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Abstract The transport problem in a three-layer channel consisting of a noticeable transition layer sandwiched
by a free-fluid region and a homogeneous porous medium is investigated analytically. The heterogeneous tran-
sition layer is characterized by the continuous variation of porosity and permeability, which are specifically
described by applying two sets of functions. The Brinkman model is employed in the transition layer, and the
analytical velocity profile is obtained in terms of the Airy function. Consistency is found between the computa-
tion results and the PIV data measured by Goharzadeh et al. (Phys. Fluids 17:057102, 2005). After comparing
the estimated permeability variations with the calculated variation, we find the former predicted permeabil-
ity values are two orders of magnitude larger than the latter ones. The velocity discrepancy in the transition
layer is ascribed to the effectiveness of the empirical permeability function: although the well-known Kozeny–
Carman formula can precisely predict the permeability of the monodisperse spherical packing bed with constant
porosity, it will overestimate the permeability in the transition layer. Then, the exact permeability variation is
expressed by an exponential function, and a more general formula is needed to model the gradual change of
permeability along the transition layer region.

1 Introduction

Transport phenomena of combined free and porous flow are encountered in numerous industrial, environmen-
tal and biological applications, such as the extraction of crude oil from reservoirs, fuel cells, flow through
oil filters, nuclear reactors, surface and groundwater flow, contaminant transport from lakes by groundwater,
blood flow in a capillary, transfer of therapeutic agents. The corresponding transport mechanism has been
intensively investigated in the last decades.

Traditionally, there are two popular ways to model this coupled flow as shown in Fig. 1. The first one
is named one-domain approach (ODA), which considers the porous medium as a pseudo-fluid and employs
one single equation to describe the fluid flow both in the free-fluid region and in the porous medium. If the
interface is an exact surface that separates the homogeneous porous medium and the clear fluid region, then
the physical properties are discontinuous, corresponding to the “discontinuous one-domain approach,” or a
transition layer across which the physical variables encounter possibly strong but nevertheless continuous vari-
ations, corresponding to the “continuous one-domain approach” [1]. The modeling is achieved by applying
a general transfer equation which is valid everywhere in the domain. If the porous medium is assumed to be
homogeneous, this equation takes the form [2]
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ε2 ∇ · (ρuu) = ρf − ∇ p + μe∇2u − μK−1 · u, (1)

K. Tao · J. Yao (B) · Z. Huang
Department of Reservoir Engineering, School of Petroleum Engineering,
China University of Petroleum (Huadong), 266555 Qingdao, China
E-mail: RCOGFR_UPC@126.com



1944 K. Tao et al.

Fig. 1 Distinct descriptions for the flow in the fluid/porous composite structure. a Microscopic scale description, b one-domain
approach configuration, c two-domain approach configuration

where ρ signifies the fluid density, u is the fluid velocity vector, f represents body forces, p is the pressure, K is
the permeability, ε denotes the porosity, μe is the effective viscosity and μ the fluid viscosity. In the free-fluid
region, the permeability is infinitely large and Eq. (1) degenerates into the Navier–Stokes equation. For finite
values of the permeability of the porous medium, all the terms involving the velocity are formally retained but
the Darcy term is predominant; if the permeability is small enough, then the viscous term will be negligible
compared to the Darcy term.

Since this formulation avoids explicit interface conditions, it has been extensively used in numerical com-
putation. Good agreement has been obtained in the comparison with experimental results [3–5] using μe = μ
in the calculations. Goyeau et al. [2] used μe/μ = 1/εp and found that the numerical result using ODA match
the analytical result well. The main restriction of the single-domain approach lies in the statement that the
Laplacian term may be not valid in low porosity/velocity environments [6].

Based on the domain decomposition method [7], the other approach is called the two-domain approach,
using different equations in different subdomains, e.g., Darcy/Brinkman/Forchheimer model in the porous
medium and the Navier–Stokes equation in the free-fluid region and coupling them through suitable interface
conditions. The work of Beavers and Joseph [8] was among the earlier attempts to study the fluid flow boundary
conditions at the interface. They performed an experimental and analytical investigation of fluid flow past a
porous material. In order to describe the forced flow in the composite channel, a Stokes flow is considered
in the free-fluid region while the momentum transport in the homogeneous porous medium is described by
Darcy’s law. Due to the different orders of the partial differential equations, an ad hoc slip boundary condition,
i.e., BJ condition, is proposed at the interface:
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(

ux |y=0 − u D
)

, (2)

where ux denotes the tangential fluid velocity in the channel, u D is the seepage velocity in the porous medium,
K is the permeability and α an empirical dimensionless coefficient. They showed that this boundary condition
is consistent with their experiments when the adjustable α ranges from 0.1 to 4. The wide range of α for materi-
als roughly having the same macroscopic averaging properties proves the importance of the interfacial porous
structure. Alloui and Vasseur [9] employed this boundary condition to analytically study the stability and
natural convection in a system consisting of a horizontal fluid layer over a layer of saturated porous medium.
It should be pointed out that Eq. (2) implies a discontinuity in the tangential velocity, i.e., rapid changes of the
velocity jumping from that in the fluid region to the porous medium.

In 1995, utilizing a volume averaging method, Ochoa-Tapia and Whitaker [10,11] derived a jump condition:
a jump in the effective shear stress, but not in velocity, has been proposed to match the Brinkman–extended
Darcy equation with the Stokes equation at the interface, i.e., the OTW condition,
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where β is a dimensionless adjustable coefficient, it may be positive or negative but must be of order O(1).
By adjusting the coefficient β, they achieved a good agreement with the experimental data of Beavers and
Joseph. Many studies focused on the estimation of β or obtaining an expression for β which depends on the
microstructure of the interface region. Goyeau et al. [2] introduced a continuously varying heterogeneous layer
and related β to the continuous spatial variations of the porous structure. Jamet and Chandesris [12] explicitly
provided the dependence of β on the internal structure of the transition zone based on matched asymptotic
expansions.

However, for the two-domain approach, the solutions can only match the experimental data by adjusting
the empirical parameters α or β, which need further physical explanation. To avoid determining the value of
β, Duman and Shavit [13] proposed an alternative approach to treat the coupling flow which only needs the
easily measured maximum velocity or the flow rate. Besides, Neale and Nader [14] objected to the velocity slip
at the interface and stated that the Brinkman equation is mathematically and physically preferable to Darcy’s
law when considering transition region effects in porous media. Since the Stokes and Brinkman equations are
of the same order, continuity of velocity and shear stress should be employed at the interface, which avoids
the use of α or β.

When using the two-domain approach, we certainly assume that a sharp interface separates the clear fluid
region and the homogeneous porous medium. However, most applications do not have such an abrupt transi-
tion, and a gradual change of the geometry marked by the variation of the macroscopic properties (porosity,
permeability, etc.) is expected at the intermediate transition layer. Goyeau et al. [2] recalled that an interface is
an ideal representation of the transition layer and proclaimed that the information of evolving heterogeneities
is important for describing the accurate transport phenomena at the interface region. The thickness of the
transition layer is adjusted to fit the interfacial velocity and the flow rate. Following Goyeau et al., Chandesris
and Jamet [15] uniformly considered a heterogeneous transition zone in their work. Hill and Straughan [16]
discovered two modes of instability corresponding to the fluid and porous layers, respectively, using a homo-
geneous three-layer structure: a Newton fluid flowing above a Brinkman type porous transition layer, which
overlies a layer of Darcy porous medium. Later, Hill [17] further studied the instability of Poiseuille flow
and introduced a heterogeneous Brinkman transition layer with continuously varying physical parameters,
such as the effective viscosity, the porosity and the permeability which is described by the Carman–Kozeny
relationship. Nield and Kuznetsov [18] analytically modeled flow in a three-layer constellation, and Duman
and Shavit [19] contributed to the coupling problem by studying the effect of a gradual geometrical change at
the interface. Moreover, the flow in the transition layer at a fluid–porous interface is experimentally studied
by Goharzadeh et al. [20,22] and Morad and Khalili [21]. The above authors all considered a three-layer
composite channel consisting of a noticeable transition layer sandwiched by a porous medium and a fluid,
which is the case in this paper.

The objective of the present study is to explore the proper modeling of the variation of the macroscopic
parameters in the heterogeneous transition layer between a homogeneous porous medium and a clear fluid.
The paper begins with a quantitative comparison between the single-domain model and the two-domain
model to address the necessity of specifically modeling the change in macroscopic parameters along the
transition region. Then, the appropriate equations for each layer are discussed, and the features of the
corresponding properties such as viscosity, porosity and permeability are analyzed. After determining the
variation functions of the permeability for the random packs of monodisperse spheres, the exact expres-
sions for the velocity profiles are acquired using Airy, exponential and polynomial functions. The computed
velocity profiles are compared with the experimental work of Goharzadeh et al. [22], and the discussion is
conducted.

2 Comparison between single- and two-domain approaches

To study the fluid/porous coupling flow, three different description levels [15] are usually considered as shown
in Fig. 2. At the microscopic scale, the exact structure of the porous media is depicted and the fluid flows in the
free-fluid region and the pores in the porous domain. However, in most practical applications, it is not possible
to compute the microscopic flow due to the limitation of the cost and computer capacity. At the mesoscopic
scale, the porous domain is represented by two kinds of porous medium: the upper heterogeneous transition
layer and the lower homogeneous porous medium; this is the scale covered in this work. However, at the
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Fig. 2 The three different description scale for the laminar flow in a fluid/porous channel. a Microscopic scale description, b
mesoscopic scale description, c macroscopic scale description

macroscopic scale, the composite flow channel is characterized by two homogeneous regions separated by an
abrupt interface. The main difference between the latter two descriptions lies in the treatment of the region
just beneath the free-fluid region, i.e., the transition layer.

The fundamental configuration considered in this paper consists of three flow domains: the free-fluid
region, the intermediate transition layer and the homogeneous porous medium as shown in Fig. 2b. The tran-
sition layer is characterized by the continuous variation of macroscopic properties such as the permeability
k(y), the porosity ε(y) and the effective viscosity μ(y). And we just investigate the stationary incompress-
ible Newton laminar flow in the composite channel where the porous medium is composed of monodisperse
spheres.

In this section, a comparison between the single-domain approach and the two-domain approach is con-
ducted to demonstrate the necessity of specifically modeling the change in macroscopic parameters along
the transition region. The parameters corresponding to the three-layer model in Fig. 2b are: the transition
layer permeability kt = 5 × 10−7 m2, porosity εt = 0.75; the homogeneous porous medium permeability
kp = 5 × 10−9 m2, porosity εp = 0.5; Darcy number Da = 5 × 10−3, ratio of transition layer thickness to the
whole porous medium thickness λ = 0.25. Here, the permeability in the transition layer is much larger than
the lower porous medium layer.

For the single-domain approach, Eq. (1) is employed in the whole channel using specific parameters corre-
sponding to the transition layer and the homogeneous porous medium mentioned above; the numerical results
are achieved based on a finite element method. For the two-domain approach, the whole porous domain is
treated as one equivalent homogeneous porous medium without considering the exact structure of the transi-
tion layer; the Stokes equation is applied in the fluid region and the Brinkman equation in the whole porous
domain only using the parameters corresponding to the homogeneous porous medium. After introducing the
dimensionless variables y∗ = y/h, Darcy number Da = kp/h2, u∗ = μu/Gh2 and the negative pressure
gradient G = −dp/dx , the dimensionless momentum equations and the boundary conditions are given below.

Free-fluid region:

d2u1

dy2 + 1 = 0 − h∗ � y � 0. (4a)

Porous medium:

1

ε

d2u2

dy2 − 1

Da
u2 + 1 = 0 0 � y � H∗. (4b)
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Fig. 3 Comparison between velocity profiles acquired by single-domain approach and two-domain approach with stress jump
condition

With boundary conditions:

u1(h
∗) = 0, (5a)

u2(−H∗) = Da, (5b)

u1(0) = u2(0), (5c)

μe
du2

dy
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y=0

− μ
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dy

∣
∣
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∣
y=0

= βμh√
k

u(0). (5d)

Here, h∗ and H∗ represent the dimensionless value corresponding to h and H . The stress jump boundary
condition derived by Ochoa-Tapia and Whitaker is employed.

In Fig. 3, the analytical solutions are achieved with stress jump condition and two different values of β
are selected. The analytical solution with β = 1.18 can better fit the numerical velocity profile than that
with β = 1.075 because the latter one largely underestimates the fluid velocity in the clear fluid region. The
discrepancy between the numerical solution and the analytical solution could be explained by the different
treatment of the transition region.

The two-domain analytical approach implicitly includes the structure of the specific interfacial region
in the ad hoc adjustable dimensionless jump coefficient β; however, the numerical single-domain approach
explicitly considers the geometry of the interfacial region by introducing a transition layer. Therefore, although
the two-domain approach may predict the velocity profile precisely in the clear fluid channel with specific
jump coefficient β, it cannot successfully estimate the velocity distribution in the porous medium. So the two-
domain approach is questionable without considering the specific change of the macroscopic properties in the
transition layer. Besides, the ambiguity in choosing the suitable value for β further weakens the effectiveness
of the stress jump condition. In the following analysis, the shear stress continuity condition will be employed.

Through the above discussion, we conclude that it is necessary to specifically model the macroscopic
parameters along the transition region, especially a noticeable transition layer as studied in this work. In the
next section, we analytically model the non-homogeneous transition layer taking into account the gradual
change of the porosity and permeability.

3 Mathematical model

3.1 Mathematical formulation

The Stokes equation is used in the free-fluid region with fluid viscosity μ1:

− dp

dx
+ μ1

d2u1

dy2 = 0 − h � y � 0. (6a)
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Darcy’s law cannot model the penetration of the velocity into the porous medium. In the transition layer, the
Brinkman equation considering variable permeability is used and μ2 is the effective viscosity in the transition
layer:

− dp

dx
+ μ2

d2u2

dy2 − μ1

k(y)
u2 = 0 0 � y � δ. (6b)

The Brinkman model with constant permeability is employed in the homogeneous porous medium, and μ3 is
the effective viscosity in the homogeneous porous medium:

− dp

dx
+ μ3

d2u2

dy2 − μ1

kp
u2 = 0 δ � y � H. (6c)

The continuity of velocity and shear stress is used at y = 0 and y = δ.

3.2 The effective viscosity

The effective viscosity μe in the Brinkman model is a crucial parameter, which is thought to be different from
the fluid viscosity and may be dependent on the fluid and the porous structure. Numerous studies have been
dedicated to determining μe.

Brinkman [23] first used Einstein’s law as an approximation, i.e., μe = μ(1 + 2.5ϕ), where (1 − ϕ) is the
porosity, and then he recommended to set μe = μ. According to Saffman [24], the friction term is not only
proportional to the velocity but also depends on its derivative, and in that case, the comparison with the Stokes
term allows for the determination of the effective viscosity: μe/μ = 1/(1 − 2.5ϕ). Neale and Nader [14]
established a relationship between the reduced viscosity and the structural parameter α introduced by Beavers
and Joseph: μe/μ = α2. Because α ranging from 0.1 to 4, the effective viscosity μe may be larger or lower
than μ.

Recently, Ochoa-Tapia and Whitaker [10] derived the Brinkman equation through a volume averaging pro-
cedure and concluded that the effective viscosity concept is actually a mismatch between superficial averaged
properties and intrinsic averaged properties and gave μe/μ = 1/εp. The derivation of a correct law for the
effective viscosity is still under investigation, and it probably depends on the tortuosity of the medium. Owing
to the lack of suitable method to determine the exact value for the effective viscosity, the ratio μe/μ = 1 is
usually applied, which is also the case in this paper.

As a parameter introduced together with the macroscopic shear terms by Brinkman, the physical nature of
this effective viscosity is unclear. Actually, the Brinkman equation can be regarded as an arbitrary interpolation
of the damping force and the viscous force, and the effective viscosity is also an arbitrary coefficient which
can be adjusted to better fit the real situation.

3.3 The transition layer thickness

Without the knowledge of the practical structure of the interfacial porous medium and the exact expression
for the varying functions of the macroscopic properties, it seems impossible to determine the thickness of the
transition layer. But it may be useful to limit this layer by introducing the upper bound (interface) and the
lower bound (interface). We regard the tangent of the upmost solid with porosity equal to one as the upper
bound of the transition layer and the surface where the values of the macroscopic porosity firstly approach that
of the homogeneous porous medium as the lower bound. As a geometrical property, the porosity can be easily
measured. It is worth mentioning that the porosity here means the surface-averaged quantity as in [22].

Many authors [11,14,24,25] used a boundary layer to describe the penetration of interfacial effects into the
porous medium. Here, we intend to clarify the two confusing conceptions: the boundary layer and the transition
layer. The boundary layer is a zone in the homogeneous porous medium where the flow will be affected by
the upper high flow field, and the velocity decreases violently to the averaged constant Darcy velocity in a
distance whose length scale is normally of the order of k1/2 [14]; however, the transition layer is the physical
space necessary for the macroscopic properties varying from their values in the free-fluid region to that in
the homogeneous porous medium and embraces a length scale significantly larger than that of the boundary
layer. In spite of the discrepancy between these two conceptions, they are not mutually exclusive: a boundary
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layer is coexistent with the transition layer if the transition layer is noticeable and specifically treated as a
heterogeneous porous medium.

Some authors [20–22] have conducted experiments to investigate the transition layer thickness at a fluid–
porous interface, and they found that the transition layer thickness δ is of the order of the grain diameter and
much larger than the square root of the permeability, i.e., δ/k1/2 ∼ 50.

3.4 Variation function for porosity and permeability

To explore the variation of the macroscopic parameters in the heterogeneous transition layer, two sets of
widely used formulations relating the permeability to porosity and the particle size for the random packing of
monodisperse spheres are employed below. And here, they are constructed based on the experiment depicted
in Figs. 5 and 9 in [22].

3.4.1 Linear variation function for porosity

According to the measured porosity variation in Fig. 9 in Goharzadeh et al. [22], firstly, we view the porosity
variation as linear function: it decreases linearly from unity at the interface to the bulk value 0.4 with a transition
layer thickness δ = 0.6 cm. The porosity function is

ε1(y) = −3y

5δ
+ 1 0 � y � δ. (7)

The intrinsic permeability k solely depends on the properties of the porous medium like pore size, shape
distribution, tortuosity and porosity. Here, we just consider the properties of sphere size and porosity. The per-
meability function for the randomly packed monodisperse spheres is discussed below. In the Stokes assumption
for a dilute bed of identical spheres, the hydraulic permeability, i.e., Stokes permeability, is obtained as [26]

k1(y) = d2

C(1 − ε)
0 � y � δ. (8)

Here, C is a constant which is usually assigned the value 18. The inverse of the permeability function can be
written as

1

k1(y)
= 3Cy

5δd2 0 � y � δ. (9)

We extend the value of 1/k1(y) at y = 0.

3.4.2 Exponential variation function for porosity

For a monodisperse spherical packing, the Kozeny–Carman formula is also widely used in the literature. To
facilitate the use of this equation in the calculation below, we use an exponential function to describe the
measured porosity variation in Fig. 9 in Goharzadeh et al. [22]:

ε2(y) = εp + (ε0−εp) exp(−N y/d) 0 � y � δ, (10)

where εp denotes the porosity of the homogeneous porous medium and ε0 the porosity at the interface; d is
the sphere diameter, N is a constant to fit the porosity variation with N = 3.

For the homogeneous porous medium, the Kozeny–Carman permeability is written as

kCK = ε3d2

A(1 − ε)2 , (11)

where A = 180 is the Ergun constant. As the porosity ε approaches to one, the permeability of such an array
of spheres is

k = ε2d2

B(1 − ε)
. (12)



1950 K. Tao et al.

And just like the reconstruction in [27], the expression for the variable permeability in the range of porosity
0.4 � ε < 1 is given by

k(y) = d2ε3 F(ε)

A(1 − ε)2 (13)

with

F(ε) = 1 − exp

[

− A

B
×

(
1 − ε

ε

)]

. (14)

Here, B = 18. Eq. (13) can be degenerated into Eq. (11) or Eq. (12) as ε approaches 0.4 in the bulk medium
or 1 at the interface respectively. The first approximation for the permeability function with ε0 = 1 is [27]

k2(y) = A10d(1 − εp)

Bεp N y
· kp-CK, (15)

where kp-CK is the homogeneous porous medium permeability calculated using Eq. (11) based on the porosity
data in Fig. 9 in [22] and kp-CK = 4.173 × 10−8 m2. The inverse of k2(y) for Eq. (15) is

1

k2(y)
= Bεp N y

A10d(1 − εp)
· 1

kp-CK
0 � y � δ. (16)

Here, we also extend the value of 1/k2(y) at y = 0.

4 Comparison with experiments and discussion

4.1 Numerical calculation

Free-fluid region

d2u1

dy2 + 1 = 0 − 1 � y � 0. (17a)

Transition layer

μ21
d2u2

dy2 − h2

k(y)
u2 + 1 = 0 0 � y � δ∗. (17b)

Porous medium

μ31
d2u3

dy2 − 1

Da
u3 + 1 = 0 δ∗ � y � H∗. (17c)

With boundary conditions

u1(−1) = 0, (18a)

u1(0) = u2(0) and μ1
du1

dy

∣
∣
∣
∣
y=0

= μ2
du2

dy

∣
∣
∣
∣
y=0

, (18b,c)

u2(δ
∗) = u3(δ

∗) and μ2
du2

dy

∣
∣
∣
∣
y=δ∗

= μ3
du3

dy

∣
∣
∣
∣
y=δ∗

, (18d,e)

u3(H∗) = Da . (18f)
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Here, δ∗ and H∗ represent the dimensionless value corresponding to δ and H , and μ21 = μ2/μ1, μ31 =
μ3/μ1. The general solutions of Eqs. (17a) and (17c) are

u1 = −1

2
y2 + a1 y + b1, (19a)

u3 = a3 exp(−√

1/(μ31 Da)y) + b3 exp(
√

1/(μ31 Da)y) + Da . (19c)

For linearly variable porosity, introducing the shorthand notation λ1 and introducing the variable change y,

λ1 =
(

54h3

5δd2μ21

)1/3

, ŷ = λ1 y, (20a,b)

Eq. (17b) can be written as

d2u2

dŷ2 − ŷu2 + 1

μ21λ
2
1

= 0 0 � ŷ � λ1δ
∗, (17b*)

and the solution of Eq. (17b*) with a particular solution Ni(x) given by Nield and Kuznetsov [18] is:

u(1)
2 = a(1)

2 Ai(λ1 y) + b(1)
2 Bi(λ1 y) + π

μ21
λ2

1Ni(λ1 y), (19b)

where

Ni(x) = Ai(x)

x∫

0

Bi(t)d(t)−Bi(x)

x∫

0

Ai(t)d(t),

Ni′(x) = Ai′(x)

x∫

0

Bi(t)d(t)−Bi′(x)

x∫

0

Ai(t)d(t), (21)

Ni(0) = Ni′(0) = 0, Ni′′(0) = −1/π.

For exponentially variable porosity, introduce the shorthand notation λ2 and transform the variable y:

λ2 =
(

Bεp Nh3

A10d(1 − εp)kp−CKμ21

)1/3

, ŷ = λ2 y. (20a*,b*)

The same procedure is conducted, and the general solution of Eq. (17b) can be written as

u(2)
2 = a(2)

2 Ai(λ2 y) + b(2)
2 Bi(λ2 y) + π

μ21λ
2
2

Ni(λ2 y). (19b*)

The ascending series representations for Ni(x), Ni’(x) are [28]:

Ni(x) = Ai(x)
{√

3 (c1 F1(x) + c2 F2(x))
}

− Bi(x) {(c1 F1(x) − c2 F2(x))} , (22a)

Ni′(x) = Ai′(x)
{√

3 (c1 F1(x) + c2 F2(x))
}

− Bi′(x) {(c1 F1(x) − c2 F2(x))} , (22b)
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where

c1 = Ai(0), c2 = Ai′(0),

F1(x) =
∞
∑

k=0

(3)k
(

1

3

)

k

x3k+1

(3k + 1)! , F2(x) =
∞
∑

k=0

(3)k(
2

3
)k

x3k+2

(3k + 2)! , (23)

where (b)k is the Pochhammer symbol,

(b)k = �(b + k)

�(b)
= b(b + 1)(b + 2) · · · (b + k − 1); (b)0 = 1. (24)

Then, substituting Eqs. (19a), (19c), (19b) or (19b*) into Eqs. (18a), (18b,c), (18d,e), (18f) yields the matrix
equation in which λ represents λ1or λ2, respectively:

Mx = N,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0

0 1 −Ai(0) −Bi(0) 0 0

1 −μ21λAi′(0) −μ21λBi′(0) 0 0

0 0 Ai(λδ∗) Bi(λδ∗) − exp
(−√

1/(μ31 Da)δ∗) − exp
(√

1/(μ31 Da)δ∗)

0 0 λAi′(λδ∗) λBi′(λδ∗) μ32√
μ31 Da

exp
(−√

1/(μ31 Da)δ∗) − μ32√
μ31 Da

exp
(√

1/(μ31 Da)δ∗)

0 0 0 0 exp
(−√

1/(μ31 Da)H∗) exp
(√

1/(μ31 Da)H∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1

b1

a2

b2

a3

b3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/2

0

0

Da − π
μ21λ2 Ni(λδ∗)

− π
μ21λ

Ni′(λδ∗)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After solving the above matrix equation, the velocity profile can be acquired.

4.2 Comparison and discussion

Figures 4 and 5 show the comparison between the computation results and the experimental data depicted in
Fig. 5 in [22]. The parameters used in the computation are consistent with the experiment: the fluid viscosity
μ = 42.755 × 10−3 Pa s , the transition layer thickness δ = 0.6 cm; in the transition layer, the porosity varies
from 1 to 0.4 (the porosity for the below homogeneous porous packing); the permeability values are calculated
using Eqs. (8) and (15), respectively; the maximum velocity in the experiment u = 2.54 cm/s; the pressure
gradient used to match the maximum velocity is 106.88 kg/(m s)2.

It should be noticed that the free-fluid channel in our configuration is closed, which is different from the
experiment description with an open channel. Considering the velocity will reach its maximum at the top sur-
face of the open channel in the experiment, here, the channel width for the computation is chosen as h = 8 cm
to ensure the computed fluid velocity profile could match the experiment data at the position with maximum
velocity.
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Fig. 4 A comparison between the velocity profiles acquired by the analytical solution with linear porosity and the velocity data
measured by Goharzadeh et al. [22]. a Overall plot, b zoomed at the interfacial region

Fig. 5 A comparison between the velocity profiles acquired by the analytical solution with linear porosity (C = 18)/exponential
porosity and the velocity data measured by Goharzadeh et al. [22]. a Overall plot, b zoomed at the interfacial region

Figure 4 shows that the computation results can well fit the experimental data, especially in the free-fluid
channel. For the Stokes permeability function, as shown in Fig. 6a, the estimated permeability decreases with
the increase in the parameter C if the porosity is kept constant, and this will increase the damping force due to
the porous mass and cause small velocities. Thus, the analytical velocity profile with a larger value of C has a
better estimation of the experimental velocity profile than that with a smaller C . In the homogeneous porous
medium, the Stokes permeability function overestimates the permeability value and causes an increment of
velocity in this region.

However, velocity discrepancy is illustrated in the transition layer. Two main reasons are responsible
for this phenomenon. Firstly, the Brinkman equation may overestimate the velocity values, which has been
reported in [25]. From Figs. 4 and 5, we can find that the velocity computed using the Brinkman equation at
the fluid/porous interface is larger than that acquired by the experiment. More importantly, it is the descrip-
tion of the permeability variation in the transition layer that causes the discrepancy in the velocity profile:
both the Stokes permeability function and the Kozeny–Carman formula cannot exactly predict the variable
permeability.

Four types of permeability function are employed to compute the velocity profiles as shown in Fig. 6a.
In the transition layer, the permeability considering exponential porosity possesses the lowest values. With
the increase in the constant C , the transition layer permeability considering linear permeability decreases. For
each type, the permeability will reach an infinitely large value at the fluid/porous interface. And then, it will
decrease sharply into a small value at the lowest level of the transition layer.
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Fig. 6 a Permeability variations in the transition layer, b the calculated transition layer permeability corresponding to the exper-
iment conducted by Goharzadeh et al. [22]

In Fig. 6b, the calculated transition layer permeability corresponding to the experiment conducted by Go-
harzadeh et al. [22] is shown, and the variation of the permeability in the transition layer is obtained from the
measured velocity field and by using Eq. (25):

k(y) = μu

μe
d2

u
dy2 − dp

dx

. (25)

Comparing Figs. 6a and b, we can find the actual permeability is two orders of magnitude smaller than that
predicted by the Stokes permeability function or the Kozeny–Carman formula, which causes the large velocity
discrepancy in the transition layer. For the specific experiment of Goharzadeh et al. [22], we fit the calculated
data with the exponential formula and the expression of the fitting function is:

k(y) = 1.296 × 10−6 exp(876.3y) − δ � y � 0. (26)

According to the above discussion, both the Stokes permeability function and the Kozeny–Carman formula
overestimate the gradual permeability variation in the transition layer. Although, as a permeability forecast-
ing function for the monodisperse spherical packing bed with uniform porosity, the Kozeny–Carman formula
can precisely predict the permeability in the homogeneous porous medium, it is incapable of describing the
permeability variation in the non-homogeneous porous bed.

5 Conclusion

In this paper, the fluid–porous coupling flow problem is studied analytically. Firstly, comparison between the
single-domain approach and the widely used two-domain approach is conducted to address the necessity of
specifically modeling the change in macroscopic parameters along the transition region. The three-layer model
consists of a free-fluid channel, a heterogeneous transition layer characterized by variable macroscopic prop-
erties and a homogeneous porous medium. Special focus is put on the macroscopic properties of the transition
layer. Two specific permeability functions are employed to express the permeability variation. Then, analytical
expressions for velocity profiles in each layer are given involving the use of Airy functions. After comparing
the analytical solution with the experiment data measured by Goharzadeh et al. [22], a good fit between the
computation results and the experimental data especially in the free-fluid channel is shown. However, a large
velocity discrepancy in the transition layer is illustrated.

Through this research, we find that although the well-known Kozeny–Carman formula can predict the per-
meability precisely for the monodisperse spherical packing bed, it will amplify the transition layer permeability
variation in the transition layer. A similar conclusion can be reached for the Stokes permeability function. The
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exact description of the permeability in the transition layer is a vital factor that influences the matching result.
Further research is needed to study other ways of depicting the variable properties in the transition layer.
Moreover, detailed laboratory experiments are indispensible, and a precise permeability forecasting function
is needed to model the gradual change of permeability along the transition layer region.

Acknowledgments This work was supported by the National Basic Research Program of China (”973” Program) (Grant No.
2011CB201004), the Important National Science and Technology Project of China (Grant No. 2011ZX05014-005-003HZ), the
National Natural Science Foundation of China (Grant No. 11102237) and the Fundamental Research Funds for the Central
Universities (Grant No. 11CX06026A, 14CX02042A)

References

1. Jamet, D., Chandesris, M., Goyeau, B.: On the equivalence of the discontinuous one- and two-domain approaches for
modeling of transport phenomena at a fluid–porous interface. Transp. Porous Med. 78, 403 (2009)

2. Goyeau, B., Lhuillier, D., Gobin, D.: Momentum transport at a fluid–porous interface. Int. J. Heat Mass
Transf. 46, 4071 (2003)

3. Beckermann, C., Viskanta, R., Ramadhyani S., R.: Natural convection in vertical enclosures containing simultaneously fluid
and porous layers. J. Fluid Mech. 186, 257 (1988)

4. Beckermann, C., Ramadhyani, S., Viskanta, R.: Natural convection flow and heat transfer between a fluid layer and a porous
layer inside a rectangular enclosure. J. Heat Transf.-T ASME 109, 363 (1987)

5. Song, M., Viskanta, R.: Natural convection flow and heat transfer within a rectangular enclosure containing a vertical porous
layer. Int. J. Heat Mass Transf. 37, 2425 (1994)

6. Nield, D., Bejan, A.: Convection in Porous Media. Springer, New York (1992)
7. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. thesis, Ecole

Polytechnique Fédérale de Lausanne, Switzerland (2004)
8. Beavers, G., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197 (1967)
9. Alloui, Z., Vasseur, P.: Convection in superposed fluid and porous layers. Acta Mech. 214, 245–260 (2010)

10. Ochoa-Tapia, J.A., Whitaker, S.: Momentum-transfer at the boundary between a porous-medium and a homogeneous fluid:
1. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

11. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid.
II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995)

12. Chandesris, M., Jamet, D.: Boundary conditions at a planar fluid–porous interface for a Poiseuille flow. Int. J. Heat Mass
Transf. 49, 2137 (2006)

13. Duman, T., Shavit, U.: An apparent interface location as a tool to solve the porous interface flow problem. Transp. Porous
Med. 78, 509 (2009)

14. Neale, G., Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel
and a bounding porous medium. Gun. J. Chem. Eng. 52, 415478 (1974)

15. Chandesris, M., Jamet, D.: Boundary conditions at a fluid–porous interface: an a priori estimation of the stress jump coeffi-
cients. Int. J. Heat Mass Transf. 50, 3422 (2007)

16. Hill, A.A., Straughan, B.: Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137 (2008)
17. Hill, A.A.: Instability of Poiseuille flow in a fluid overlying a glass bead packed porous layer. Acta Mech. 206, 95 (2009)
18. Nield, D.A., Kuznetsov, A.V.: The effect of a transition layer between a fluid and a porous medium: shear flow in a chan-

nel. Transp. Porous Med. 78, 477 (2009)
19. Duman, T., Shavit, U.: A solution of the laminar flow for a gradual transition between porous and fluid domains. Water

Resour. Res. 46, W09517 (2010). doi:10.1029/2009WR008393
20. Goharzadeh, A., Saidi, A., Wang, D., Merzkirch, W., Khalili, A.: An experimental investigation of the Brinkman layer

thickness at a fluidporous interface. In: Meier, G.E.A., Sreenivasan, K.R. One Hundred Years Boundary Layer Research,
Springer, New York (2005)

21. Morad, M.R., Khalili, A.: Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp. Flu-
ids 46, 323 (2009)

22. Goharzadeh, A., Khalili, A., Jorgensen, B.B.: Transition layer at a fluid–porous interface. Phys. Fluids 17, 057102 (2005)
23. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res.

A 1, 27 (1947)
24. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 50, 93 (1971)
25. Sahraoui, M., Kaviany, M.: Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int. J. Heat

Mass Transf. 35, 927 (1992)
26. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)
27. Hsu, C.T., Cheng, P.: A singular perturbation solution for Couette flow over a semi-infinite porous bed. J. Fluids

Eng. 113, 137 (1991)
28. Vallée, O., Soares, M.: Airy Functions and Applications to Physics. World Scientific, London (2004)

http://dx.doi.org/10.1029/2009WR008393

	Analysis of the laminar flow in a transition layer with variable permeability between a free-fluid and a porous medium
	Abstract
	1 Introduction
	2 Comparison between single- and two-domain approaches
	3 Mathematical model
	3.1 Mathematical formulation
	3.2 The effective viscosity
	3.3 The transition layer thickness
	3.4 Variation function for porosity and permeability
	3.4.1 Linear variation function for porosity
	3.4.2 Exponential variation function for porosity


	4 Comparison with experiments and discussion
	4.1 Numerical calculation
	4.2 Comparison and discussion

	5 Conclusion
	Acknowledgments
	References


