOGTEmp theory. The equation that needs to be
added to the equations of motion, i.e., (A.1) and (A.2), is [46]:

πi,i − g + L = ρ J ψ̈ (B.1)

where πi is the microstress, g is the generalized internal body load, L is the generalized external body load, J
is the coefficient of inertia, and ψ is the microstretch function.
The generalized strain versus displacement relations of (A.3) and (A.4) need to be supplemented by [59]:

γi = ψ,i . (B.2)

The constitutive relations (A.9) to (A.11) are modified and supplemented as:

σi j = Ai jklekl + Bi jklκkl + Di jkγk + Ai jψ − χσi j

(
θ + w8τ3θ̇

)
, (B.3)

mi j = Bi jklekl + Ci jklκkl + Ei jkγk + Bi jψ − χm
i jk

(
θ + w8τ3θ̇

)
, (B.4)

πi = Di jke jk + Ei jkκ jk + Di jγ j + diψ − χπi
(
θ + w8τ3θ̇

)
, (B.5)

g = Ai j ei j + Bi jκi j + diγ j + mψ − χ g (
θ + w8τ3θ̇

)
, (B.6)

ρη = χσi j ei j + χm
i j κ i j + χπi γ j + χ gψ + ρcE

T0

(
θ + w8τ4θ̇

)
. (B.7)

The equations (A.1) to (A.6) and (B.1) to (B.7) represent the fundamental equations of the FOGTEms the-
ory. Here, to establish the variational theorem, an energy-like trial functional with independent variables(
σi j , ui , ei j ,mi j , ϕi , κi j , πi , ψ, γi , θ, qi

)
for initial boundary value problems of FOGTEms may be expressed

as:

J
(
σi j , ui , ei j ,mi j , ϕi , κi j , πi ,ψ ,γi , θ, qi

) =
t (n)∫

t (n−1)

∫
v

Ldvdt + IB (B.8)

where

L = ui
(
σi j, j + fi

) + 1

2
ρu̇i u̇i + ei jσi j + εi jkφkσi j − 1

2
Ai jkleklei j − Bi jklκklei j

−Di jkγkei j − Ai jψei j + Z1χ
σ
i jθei j − Z2ei j − m ji, jφi − Giφi + 1

2
ρ Ii j φ̇ j φ̇i + mi jκi j

−1

2
Ci jklκklκi j − Ei jkγkκi j − Bi jψκi j + Z1χ

m
i j θκi j − Z13κi j + πi,iψ − diγiψ

−1

2
mψ2 + Z1χ

gθψ − Z15ψ + Lψ − 1

2
ρ J ψ̇2 + πiγi − 1

2
γi Di jγ j + Z1χ

π
i θγi − Z16γi

+ Z1θ

T0

(
�tqi,i + 1

2
Z5θ − Z17

)
− �t Z1qi

Z11T0

(
1

2
Z10qi − Z12

)
, (B.9)

IB =
8∑

i=1

t (n)∫

t (n−1)

∫
si

Gi dsdt (B.10)

in which

Z15 = 1

�t
w8τ3χ

gθ(n−1), Z16 = 1

�t
w8τ3χ

π
i θ

(n−1),

Z17 = T0

(
χσi j e

(n−1)
i j + χm

i j κ
(n−1)
i j + χπi γ

(n−1)
i + χ gψ(n−1)

)
+ w8τ4ρcEθ

(n−1).

The generalized variational theorem of FOGTEms is obtained via variational operation of the energy-like trial
functional J .
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