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Abstract A two-dimensional problem for a thermoelastic half-space is considered within the context of the
theory of generalized thermoelastic diffusion with one relaxation time. The upper surface of the half-space
is taken to be traction free and subjected to harmonically varying heating with constant angular frequency
of thermal vibration. Laplace and Fourier transform techniques are used. The solution in the transformed
domain is obtained by a direct approach. Numerical inversion techniques are used to obtain the inverse double
transforms. Numerical results are discussed and represented graphically.

1 Introduction

Recently, the studying of diffusion became increasingly important. This is due mainly to its many applications in
geophysics and industrial applications. In integrated circuit fabrication, diffusion is used to introduce “dopants”
in controlled amounts into the semiconductor substrate. In particular, diffusion is used to form the base and
emitter in bipolar transistors, form integrated resistors, and form the source/drain regions in MOS transistors
and dope poly-silicon gates in MOS transistors.

In most of these applications, the concentration is calculated using what is known as Fick’s law. The Fick’s
law is analogous to the relationships discovered in the same era by other eminent scientists: Darcy’s law
(hydraulic flow), Ohm’s law (charge transport), and Fourier’s Law (heat transport). Equations based on Fick’s
law have been commonly used to model transport processes in foods, neurons, biopolymers, pharmaceuticals,
porous soils, population dynamics, nuclear materials, semiconductor doping processes, etc.

The coupled theory of thermoelasticity was developed by Biot [1] to eliminate the paradox inherent in the
classical uncoupled theory that elastic changes have no effect on the temperature. The heat equations for both
theories, however, are of the diffusion type predicting infinite speeds of propagation for heat waves contrary
to physical observations.

Lord and Shulman [2] introduced the theory of generalized thermoelasticity with one relaxation time for
the special case of an isotropic body. Dhaliwal and Sherief [3] extended this theory to include the anisotropic
case. In this theory, a modified law of heat conduction including both the heat flux and its time derivative
replaces the conventional Fourier’s law. The heat equation associated with this theory is hyperbolic and hence
eliminates the paradox of infinite speeds of propagation inherent in both the uncoupled and the coupled theories
of thermoelasticity.

Uniqueness of solution for this theory was proved under different conditions by Ignaczak [4]. Sherief
and El-Maghraby [5,6] solved two crack problems. Sherief et al. [7] have solved a dynamical problem for an
infinitely long hollow cylinder for short time. A one-dimensional problem for a half-space under the action of a
body force has been solved by Saleh in [8]. Sherief et al. [9] have solved a stochastic thermal shock problem in
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generalized thermoelasticity. Sherief and Hamza [10,11] and Elhagary [12] have solved some two-dimensional
problems. Sherief et al. extended this theory to include micropolar effects [13] and viscoelastic materials [14].
This theory was generalized using fractional derivatives by Sherief et al. [15].

Nowacki [16–19] developed the theory of thermoelastic diffusion. In this theory, the coupled thermoelastic
model is used. This implies infinite speeds of propagation of thermoelastic waves. Recently, Sherief et al.
[20] developed the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for
thermoelastic and diffusive waves. In this theory, Sherief et al. [20] studied the uniqueness and introduced a
variational and reciprocity theorem. Sherief and Saleh [21] solved a one-dimensional thermoelastic diffusion
problem for a half-space, Sherief and El-Maghraby [22] solved a thick plate problem in the theory of generalized
thermoelastic diffusion. Elhagary [23,24] solved some one-dimensional problems in the theory of generalized
thermoelastic diffusion in cylindrical and spherical coordinates.

In the present work, the author considers a two-dimensional problem for a half-space. The bounding surface
is taken to be traction free and subjected to harmonically varying heating with constant angular frequency of
thermal vibration. Laplace and exponential Fourier transform techniques are used.

2 Formulation of the problem

We consider a homogeneous isotropic thermoelastic solid occupying the half-space y ≥ 0. The y-axis is taken
perpendicular to the bounding plane pointing inward. We also assume that the initial state of the medium is
quiescent. The surface of this medium is taken to be traction free and subjected to harmonic heating. The
chemical potential is also assumed to be a known function of time on the surface of the half-space.

The displacement vector thus has the form u = (u, v, 0), and the cubical dilatation e is given by

e = divu = ∂u

∂x
+ ∂v

∂y
(1)

The equation of motion in the absence of body forces can be written as [20]:

ρ
∂2u

∂t2 = (λ + μ)
∂e

∂x
+ μ

(
∂2u

∂x2 + ∂2u

∂y2

)
− β1

∂T

∂x
− β2

∂C

∂x
, (2)

ρ
∂2v

∂t2 = (λ + μ)
∂e

∂y
+ μ

(
∂2v

∂x2 + ∂2v

∂y2

)
− β1

∂T

∂y
− β2

∂C

∂y
, (3)

where T is the absolute temperature, C is the concentration of the diffusion material in the elastic body,
λ,μ are Lamé constant, ρ is the density, β1 and β2 are material constants given by β1 = (3λ + 2μ)αt and
β2 = (3λ + 2μ)αc, αt is the coefficient of linear thermal expansion, and αc is the coefficient of linear diffusion
expansion

The energy equation has the form [20]

k∇2T =
(

∂

∂t
+ τ0

∂2

∂t2

)
[ρcE T + β1T0e + aT0C] , (4)

where k is the thermal conductivity, cE is the specific heat at constant strain, τ0 is the thermal relaxation time,
a is the measure of thermo-diffusion effect, and T0 is a reference temperature assumed to obey the inequality
|(T − T0)/T0| << 1.

The diffusion equation has the form [20]

Dβ2∇2e + Da∇2T +
(

∂

∂t
+ τ

∂2

∂t2

)
C = Db∇2C, (5)

where D is the diffusion coefficient, b is a measure of diffusion effect, and τ is the diffusion relaxation time.
The constitutive equations are given by [20] as follows:

σi j = 2μei j + δi j [λekk − β1 (T − T0) − β2C] , (6a)

P = −β2ekk + bC − a (T − T0) , (6b)

where P is the chemical potential, and σi j are the components of the stress tensor.
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In our case, by using Eq. (1), Eq. (6a) become

σxx = 2μ
∂u

∂x
+ λe − β1 (T − T0) − β2C

= (λ + 2μ) e − 2μ
∂v

∂y
− β1 (T − T0) − β2C. (7a)

Similarly,

σyy = (λ + 2μ) e − 2μ
∂u

∂x
− β1 (T − T0) − β2C, (7b)

σzz = λe − β1 (T − T0) − β2C, (7c)

σxy = μ

(
∂u

∂y
+ ∂v

∂x

)
, (7d)

σxz = σyz = 0. (7e)

We shall use the following nondimensional variables:

x ′ = cηx, y′ = cηy, u′ = cηu, v′ = cηv, t ′ = c2ηt, τ ′
0 = c2ητ0,

τ ′ = c2ητ, θ = β1 (T − T0)

(λ + 2μ)
, C ′ = β2C

(λ + 2μ)
, σ ′

i j = σi j

λ + 2μ
, P ′ = P

β2

where η = ρcE
k , and c =

√
(λ+2μ)

ρ
is the speed of propagation of isothermal elastic waves.

Using these nondimensional variables, the governing equations (1–7) take the following form (dropping
the primes for convenience):

β2 ∂2u

∂t2 = (
β2 + 1

) ∂e

∂x
+ ∇2u − β2 ∂θ

∂x
− β2 ∂C

∂x
, (8)

β2 ∂2v

∂t2 = (
β2 + 1

) ∂e

∂y
+ ∇2v − β2 ∂θ

∂y
− β2 ∂C

∂y
, (9)

∇2θ =
(

∂

∂t
+ τ0

∂2

∂t2

)
[θ + εe + εα1C] , (10)

∇2e + ∇2θ + α2

(
∂

∂t
+ τ

∂2

∂t2

)
C = α3∇2C, (11)

σxx = β2e − 2
∂v

∂y
− β2θ − β2C, (12a)

σyy = β2e − 2
∂u

∂x
− β2θ − β2C, (12b)

σzz = (
β2 − 2

)
e − β2θ − β2C, (12c)

σxy =
(

∂u

∂y
+ ∂v

∂x

)
, (12d)

P = α3C − e − α1θ, (12e)

where ε = β2
1 T0

ρcE (λ+2μ)
, α1 = a(λ+2μ)

β1β2
, α2 = λ+2μ

β2
2 Dη

, and α3 = b(λ+2μ)

β2
2

.

Combining Eqs. (8) and (9), upon using Eq. (1) we get

∂2e

∂t2 = ∇2e − ∇2θ − ∇2C, (13)
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The boundary conditions, at y = 0, are taken as

(i) σyy (x, 0, t) = σxy (x, 0, t) = 0, (14a)

(ii) θ (x, 0, t) = θ0Cos (ωt) H (d − |x |) , (14b)

(iii) P (x, 0, t) = P0 H (t) , (14c)

where θ0, P0 and d are constants while ω is the angular frequency of thermal vibration (ω = 0 for a thermal
shock). H(.) is the Heaviside unit step function. Thus, the surface y = 0 is traction free and it is heated on a
band of width 2d around the x-axis.

3 Solution in the Laplace transformed domain

Applying the Laplace transform with parameter s (denoted by a bar) of both sides of Eqs. (8)–(13), we obtain
the following set of equations:

(∇2 − β2s2) ū = ∂

∂x

(
β2 (

θ̄ + C̄
) − (

β2 − 1
)

ē
)
, (15)

(∇2 − β2s2) v̄ = ∂

∂y

(
β2 (

θ̄ + C̄
) − (

β2 − 1
)

ē
)
, (16)

(∇2 − s2) ē = ∇2θ̄ + ∇2C̄, (17)(∇2 − s (1 + τ0s)
)
θ̄ = εs (1 + τ0s)

[
ē + α1C̄

]
, (18)(

α3∇2 − α2s (1 + τ0s)
)

C̄ = ∇2ē + α1∇2θ̄ , (19)

σ̄xx = β2 (
ē − θ̄ − C̄

) − 2
∂v̄

∂y
, (20a)

σ̄yy = β2 (
ē − θ̄ − C̄

) − 2
∂ ū

∂x
, (20b)

σ̄zz = (
β2 − 2

)
ē − β2 (

θ̄ − C̄
)
, (20c)

σ̄xy =
(

∂ ū

∂y
+ ∂v̄

∂x

)
, (20d)

P̄ = α3C̄ − ē − α1θ̄ . (20e)

Eliminating C̄ and ē between Eqs. (17)–(19), we get
(∇6 − a1∇4 + a2∇2 − a3

)
θ̄ = 0, (21)

where

a1 = s

α3 − 1
[(1 + τ0s) (α1ε ((α1 + 2) + α3 (ε + 1) − 1)) + α2 (1 + τ s) + α3s] ,

a1 = s2

α3 − 1

[
(1 + τ0s)

(
α1εs2 + α3s + α2 (1 + τ s) (ε + 1)

) + +α2 (1 + τ s) s
]
,

a3 = s4α2

α3 − 1
(1 + τ s) (1 + τ0s) .

In a similar manner, we can show that ē and C̄ satisfy the equations
(∇6 − a1∇4 + a2∇2 − a3

)
ē = 0, (22)(∇6 − a1∇4 + a2∇2 − a3

)
C̄ = 0. (23)

Equation (21) can be factorized as
(∇2 − k2

1

) (∇2 − k2
2

) (∇2 − k2
3

)
θ̄ = 0, (24)
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where k1, k2 and k3 are the roots with positive real parts of the characteristic equation

k6 − a1k4 + a2k2 − a3 = 0. (25)

The roots k1, k2 and k3 are given by

k1 =
√

1

3
[2p sin (q) + a1], (26)

k2 =
√

1

3

[
a1 − p

(√
3 cos (q) + sin (q)

)]
, (27)

k3 =
√

1

3

[
a1 + p

(√
3 cos (q) − sin (q)

)]
, (28)

where p =
√

a2
1 − 3a2, q = sin−1(γ )

3 and γ = −
(

2a3
1−9a1a2+27a3

2p3

)
.

The general solution of Eq. (24) can be written as the sum

θ̄ =
3∑

i=1

θ̄i ,

where θ̄i is the solution of the partial differential equation
(∇2 − k2

i

)
θ̄i = 0 i = 1, 2, 3.

We consider, in general, the solution of equation of the form
(∇2 − k2) f (x, y, s) = 0. (29)

We use the Fourier exponential transform defined by the relation [25]

f ∗ (q, y, s) = 1√
2π

∞∫
−∞

e−iqx f (x, y, s)dx

with its corresponding inversion formula

f (x, y, s) = 1√
2π

∞∫
−∞

eiqx f ∗ (q, y, s) dq where i = √−1.

We assume that all the relevant functions (such as temperature and stress) are sufficiently smooth on the
real line such that the Fourier transforms of these functions exist.

Taking the Fourier transform of both sides of Eq. (29), we obtain
(
D2 − q2 − k2) f ∗ (q, y, s) = 0,

where D = ∂/∂y. The solution of this equation bounded for y > 0 has the form

f ∗ (q, y, s) = A1e−hy + A2ehy with h =
√

q2 + k2.

We thus obtain the Fourier transform of the bounded solution of Eq. (24) in the form

θ̄∗ =
3∑

i=1

Ai e
−hi y, (30)

where hi =
√

q2 + k2
i and Ai (i = 1, 2, 3) are parameters depending on s.
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Similarly, the solutions of Eqs. (22) and (23) can be written as

ē∗ =
3∑

i=1

A′
i e

−hi y, (31)

C̄∗ =
3∑

i=1

A′′
i e

−hi y, (32)

where A′
i and A"i (i = 1, 2, 3) are parameters depending only on s.

Substituting from Eqs. (30)–(32) into Eqs. (17)–(19), we get

A′
i = k2

i

[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai ,

A′′
i = k4

i − k2
i

[
s2 + (ε + 1)

(
s + τ0s2

)] + s3 (1 + τ0s)

ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai .

we thus have

ē∗ =
3∑

i=1

k2
i

[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (33)

C̄∗ =
3∑

i=1

k4
i − k2

i

[
s2 + (ε + 1)

(
s + τ0s2

)] + s3 (1 + τ0s)

ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y . (34)

Taking the Fourier transform of both sides of Eqs. (15)–(20), we obtain the following set of equations
(
D2 − q2 − β2s2) ū∗ = iq

(
β2 (

θ̄∗ + C̄∗) − (
β2 − 1

)
ē∗) , (35)(

D2 − q2 − β2s2) v̄∗ = D
(
β2 (

θ̄∗ + C̄∗) − (
β2 − 1

)
ē∗) , (36)

σ̄ ∗
xx = β2 (

ē∗ − θ̄∗ − C̄∗) − 2Dv̄∗, (37a)

σ̄ ∗
yy = β2 (

ē∗ − θ̄∗ − C̄∗) − 2iqū∗, (37b)

σ̄ ∗
zz = (

β2 − 2
)

ē∗ − β2 (
θ̄∗ + C̄∗) , (37c)

σ̄ ∗
xy = (

Dū∗ + iq v̄∗) , (37d)

P̄∗ = α3C̄∗ − ē∗ − α1θ̄
∗, (37e)

ē∗ = iqū∗ + Dv̄∗. (38)

Substituting from Eqs. (30), (33), and (34) into the right hand side of Eqs. (35) and (36), we get

(
D2 − q2 − β2s2) ū∗ = iq

3∑
i=1

(
k2

i − β2s2
) [

k2
i − (1 − εα1)

(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (39)

(
D2 − q2 − β2s2) v̄∗ = D

3∑
i=1

(
k2

i − β2s2
) [

k2
i − (1 − εα1)

(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y . (40)

The general solution of Eqs. (39) and (40)

ū∗ = Be−hy + iq
3∑

i=1

[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (41)



A two-dimensional generalized thermoelastic diffusion problem 3063

v̄∗ = iq

h
Be−hy −

3∑
i=1

hi

[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (42)

where h = √
q2 + β2s2 and B is a parameter depending on s and q .

Substituting from Eqs. (30), (33), (34), (41) and (42) into (37), we get

σ̄ ∗
xx = 2iq Be−hy +

3∑
i=1

(
β2s2 − 2h2

i

) [
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (43a)

σ̄ ∗
yy = −2iq Be−hy +

3∑
i=1

(
β2s2 + 2q2

) [
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (43b)

σ̄ ∗
zz =

3∑
i=1

(
β2s2 − 2k2

i

) [
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (43c)

σ̄ ∗
xy = −

(
h2 + q2

h

)
Be−hy − 2iq

3∑
i=1

hi
[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai e

−hi y, (43d)

�P̄∗ = α2 (1 + τ s)

ε (1 + τ0s)

3∑
i=1

k4
i − k2

i �s2 + (ε + 1)
(
s + τ0s2

)	 + s3 (1 + τ0s)

k2
i �(1 + α1) k2

i − α1s2	 Ai e
−hi y . (43e)

The boundary conditions (14) in the Laplace and Fourier transforms take the form

(i) σ̄ ∗
yy (q, 0, s) = σ̄ ∗

xy (q, 0, s) = 0, (44a)

(ii) θ̄∗ (q, 0, s) =
√

2

π
θ0

(
s

s2 + ω2

)
sin (dq)

q
(1 − iπqδ (q)) , (44b)

(iii) P̄∗ (q, 0, s) = P0

s
δ (q) . (44c)

Equation (44) immediately give the following system of four linear equations in the unknown parameters
A1, A2, A3 and B:

−2iq B +
3∑

i=1

(
β2s2 + 2q2

) [
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai = 0, (45a)

(
h2 + q2

h

)
B + 2iq

3∑
i=1

hi
[
k2

i − (1 − εα1)
(
s + τ0s2

)]
ε
(
s + τ0s2

) [
(1 + α1) k2

i − α1s2
] Ai = 0, (45b)

A1 + A2 + A2 =
√

2

π
θ0

s

s2 + ω2

sin (dq)

q
(1 − iπqδ (q)) , (45c)

3∑
i=1

k4
i − k2

i �s2 + (ε + 1)
(
s + τ0s2

)	 + s3 (1 + τ0s)

k2
i

[
(1 + α1) k2

i − α1s2
] Ai = δ (q) P0

s

ε (1 + τ0s)

α2 (1 + τ s)
. (45d)

Solving the linear system of equations (45), we can obtain the parameters Ai (i = 1, 2, 3) and B. This completes
the solution of the problem in the Laplace transform domain.

4 Inversion of the double transforms

We shall now outline the numerical inversion method used to fine the solution in the physical domain. Let
f̄ ∗(x, q, s) be the double Fourier-Laplace transform of a function f (x, y, t). First, we use the inversion formula
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of the Fourier transform mentioned earlier to obtain a Laplace transform expression f̄ (x, y, s) of the form

f̄ (x, y, s) = 1√
2π

∞∫
−∞

eiqx f̄ ∗ (x, q, s) dq,

=
√

2

π

∞∫
0

(
cos (qy) f̄ ∗

e (x, q, s) + sin (qy) f̄ ∗
o (x, q, s)

)
dq,

where f̄ ∗
e and f̄ ∗

o denote to the even and odd parts of f̄ ∗(x, q, s), respectively.
The inversion formula for Laplace transforms can be written as

f (x, y, t) = 1

2π i

d+i∞∫
d−i∞

est f̄ (x, y, s) ds,

where d is an arbitrary real number greater than all the real parts of the singularities of f̄ (x, y, s). Taking
s = d + iy, the preceding integral takes the form

f (x, y, t) = edt

2π i

∞∫
−∞

eiyt f̄ (x, y, d + iy) dy.

Expanding the function g(x, y, t) = exp(−dt) f (x, y, t) into a Fourier series in the interval [0, 2T ], we obtain
the approximate formula [26]

f (x, y, t) = f∞ (x, y, t) + ED,

where

f∞ (x, y, t) = 1

2
c0 +

∞∑
k=1

ck for 0 ≤ t ≤ 2T (46)
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Fig. 1 Temperature distribution
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and

ck = edt

T
Re

[
eikπ t/T f̄ (x, y, d + ikπ/T )

]
. (47)

The discretization error, ED , can be made arbitrarily small by choosing d large enough [26]. Since the infinity
series in Eq. (46) only be summed up to a finite number N of terms, the approximate value of f (x, y, t)
becomes

fN (x, y, t) = c0

2
+

N∑
k=1

ck for 0 ≤ t ≤ 2T . (48)

Using this formula to evaluate f (x, y, t), we introduce a truncation error ET that must be added to the
discretization error to produce the total error.

Tow methods are used to reduce the total error. First, the “Korrektur” method is used to reduce the discretiza-
tion error. Next, the ε-algorithm is used to reduce the truncation error and hence to accelerate convergence:

The Korrektur method uses the following formula to evaluate the function f (x, y, t):

f (x, y, t) = f∞ (x, y, t) − e−2dT f∞ (x, y, 2T + t) + E
′
D,

where the discretization errors
∣∣∣E ′

D

∣∣∣ << |ED|. Thus, the approximate value of f (x, y, t) becomes

fNk (x, y, t) = fN (x, y, t) − e−2dT fN ′ (x, y, 2T + t) , (49)

where N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm that is used to accelerate the convergence of the series in (48). Let

N be an odd natural number and let

sn =
n∑

k=1

ck

be the sequence of partial sums of (48). We define the ε-sequence by

ε0,n = 0, ε1,n = sn n = 1, 2, 3, . . . . . . .

and

εm+1,n = εm−1,n+1 + 1

εm,n+1 − εm,n
m, n = 1, 2, 3, . . . . . . . . . . . . . . .

It can be shown [26] that the sequence

ε1,1, ε3,1, ε5,1, . . . . . . . . . , εN ,1

converges to f (x, y, t) + ED − c0/2 faster than the sequence of partial sums

sn n = 1, 2, 3, . . . . . . . . .

The actual procedure used to invert the Laplace transforms consists of using Eq. (49) together with the
ε-algorithm. The values of d and T are chosen according to the criteria outline in [26].
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Fig. 3 Stress component σxx distribution

5 Numerical results

The copper material was chosen for purposes of numerical evaluations. The parameters of the problem are
thus given in SI units by [27]

T0 = 293K , ρ = 8954 kg/m3, τ0 = 0.02 s, τ = 0.2 s,

cE = 383.1 J/(kg K), αt = 1.78(10)−5 K−1, αc = 1.98(10)−4 m3/kg,

μ = 3.86(10)10 kg/(m s2), λ = 7.76(10)10 kg/(m s2), k = 386 W/(m K),

D = 0.85(10)−8 kg s/m3, a = 1.2(10)4 m2/(s2K), b = 0.9(10)6 m5/(kg s2).

From the above values, it was found that

η = 8886.73, ε = 0.0168, β2 = 4, α1 = 5.43, α2 = 0.533 and α3 = 36.24.
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Fig. 5 Concentration distribution

The computations were carried out for one value of time, namely t = 0.05 with three different values of
the angular frequency, namely for ω = 0, 5 and 10. The results are illustrated graphically in Figs. 1, 2, 3, 4,
5, and 6 for the temperature increment θ , the displacement component v, the stress component σxx , the stress
component σyy , concentration C , and chemical potential P distributions, respectively. All the functions were
evaluated inside the medium on the y-axis (x = 0) as functions of y. In all figures, the solid lines represent the
case when ω = 0 (the case of thermal shock), the dashed lines represent the case when ω = 5, while the dotted
lines represent the case when ω = 10. Due to the symmetry, the displacement component u is identically zero
on the y-axis.

All the figures show that the heat, elastic, and diffusion waves propagate with finite speeds. We can see
that all the functions considered vanish identically for y > 0.92. The fronts of these waves are depicted in
the figures as discontinuities in the functions in Figs. 1 and 3, 4, 5, and 6 or in the first derivative in Fig. 2
because the displacement is a continuous function. Of course, some of these discontinuities are very small to
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show in the figures. It was found that the three wave fronts are located at the positions y = 0.04, y = 0.34,
and y = 0.92.

From the graphs, we can see that the effect of diffusion on the temperature and displacement is very weak
but has a noticeable effect on the stress. Also, these graphs show that the change of the angular frequency of
thermal vibration ω has a significant effect on all the studied fields.
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