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Abstract For low Reynolds numbers R, the flow of a viscous fluid through a channel is described by the
well-known Darcy’s law which corresponds to a linear relation between the pressure gradient ∇ p and the
average velocity u. When the channel is not straight and when the Reynolds number is not negligible, additional
terms appear in this relation. Some previous authors investigated the first three coefficients in the expansion
of |∇ p| in the powers of u and they showed that the coefficient of u2 vanishes for moderate R. Other authors
demonstrated that this coefficient can be non-zero. This question is addressed and solved. It is demonstrated
that both cases occur; Forchheimer’s law has a cubic correction for small R and a quadratic one for large R.
Two analytical–numerical algorithms are constructed to prove this property. These algorithms are applied to
the Navier–Stokes equations in three-dimensional channels enclosed by two wavy walls whose amplitude is
proportional to bε, where 2b is the mean clearance of the channels and ε is a small dimensionless parameter.
The first algorithm is applied for small R by representing the velocity and the pressure in terms of a double
Taylor series in R and ε. The accuracy O(R2) and O(ε6) following Padé approximations yield analytical
approximate formulae for Forchheimer’s law. The first algorithm is applied to symmetric channels on the
theoretical level (all terms on R and ε are taken into account) to show that |∇ p| is an odd function of u. This
observation yields, in particular, a cubic correction to Darcy’s law. Numerical examples for non-symmetrical
channels yield the same cubic correction. The second algorithm is based on the analytical–numerical solution
to the Navier–Stokes equations for arbitrary R up to O(ε3). This algorithm yields, in particular, a quadratic
correction to Darcy’s law for higher R.

1 Introduction

The present paper is devoted to flow of a viscous fluid through a channel. The classical Poiseuille flow in
the channel bounded by two parallel planes separated by a distance 2b is generated by an average pressure
gradient ∇ p. The flow profile is parabolic when the viscous forces are dominant over inertial forces. It yields
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the well-known Darcy’s law, i.e., a linear dependence between |∇ p| and the average component of the velocity
u along the pressure gradient [1]

|∇ p| = μ

K
u. (1)

When inertial forces are dominant, (1) is not valid anymore and it becomes nonlinear.
The structure of the nonlinear Darcy’s law for general porous media has attracted the attention of many

scientists because it is of fundamental interest since it illustrates the mechanism of viscous flow under different
geometrical and physical conditions. In 1901, Forchheimer [2] proposed corrections to Darcy’s law in the form

|∇ p| = μ

K
u + bum (2)

with m close to 2 and

|∇ p| = μ

K
u + bu2 + cu3. (3)

In Petroleum Engineering, (3) is frequently used with an appropriate value of b and c = 0:

|∇ p| = μ

K
u + bu2. (4)

The coefficients b and c from (3) and their dependence on the velocity were investigated in [4]. General-
ized Forchheimer equations (the Brinkman–Forchheimer model, etc.) and influence of the convection were
discussed in [4–7]. The recent studies of [3,8–10] showed that (4) should have another form. These authors
applied the homogenization theory to the Navier–Stokes equations in a periodic cell of dimension 2L in order
to determine the general dependence of |∇ p| on u. The Reynolds number R, which is the ratio between viscous
and inertial forces, can be expressed as:

R = |∇ p|l3ρ

μ2 (5)

with � = L
π

. The relation between |∇ p| and u involves the local Reynolds number in the periodic cell. [3,8]
found that for homogeneous and isotropic porous media, Eq. (3) is satisfied with b = 0 and c ≥ 0:

|∇ p| = μ

K
u + cu3. (6)

Moreover, [3] considered a two-dimensional corrugated channel for which (6) is verified. It is worth noting
that small and moderate Reynolds numbers were considered in [3,8,9]. This implies that the solution of
the dimensionless Navier–Stokes equations depends analytically on R. Recently, Balhoff et al [11] applied
homogenization and found that there is no quadratic term for R ∼ 1. They established that the filtration law in
isotropic media can be obtained by solving a series of successive Stokes problems. The first five coefficients
of the infinite series were determined for an axisymmetric sinusoidal channel for which the quadratic and the
fourth-order terms vanish.

Whitaker [12] applied the method of volume averaging when R ∼ 1 and obtained the quadratic equation
(4). Chen et al. [13] unlike [3,8,9] showed that the nonlinear correction is quadratic as in (4). Chen et al. [13]
used the same homogenization approach as in [3,8,9], but take a different scaling; the small parameter used
in homogenization is the ratio between the pore and the macroscopic scales. An example of rotational flow
is given in [13], where the average velocity satisfies the quadratic equation (4). However, this example is not
suitable for porous media.

High velocity laminar and turbulent flows in porous media (where R is large) were discussed in [14]
by combining homogenization and boundary layer theories; a nonlinear dependence was obtained which is
expressed as:

|∇ p| = cu3/2. (7)

In order to obtain corrections to Darcy’s law, one has to solve a boundary value problem for the stationary
Navier–Stokes equations for curvilinear channels. We apply a method of perturbation in the oscillation ε of
the wavy walls [15,16]. Similar methods were also applied in the papers [17–19]. Moreover, Heining et al.
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[19] investigated the gravity-driven free surface flow over three-dimensional channels with sinusoidal bottoms
by the combination of the asymptotic and finite volume methods. The effects of side walls on the primary
instability of a gravity-driven thin liquid film flowing down in an open channel were investigated in [20,21].

In the present paper, an asymptotic analysis in ε is applied to curvilinear three-dimensional channels
bounded by walls of the form

z = S
+
(x, y) ≡ b

[
1 + εT (x, y)

]
, (8)

z = S
−
(x, y) ≡ −b

[
1 + εB(x, y)

]
, (9)

where bε is the amplitude of the wall oscillations and ε a small dimensionless parameter. Arbitrary profiles
S±(x, y) which satisfy some natural conditions described below are considered. Two constructive algorithms
are proposed to solve the Navier–Stokes equations in three-dimensional channels in order to deduce the
dependence

|∇ p| = h(u). (10)

The first algorithm is based on the representation of the velocity and the pressure in terms of a Taylor series
near the point R = 0 and it is applied to flows with small R in channels symmetric with respect to the xz- and
yz-planes. It is proved that in this case h(u) is an odd function. Thus, “the odd law” which includes the cubic
law (6) (see also [11]), is rigorously justified for symmetric channels.

Application of the first algorithm in Sect. 3.3 yields the coefficients of (2)–(6) in analytical and numer-
ical forms that exactly show their structure and quantitative contribution. The presented examples for two-
dimensional non-symmetric channels show that the quadratic term vanishes. This confirms the conjecture
about the cubic equation (6) for general channels for sufficiently small Reynolds numbers.

The second algorithm is similar to the algorithm of [15], where the Couette flow is investigated for arbitrary
Reynolds numbers. The considered Poiseuille flow is more complicated than the Couette flow because in the
latter case the basic ordinary differential equation was solved in terms of Airy functions [15]. In the present
paper, the basic equation (61) cannot be solved analytically. However, an algorithm related to the “shooting
method” is worked out and accurate solutions are obtained for R up to 1010.

It is shown that a correction for large R contains the power term u4/3 which should be compared to (7)
in [14].

2 Navier–Stokes equations and Forchheimer’s law

Let the profiles S± be determined by Eqs. (8) and (9) where the functions T (x, y) and B(x, y) are defined
in the square [−L , L] × [−L , L] of the plane X OY . T and B are assumed to be periodically continued onto
the whole plane X OY . In Eqs. (8) and (9), ε is formally defined as a small parameter because expansions in
ε around the point ε = 0 are used. T (x, y) and B(x, y) are assumed to be infinitely differentiable periodic
functions. Without any loss of generality, it is assumed that

L∫

−L

L∫

−L

T (x, y) dx dy =
L∫

−L

L∫

−L

B(x, y) dx dy = 0 , (11)

i.e., the mean amplitudes of T and B with respect to the planes z = ±b are equal to zero. The channel has a
spatially periodic structure and is made of unit cells defined as:

Q := {
(x, y, z) ∈ R

3 : −L � x � L , −L � y � L , S−(x, y) < z < S+(x, y)
}
.

Let u = u(x, y, z) be the velocity vector, and p = p(x, y, z) the pressure. The fluid is governed by the
Navier–Stokes equations

μ∇2u = ∇ p + ρu · ∇u,

∇ · u = 0
(12)

with the boundary conditions

u = 0 on S±. (13)
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The solution u of (12)–(13) belongs to the class of periodic functions with period 2L in x and y. An overall
external gradient pressure is applied along the x-direction. It can be described by a constant jump 2L|∇ p|
along the x-axis of the periodic cell

p(x + 2L , y, z) − p(x, y, z) = −2L|∇ p|. (14)

Let u = (u, v, w) be a solution of the problem (12)–(14), and let u be the average x-component of the velocity
over the unit cell Q

u = 1

|Q|
L∫

0

L∫

0

dx dy

S
+
(x,y)∫

S−
(x,y)

u(x, y, z) dz , (15)

where |Q| is the volume of the channel. (11) implies

|Q| =
L∫

−L

L∫

−L

dx dy

S
+
(x,y)∫

S−
(x,y)

dz = 8bL2. (16)

For convenience, dimensionless quantities indicated by primes are introduced:

(x, y, z) = l(x ′, y′, z′), u = l2|∇ p|
μ

u′, p = l|∇ p| p′. (17)

Equations (12)–(14) take the following dimensionless form:

∇′2u′ = ∇′ p′ + R(u′ · ∇)u′,
∇′ · u′ = 0,

(18)

u′ = 0 on S± (19)

and

p′(x ′ + π, y′, z′) − p′(x ′ − π, y′, z′) = −2π, (20)

where the Reynolds number is introduced by (5). Then, the velocity u′ for Poiseuille flow (ε = 0) becomes

u′
0(x ′, y′, z′) = 1

2

(
b′ 2 − z′ 2, 0, 0

)
, (21)

where b = lb′. Dimensionless equations of the walls (8)–(9) become

z′ = S′+(x ′, y′) ≡ b′[1 + εT ′(x ′, y′)
]
, (22)

z′ = S′−(x ′, y′) ≡ −b′[1 + εB ′(x ′, y′)
]
, (23)

where for instance T ′(x ′, y′) = T (�x ′, �y′). The volume of the dimensionless unit cell |τ | is equal to 8π2b.
Since the dimensionless velocity u′ depends on R, its average first component can be considered as a

function of the variable R

u′ = 1

|τ |
π∫

−π

π∫

−π

dx ′dy′
S′+(x ′,y′)∫

S′−(x ′,y′)

u′(x ′, y′, z′)dz′ = f (R). (24)

It is convenient to rewrite the dimensional equation (10) by defining a local Reynolds number, a dimensionless
velocity u∗ and a dimensionless pressure p∗ as

Rloc = ρU0�

μ
, (25a)

u = U0u∗, p = U0μ

�
p∗, (25b)
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where U0 is the local characteristic velocity in the channel. It is easily seen that

Rloc

R u∗ = u′ and
Rloc

R |∇ p∗| = 1. (26)

Concerning the second of Eqs. (26), it is worth noting that the dimensionless external gradient ∇ p′ is equal to
−1 as a consequence of (20). Substitution of (26) into (24) yields

u∗ = |∇ p∗| f (Rloc|∇ p∗|). (27)

In order to invert the function (27), it is convenient to introduce the dimensionless variable X = Rloc|∇ p∗|.
Then, (27) becomes

Rlocu∗ = X f (X). (28)

Let X = H(Y ) be the inverse function to Y = X f (X). Then, X = H(Rlocu∗) which can be written in the
form of a nonlinear dimensionless Darcy’s law

|∇ p∗| = 1

Rloc
H(Rlocu∗). (29)

The function X = H(Y ) is analytic at zero and H(0) = 0 by the inverse function theorem, since it is inverse
to Y (X) = X f (X) and the derivative Y ′(0) = f (0) is equal to the averaged velocity (24) which is not vanish.
Therefore, (29) can locally be written in the form

|∇ p∗| =
∞∑

k=1

hku∗k
. (30)

The first term h1 yields the linear Darcy’s law (1). The coefficients hk (k > 1) determine the nonlinear
corrections. In order to calculate hk , it is necessary to find u′ from the problem (18)–(20) with the parameter
R, i.e., to construct the function f (R) by (24). Further, the function X = H(Y ) is constructed as the inverse
to Y = X f (X). Ultimately, H(Y ) is expanded as a Taylor series near zero to determine hk in (30).

Additional comments can be made on the definition of Rloc. Usually, a local Reynolds number is defined
as Reloc = ρU02b

μ
. The ratio RelocRloc

equal to 2b′ is of order 1 and in most computations b′ = 1. Therefore, Reloc

and Rloc are of the same order.
Finally, channels with side walls are particular 3D cases of (22)–(23). They can be derived from plane

channels by perturbations along the y-axis in such a way that walls are touching along lines parallel to it.
Analogous configurations were calculated in [16] without any numerical difficulty.

3 Small Reynolds numbers

3.1 General method for small Reynolds numbers

In order to solve the problem (18)–(20) and to investigate the properties of the solution, the unknown functions
are expanded in R and ε; then, the method of separated variables is applied. For brevity, primes are suppressed
in the dimensionless values up to Sect. 5.2.

For our purposes, it is convenient to expand T (x, y) and B(x, y) in Fourier series which because of (40)
can be simplified as

T (x, y) =
∞∑

s,t=0

Ts,t cos sx cos t y, B(x, y) =
∞∑

s,t=0

Bs,t cos sx cos t y, (31)

where T0,0 = B0,0 = 0 in accordance with (11).
Look for a solution in the form of a series of R

u(x, y, z) =
∞∑

k=0

u(k)(x, y, z)Rk, p(x, y, z) =
∞∑

k=0

p(k)(x, y, z)Rk . (32)
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This latter representation holds for sufficiently small Reynolds numbers. Substitute (32) into (18) and select
the coefficients with the same powers of R. For R0,

∇2u(0) = ∇ p(0),

∇ · u(0) = 0.
(33)

For Rk

∇2u(k) = ∇ p(k) +
k−1∑

n=0

(u(k−n−1) · ∇)u(n),

∇ · u(k) = 0, k = 1, 2, 3, . . .

(34)

(33)–(34) is a cascade of equations in the channel S−(x, y) < z < S+(x, y). The no-slip boundary condition
(18) and the jump of p(0) along the x-axis are imposed.

Each problem of the cascade can be solved by an expansion in ε:

u(k) =
∞∑

m=0

u(k)
m εm, p(k) =

∞∑

m=0

p(k)
m εm, k = 0, 1, 2, . . . (35)

The zeroth terms are known from the Poiseuille flow:

u(0)
0 =

(
b2 − z2

2
, 0, 0

)
, p(0)

0 = x . (36)

In each problem, (34) u(k) and p(k) are unknown while u(k−1), p(k−1), . . . , u(1), p(1) are calculated in the
previous steps of the cascade. Hence, at each step of the cascade, we have the following linear problem for the
straight channel −b < z < b:

∇2u(k)
m = ∇ p(k)

m + F(k)
m ,

∇ · u(k)
m = 0, m = 0, 1, 2, . . .

(37)

with the boundary conditions [16]

u(k)
m (x, y, b) = −

m∑

n=1

(bT )n

n!
∂nu(k)

m−n

∂zn
(x, y, b),

u(k)
m (x, y,−b) = −

m∑

n=1

(−bB)n

n!
∂nu(k)

m−n

∂zn
(x, y,−b).

(38)

Here,

F(0) = 0, F(k) =
k−1∑

n=0

(u(k−n−1) · ∇)u(k) =
∞∑

n=0

F(k)
m εm, k = 1, 2, . . . (39)

3.2 Symmetric channels

Consider the special case of the channels satisfying the symmetry conditions

T (x, y) = T (−x, y) = T (x,−y), B(x, y) = B(−x, y) = B(x,−y). (40)

Then, the expansion (30) for small R is simplified as

|∇ p∗| = h1u∗ +
∞∑

k=1

βku∗2k+1
. (41)
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The first two terms h1u∗ + β1u∗3
yield the cubic filtration law (6). The expansion (41) follows from the

following mathematical result proved in the Appendix.
Let u′ = (u′, v′, w′) and p′ be a solution of the problem (18)–(20) for sufficiently small R. Then, the

average x- component u′ of the velocity can be expressed by (24), where f (R) is an even function analytic at
R = 0.

Formula (41) follows from this assertion, since the function f (X) is even and since the odd function X f (X)
yields the odd inverse function H(Y ). (41) is just the Taylor series of an odd function at zero.

3.3 Examples for various channels

In the present section, examples for symmetric and non-symmetric channels are explicitly calculated with the
accuracy O(R2) in the Reynolds number and the accuracy O(ε8) or O(ε6) in ε. These examples confirm the
first terms of the series (41) and lead to the conjecture that the cubic filtration law (6) holds also for non-
symmetric channels. It is worth noting that it is impossible to find a channel corresponding to the example of
the rotational flow from [13] for which the average velocity satisfies the quadratic equation (4).

Consider the two-dimensional channel bounded by walls of the form (compare to (8)–(9))

z = ±(1 + ε cos x), (42)

i.e., T (x) = B(x) = cos x . Application of the algorithm described in Sect. 3 up to O(ε9) yields

u′ = 1

3
− 1.197869ε2 + 2.1879319ε4 − 3.5207469ε6 + 6.00297165ε8

+ R2(−0.0001423718ε2 + 0.0018613318ε4 − 0.0123671532ε6 + 0.0569631460ε8). (43)

This is the function (24) calculated up to O(ε9). In order to determine the dependence (30) up to O(R3) in
accordance with Sect. 2, invert the function

Y = X ( f0 + f1 X2), (44)

where f (X) = f0 + f1 X2 + O(X3). The inverse function can be found as:

H(Y ) = X = Y (h1 + h2Y + h3Y 2) + O(Y 4). (45)

Substitution of (45) into (44) yields

Y = Y (h1 + h2Y + h3Y 2)( f0 + f1Y 2h2
1) + O(Y 4). (46)

Take the coefficients in the same powers of Y and determine the coefficients of the function H(Y ). Simple
calculations yield

H(Y ) = Y

(
1

f0
− f1

f 4
0

Y 2

)

+ O(Y 4). (47)

Introduction of (47) into (43) and use of (29) yield

|∇ p∗| = 3 + 2.69839ε2 − 3.88887ε4

1 − 2.69414ε2 + 2.03519ε4 u∗ + 0.0115321ε2 + 0.0390439ε4

1 + 2.08497ε2 − 4.53451ε4 R2
locu∗3

. (48)

Here, the coefficients are written by the application of Padé approximation in ε.
Consider the two-dimensional non-symmetric channel bounded by walls of the form

z = 1 + ε cos x, z = −1 − ε cos

(
3

2
− 2x

)
. (49)

Application of the algorithm described in Sect. 3 up to O(ε7) implies

u′ = 1

3
− 1.1532ε2 + 0.0120753ε3 + 3.09254ε4 − 0.042636ε5 − 10.3416ε6

+ R2(−0.000626762ε2 + 0.0000108797ε3 + 0.00993578ε4 − 0.000249599ε5 − 0.0938563ε6). (50)
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Table 1 Walls and velocity u′ (24) for various channels

T (x) = cos(x), B(x) = cos(2x),
1
3 − 1.15320ε2 + 0.17071ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00015ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 1

5

)
,

1
3 − 1.15320ε2 + 0.16730ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00015ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 2

5

)
,

1
3 − 1.15320ε2 + 0.15723ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00014ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 1

2

)
,

1
3 − 1.15320ε2 + 0.14981ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00013ε3 + 0.00994ε4)
T (x) = cos(x), B(x) = cos(2x − 1),
1
3 − 1.15320ε2 + 0.09223ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00008ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 3

2

)
,

1
3 − 1.15320ε2 + 0.01208ε3 + 3.09254ε4 + R2(−0.00063ε2 + 0.00001ε3 + 0.00994ε4)
T (x) = cos(x), B(x) = cos(2x − 2),
1
3 − 1.15320ε2 − 0.07104ε3 + 3.09254ε4 + R2(−0.00063ε2 − 0.00006ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 5

2

)
,

1
3 − 1.15320ε2 − 0.13676ε3 + 3.09254ε4 + R2(−0.00063ε2 − 0.00012ε3 + 0.00994ε4)
T (x) = cos(x), B(x) = cos(2x − 3),
1
3 − 1.15320ε2 − 0.16900ε3 + 3.09254ε4 + R2(−0.00063ε2 − 0.00015ε3 + 0.00994ε4)

T (x) = cos(x), B(x) = cos
(
2x − 31

10

)
,

1
3 − 1.15320ε2 − 0.17056ε3 + 3.09254ε4 + R2(−0.00063ε2 − 0.00015ε3 + 0.00994ε4)
T (x) = cos(x), B(x) = cos(3x),
1
3 − 1.63718ε2 + 9.33468ε4 + R2(−0.00072ε2 + 0.01817ε4)

T (x) = cos(x), B(x) = cos
(
3x + 1

2

)
,

1
3 − 1.63718ε2 + 9.34093ε4 + R2(−0.00072ε2 + 0.01818ε4)
T (x) = cos(x), B(x) = cos(3x + 1),
1
3 − 1.63718ε2 + 9.35815ε4 + R2(−0.00072ε2 + 0.01819ε4)

T (x) = cos(x), B(x) = cos
(
3x + 3

2

)
,

1
3 − 1.63718ε2 + 9.38214ε4 + R2(−0.00072ε2 + 0.01821ε4)
T (x) = cos(x), B(x) = cos(3x + 2),
1
3 − 1.63718ε2 + 9.40700ε4 + R2(−0.00072ε2 + 0.01824ε4)

T (x) = cos(x), B(x) = cos
(
3x + 5

2

)
,

1
3 − 1.63718ε2 + 9.42667ε4 + R2(−0.00072ε2 + 0.01825ε4)

The dependence (30) takes the form

|∇ p∗| = 3 + 277.693ε + 10.9529ε2 + 744.693ε3

1 + 92.5643ε + 0.191342ε2 − 71.9692ε3 u∗

+ 0.0507677ε2 + 7.94934ε3

1 + 156.6ε + 4.73248ε2 + 315.481ε3 R2
locu∗3

. (51)

For other channels, calculations are performed up to O(ε5). The results are presented in Table 1. In all the
formulae, the term with R vanishes. It follows from the relation between (44) and (47) that Darcy’s laws for
all channels do not contain a quadratic term.

It is worth noting that all the numbers are given with a very high precision. The continuity equation
∇ · u = 0 is verified up to 10−12, the differential equations (118) are solved with the precision 10−14, the
boundary condition (13) holds up to 10−8. The numerical coefficients in the table are valid at least up to 10−6.

4 Algorithm for arbitrary Reynolds numbers

A general algorithm for arbitrary Reynolds numbers was developed in [15] for Couette flow. The same algorithm
can be applied to Poiseuille flow by replacing the zero Couette velocity u0(x, y, z) = (z, 0, 0) by u0(x, y, z) =
1
2

(
b 2 − z 2, 0, 0

)
. The main difficulty is due to the fact that the Airy functions used in [15] must be replaced

by some numerically calculated functions which cannot be expressed in terms of known standard functions.
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In the next three subsections, the general algorithm is described and detailed up to O(ε3). Section 5.2 contains
a numerical example.

4.1 General

In the present subsection, there is no assumption on the symmetry of the functions T (x, y) and B(x, y) like
(31). Generally, it is convenient to represent these periodic functions by their complex Fourier series

T (x, y) =
∞∑

s,t=−∞
Tst e

i(sx+t y), B(x, y) =
∞∑

s,t=−∞
Bst e

i(sx+t y), (52)

where i stands for the imaginary unity; s and t run over integer numbers from −∞ to +∞. Since the functions
T (x, y) and B(x, y) are real, their complex Fourier coefficients satisfy the relations

T−s,−t = T ∗
st , B−s,−t = B∗

st , (53)

where ∗ stands for complex conjugation. It follows from (11) that T00 = B00 = 0. Moreover, it is now assumed
that the Reynolds number R can be arbitrary at least theoretically.

Expansions in ε are used for the velocity and for the pressure

u =
∞∑

k=0

ukε
k, p =

∞∑

k=0

pkε
k . (54)

Each coefficient in (54) is looked for in the form of a double Fourier series

uk(x, y, z) =
∞∑

s,t=−∞
ukst (z)e

i(sx+t y), pk =
∞∑

s,t=−∞
pkst (z)e

i(sx+t y). (55)

Substitution of (54)–(55) into (18) and comparison of the coefficients in εk yield the cascade of equations

∇2uk = ∇ pk + R(uk · ∇u0 + u0 · ∇uk) + R
k−1∑

m=1

um · ∇uk−m,

∇ · uk = 0.

(56)

The boundary conditions expanded in ε have the same form (38) as for small R.

4.2 First-order approximation

The study in the present section is performed with the accuracy O(ε2). Hence, all formulae are written explicitly
up to O(ε3). The zeroth term in ε is given by (21). The first-order approximation problem is obtained from
(56) with k = 1

∇2u1 = ∂p1

∂x
+ R

[
1

2
(b2 − z2)

∂u1

∂x
− zw1

]
,

∇2v1 = ∂p1

∂y
+ R(b2 − z2)

2

∂v1

∂x
,

∇2w1 = ∂p1

∂z
+ R(b2 − z2)

2

∂w1

∂x
,

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0,

(57)

where u1 = (u1, v1, w1). The boundary conditions take the form

u1(x, y, b) = b2T (x, y), u1(x, y,−b) = b2 B(x, y), v1(x, y,±b) = w1(x, y,±b) = 0. (58)
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Substitute the Fourier series (52) and (55) with k = 1 into (57)–(58) and take the coefficients of ei(sx+t y).
Equations (57) are separated into four ordinary differential equations

d2u1st

dz2 − ω2
st u1st = isp1st + isRb2 − z2

2
u1st − Rzw1st , (59a)

d2v1st

dz2 − ω2
stv1st = i tp1y + isR1

2
(b2 − z2)

dv1st

dx
, (59b)

d2w1st

dz2 − ω2
stw1st = d p1st

dz
+ isR1

2
(b2 − z2)

dw1st

dx
, (59c)

isu1st + i tv1st + dw1st

dz
= 0, (59d)

where ω2
st = s2 + t2. The boundary conditions (58) become

u1st (b) = b2Tst , u1st (−b) = b2 Bst , v1st (±b) = w1st (±b) = 0. (60)

The term s = t = 0 could be written separately since it has another form. It is easily seen that the condition
T00 = B00 = 0 implies the zero boundary conditions for u100(z). Direct calculations yield u100(z) ≡ v100(z) ≡
w100(z) ≡ 0.

Equation (59a) is differentiated and multiplied by is, equation (59b) is differentiated and multiplied by i t ,
(59c) is multiplied by ω2

st and the results are added. Then, equation (59d) yields a differential equation closely
related to the celebrated Orr–Sommerfeld equation discussed in the stability theory [22]

d4w1st

dz4 − 2ω2
st

d2w1st

dz2 + ω4
stw1st = isR

[
1

2
(b2 − z2)

d2w1st

dz2 +
(

1 − ω2
st

b2 − z2

2

)
w1st

]
(61)

with the boundary conditions

w1st (±b) = 0,
dw1st

dz
(b) = −isb2Tst ,

dw1st

dz
(−b) = −isb2 Bst . (62)

Unfortunately, the ordinary differential equation (61) cannot be solved in terms of the known elementary and
special functions (compare to [22]); it is solved numerically by the following method. First, Eq. (61) is reduced
to a system of ordinary first-order equations

dw1st

dz
= w1,

dw1

dz
= w2,

dw2

dz
= w3,

dw3

dz
= 2ω2

stw2 − ω4
stw1st + isR

[
1

2
(b2 − z2)w2 +

(
1 − ω2

st
b2 − z2

2

)
w1st

]
.

(63)

The boundary conditions (62) are written for the system (63)

w1st (±b) = 0, w1(b) = −isb2Tst , w1(−b) = −isb2 Bst . (64)

The problem (63)–(64) is transformed into a system of four differential equations of first order with the
corresponding boundary conditions at the points z = ±b:

w1st (0) = 0, w1(0) = − isb2

2
(Tst + Bst ), w2(0) = w3(0) = 0. (65)

The latter system is solved numerically by Mathematica© by use of the modified “shooting method” with
an adaptive step of integration constructed on the basis of the Runge–Kutta method of fourth order. All
computations are performed with the accuracy 10−16. Convergence of the method is controlled by comparison
of the derivatives of all orders from 1 to 4 in the integration points by two methods; first, by direct check of the
system, and secondly, by interpolation in the neighbour integration points. Iterations are continued until the
maximal difference between subsequent iterations becomes smaller than 0.01. The criterion of the absolute
and respective precisions gives convergence for R = 107 and R = 108, respectively. The difference of the
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results obtained by both methods does not exceed 0.1 % for 0 ≤ R ≤ 107. It is assumed that the method
diverges if the accuracy is not reached by division of the interval −b < z < b into 256,000 subintervals.

In order to determine u1st (z), multiply Eq. (59a) by t , Eq. (59b) by −s and add the results

d2Ust

dz2 −
(

ω2
st + isRb2 − z2

2

)
Ust = −tRz w1st , (66)

where Ust = tu1st − sv1st . The boundary conditions for Ust are derived from (60)

Ust (b) = tb2Tst , Ust (−b) = tb2 Bst . (67)

The problem (66)–(67) is solved numerically with the numerically given right hand part of (66). The velocity
components are found from the system

isu1st + i tv1st = −dw1st

dz
, tu1st − sv1st = Ust . (68)

In particular,

u1st (z) = ω−2
st

[
is

dw1st

dz
+ tUst (z)

]
. (69)

This is the final formula for the first approximation u1st (z), where w1st and Ust (z) are numerically found from
the boundary value problems (61)–(62) and (66)–(67), respectively, for ordinary differential equations.

4.3 Second-order approximation

Consider now the second-order equations

∇2u2 = ∂p2

∂x
+ R

[
b2 − z2

2

∂u2

∂x
− zw2

]
+ R

(
u1

∂u1

∂x
+ v1

∂u1

∂y
+ w1

∂u1

∂z

)
,

∇2v2 = ∂p2

∂y
+ Rb2 − z2

2

∂v2

∂x
+ R

(
u1

∂v1

∂x
+ v1

∂v1

∂y
+ w1

∂v1

∂z

)
,

∇2w2 = ∂p2

∂z
+ Rb2 − z2

2

∂w2

∂x
+ R

(
u1∂w1

∂x
+ v1

∂w1

∂y
+ w1

∂w1

∂z

)
,

∂u2

∂x
+ ∂v2

∂y
+ ∂w2

∂z
= 0.

(70)

The boundary conditions have the form

u2(x, y, b) = b2

2
T 2(x, y) − bT (x, y)

∂u1

∂z
(x, y, b), u2(x, y,−b) = b2

2
B2(x, y) + bB(x, y),

v2(x, y, b) = −bT (x, y)
∂v1

∂z
(x, y, b), v2(x, y,−b) = bB(x, y)

∂v1

∂z
(x, y,−b),

w2(x, y, b) = −bT (x, y)
∂w1

∂z
(x, y, b), w2(x, y,−b) = bB(x, y)

∂w1

∂z
(x, y,−b).

(71)

It will be seen in the next subsection that only the term u200(z) from the representation (55) is needed for the
calculation of the average velocity up to O(ε3). It is equivalent to look for solutions of Eq. (70) depending
only on z:

d2u200

dz2 = −Rz w200 + RF(z),
d2v200

dz2 = RFv(z),
d2w200

dz2 = d p200

dz
+ RFw(z),

dw200

dz
= 0, (72)
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where the functions F(z), Fv(z) and Fw(z) are (0, 0)-Fourier coefficients of the functions included in the
parentheses of the right hand part of (70). Further, only the explicit form of the function F(z) is needed:

F(z) =
∑

s,t

[
w1st

du1,−s,−t

dz
− i(su1st + tv1st )u1,−s,−t

]
. (73)

Here, s and t run over integer numbers. One of the sums of (73) vanishes:

∑

s,t

su1st u1,−s,−t =
∑

t

∞∑

s=1

[su1st u1,−s,−t + (−s)u1,−s,−t u1st ] = 0. (74)

Therefore, (73) can be simplified as:

F(z) =
∑

s,t

[
w1st

du1,−s,−t

dz
− i tv1st u1,−s,−t

]
. (75)

Since in the two-dimensional case v1st = 0, the second term in (75) vanishes.
Consider the (0, 0)-Fourier coefficient of the boundary values w2(x, y, b) from (71). Application of the

(0, 0)-Fourier coefficient of (59d) yields

w200(b) = ib
∑

s,t

Tst (su1,−s,−t + tv1,−s,−t ).

Use of the boundary conditions (60) yields zero in a way similar to (74)

w200(b) = ib3
∑

s,t

Tst sT−s,−t = 0.

The same arguments applied to the boundary condition at z = −b also yield w200(−b) = 0. Therefore, the
differential equation dw200

dz = 0 with w200(±b) = 0 has only the zero solution. Substitute w200(z) ≡ 0 into
the first equation (72) and find

u200(z) = R
z∫

−b

(z − τ)F(τ )dτ + C1z + C2, (76)

where C1 and C2 are undetermined constants.
The boundary conditions for u200(z) are derived from the boundary conditions (71)

u200(b) = b
∑

s,t

Tst

[
b

2
T−s,−t − du1,−s,−t

dz
(b)

]
,

u200(−b) = b
∑

s,t

Bst

[
b

2
B−s,−t + du1,−s,−t

dz
(−b)

]
,

(77)

where du1,−s,−t
dz (±b) was found in Sect. 4.2. Substitution of (77) into (76) yields formulae for the constants

C1 = 1

2b

⎡

⎣u200(b) − u200(−b) − R
z∫

−b

(z − τ)F(τ )dτ

⎤

⎦ ,

C2 = 1

2

⎡

⎣u200(b) + u200(−b) − R
z∫

−b

(z − τ)F(τ )dτ

⎤

⎦ .

(78)
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4.4 Average velocity up to O(ε3)

For shortness, introduce the notation “�” for equalities valid up to O(ε3). The average velocity over the unit
cell τ can be approximately calculated by

u � u0 + εu1 + ε2u2, (79)

where

a := 1

|Q|
∫

Q

a(x, y, z)dxdydz (80)

denotes the triple integral over the fluid domain Q. Following [16], calculate

a = 1

8πb2

π∫

−π

π∫

−π

dxdy

b(1+εT )∫

−b(1+εB)

a(x, y, z)dz

� 1

8πb2

π∫

−π

π∫

−π

dxdy

⎧
⎨

⎩

b∫

−b

a(x, y, z)dz + εb[T (x, y)a(x, y, b) + B(x, y)a(x, y,−b)]

+ ε2b2

2

[
T 2(x, y)

∂a

∂z
(x, y, b) − B2(x, y)

∂a

∂z
(x, y,−b)

]}
. (81)

Application of (81) to u0 = 1
2 (b2 − z2) yields

u0 � b2
(

1

3
− ε2G0

4

)
, (82)

where G0 is the (0, 0)-Fourier coefficient of the function T 2(x, y) + B2(x, y), i.e.,

G0 = 1

4π2

π∫

−π

π∫

−π

[T 2(x, y) + B2(x, y)]dxdy =
∑

s,t

(|Tst |2 + |Bst |2). (83)

Application of (81) to εu1 yields

εu1 � ε

8π2b2

π∫

−π

π∫

−π

dxdy

⎧
⎨

⎩

b∫

−b

u1(x, y, z)dz + εb[T (x, y)u1(x, y, b) + B(x, y)u1(x, y,−b)]
⎫
⎬

⎭
. (84)

The triple integral in (84) can be calculated by changing the order of integration

b∫

−b

dz

π∫

−π

π∫

−π

u1(x, y, z)dxdy = 0. (85)

Here, it is used that the (0, 0)-Fourier coefficients of the function u1(x, y, z) vanish. Substitution of the
boundary conditions (58) into (84) yields

εu1 � ε2b2

2
G0. (86)

The zeroth order of the third term u2 of (79) is calculated as

u2 = 1

2b

b∫

−b

u200(z)dz, (87)
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where u200(z) is given by (76)–(78). Thus, (79) becomes

u � b2
(

1

3
+ ε2

4
G0

)
+ ε2u2. (88)

Substitution of (76)–(78) into (87) yields

u2 = 1

2
[u200(b) + u200(−b)] + R

4b

b∫

−b

(τ 2 − b2)F(τ )dτ. (89)

Ultimately, the average velocity is calculated up to O(ε3) by

u′ � 1

3
b′2 + ε2h(R), (90)

where the dimensionless function h(R) has the form

h(R) = −b′2G0

4
+ 1

2
[u′

200(b
′) + u′

200(−b′)] + R
2b′

b′∫

−b′
(τ 2 − b′2)F(τ )dτ (91)

and F(τ ), u200(b) and u200(−b) are expressed by (75) and by (77), respectively, in terms of the Fourier
coefficients of the first-order approximation u1(x, y, z) calculated in Sect. 4.2 and of the known functions
T (x, y) and B(x, y).

5 Forchheimer’s law up to O(ε3)

5.1 Analytical form of the law

Following the general method described in Sect. 2, write Eq. (90) in the form (compare to (27))

u∗ = |∇ p∗|
[

1

3
b′2 + ε2h

(Rloc|∇ p∗|)
]

. (92)

In order to construct the dependence |∇ p∗| on u∗, it is convenient to introduce the variables

X = Rloc|∇ p∗|, Y = Rlocu∗. (93)

Then, (92) becomes

Y = X

[
b′2

3
+ ε2h (X)

]
. (94)

All calculations in this section are performed with the accuracy O(ε2). Hence, the inverse function X =
X (Y ) should be calculated with the same accuracy:

X (Y ) = X0(Y ) + ε2 X1(Y ). (95)

Substitute (95) into (94) and take the coefficients of ε0 and of ε2

Y = b′2

3
X0,

b′2

3
X1 + X0h(X0) = 0. (96)

This system has the solution

X0 = 3

b′2 Y, X1 = −Y

(
3

b′2

)2

h

(
3

b′2 Y

)
. (97)
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Substitution of (93) into (97) and (95) yields the required dependence

|∇ p∗| = 3

b′2 u∗
[

1 − ε2 3

b′2 h

(
3

b′2 Rlocu∗
)]

. (98)

This is the nonlinear Darcy’s flow to O(ε2) for the channel bounded by the walls (101). The performed
calculations give reasonable results at least for R < 109. A rational approximation in ε of the function (94)
can be taken as

X = 3

b′2 Y

[
1 + ε2 3

b′2 h

(
3

b′2 Y

)]−1

. (99)

The rational approximation (99) in ε is taken for the following reasons. It was established in [15] that the ε
expansions (54) converge if

ε < εc =
[

b sup
s,t

(
ast max

(√
s2 + t2,

√
Re

√
s2 + t2

))]−1

, (100)

where ast is the maximal modulus from eight coefficients of exp i(±sx ± t y) in the double complex Fourier
series of 2T (x, y) and 2B(x, y). Therefore, (98) holds for ε satisfying (100) and (99) holds for greater ε. [16]
showed that such Padé approximations can be valid for much greater values than εc.

5.2 Example and decomposition into intervals

Below, all numerical calculations are applied to the two-dimensional channel with the walls

z′ = ±b′[1 + ε cos(x ′)], (101)

where again dimensional and dimensionless values are distinguished by primes as said in Sect. 2. (42) corre-
sponds to b′ = 1. Each calculation is performed for a fixed Reynolds number R. The algorithm can be easily
applied to other channels.

Investigate the function (91) for the channel (101) given as a numerical table after the numerical solution
to the problem (59)–(60). Its behaviour for all Reynolds numbers (R � 108) with b′ = 1 is shown in Fig. 1
and is detailed in Figs. 3, 4, 5. As one can see later, the function h(R) plays a key role in the nonlinear Darcy
law up to O(ε3).
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Fig. 1 The computed function h(R) for the channel (101) when R ≤ 108
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We now proceed to investigate the curve h = h(R) using various Padé approximations. It is possible to
take an approximation for all R. However, better approximations of h = h(R) are obtained when specific
formulae are calculated for various intervals of R.

When different Padé approximations are applied to the data on the segment (0, Rmax) for a variable Rmax,
one can note that the minimal pole of the approximations stabilizes near the point R = −58i where i = √−1.
The different Padé approximations yield almost the same numerical results up to R= 1,000. An approximation
of order (6, 6) has the form

h = −1.19787 − 5.54757 × 10−4R2 − 2.42030 × 10−8R4 − 1.37449 × 10−13R6

1 + 3.42315 × 10−4R2 + 1.13784 × 10−8R4 + 4.85751 × 10−14R6 (102)

It is obtained for Rmax = 300; the closest pole to zero is R = −57.2033i . It is worth noting that all the
coefficients impact on h because of large numbers R6. For instance, the term 4.85751 × 10−14 R6 ≈ 35.4 for
R = 300.

Consider another approximation of order (6, 6) with Rmax = 550

h = −1.19798 − 5.41188 × 10−4R2 − 2.15115 × 10−8R4 − 1.05405 × 10−13R6

1 + 3.31697 × 10−4R2 + 9.92225 × 10−9R4 + 3.68731 × 10−14R6 (103)

The closest pole to zero has almost the same value R = −57.1192i .
Figure 1 shows that the curve h = h(R) has different behaviour on segments I1 = (0, 500), I2 = (500, 3×

104), I3 = (3 × 104, 108). This division into three segments is of course arbitrary.

5.2.1 Behaviour of h in I1

For instance, h is well approximated by a quadratic polynomial (see Fig. 2)

h = −1.19804 − 1.33153 × 10−4R2 in I11 = (0, 12). (104)

For R > 12, other powers of R have to be taken into account. However, the first segment can be extended to
R= 1,000 since formulae (102)–(103) correspond to the data with high precision up to R= 1,000. I1 contains
the characteristic point near R = −57.2i where the functions (102) and (103) have a pole. This implies that
the radius of convergence of the Taylor series in powers of R is equal to 57.2. It is known [23] that the problem
(18)–(20) has a unique solution for sufficiently small R. Our computations imply that this unique solution
holds at least for R < 57.2. As a consequence, Forchheimer’s law has a cubic correction for such Reynolds
numbers. Computations demonstrate that the data can be approximated by an even function h(R) on the whole
segment I1. A further increase in R would lead to a polynomial approximation for h(R). It is difficult to say
whether it is the effect of transformation of h(R) from an even to a general function. Actually, any finite data
can be approximated by an even function.

0.01 0.1 1 10 100

0.0010

0.0005

0.0000

0.0005

h

Fig. 2 Fitting residuals for small Reynolds numbers 0 � R � 500: (104) dots; (102) squares; (103) diamonds
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Fig. 3 The computed function h(R) for intermediate Reynolds numbers 500 � R � 30,000
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Fig. 4 Local extrema of h(R) on segment 1,100 � R � 2,000

5.2.2 Behaviour of h in I2

The behaviour of h = h(R) in I2 is illustrated in Fig. 3. Here, the function h(R) has two local extrema,
namely a local minimum hmin = −2.71470 at R= 1,340 and a local maximum hmax = −2.70623 at R= 1,810
(see Fig. 4). Therefore, the function h(Re) decreases everywhere except in the segment (1,340, 1,810). The
function h(R) slowly changes in the segment (900, 3,000) and can be approximated here by the constant
−2.5 (see Fig. 3). This means that |∇ p∗| decreases with the average velocity u∗ everywhere except for
1,340< 3

b′2 Rlocu∗ <1,810 [see (98)] where |∇ p∗| increases. To the best of our knowledge, this effect was
not noted experimentally and theoretically in the previous investigations.

5.2.3 Behaviour of h in I3

In the segment I3 when R > 30,000, the data are perfectly approximated by the power function (see Fig. 5)

h = 1.11310 − 0.458092 3
√

R. (105)

For the channel (101), εc = (
b
√Re

)−1
. In order to avoid the restrictions (100), it is possible to use Padé

approximations as it was demonstrated in [15,16]. Hence, formula (99) extends (98) to larger values of ε.
Substitution of (105) into (98) and (99) implies, respectively, the following formulae valid up to ε3:

|∇ p∗| = 3

b′2 u∗
[

1 − ε2 3

b′2

(

1.1131 − 0.458092 3

√
3

b′2 Rlocu∗
)]

(106)
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Fig. 5 Computed data h(R) for large Reynolds numbers R � 30,000
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Fig. 6 The function X (Y ) (99). Data are for b′ = 1; ε: 0 solid; 0.05 ···; 0.10 - · - ; 0.15 – · – ; 0.20 — · — ; 0.25 —– · —– ;
0.30 —— · ——

and

|∇ p∗| = 3

b′2 u∗
[

1 + ε2 3

b′2

(

1.1131 − 0.458092 3

√
3

b′2 Rlocu∗
)]−1

. (107)

The first formula (106) is valid for small ε < b′. The second formula (107) holds for ε > b′ and for not large
Rloc. One can take Rloc → +∞ in (106) and obtain the asymptotic formula valid for large Rloc (compare to
(7) from [14])

|∇ p∗| = 6ε2b′− 14
3 R

1
3
locu∗ 4

3 . (108)

The difference between the nonlinear and the linear Darcy laws is shown in Fig. 6.

5.3 Different forms of the Forchheimer’s law for different R

The Reynolds numbers plays a fundamental role in the behaviour of viscous fluids as it is demonstrated by
numerous physical experiments. Theoretical scales of the Reynolds numbers are based on its critical value R
from which turbulent flow begins.

We propose another type of rigorous mathematical scales in order to describe stationary flow in porous
media. From a physical point of view, the scales correspond to different behaviours of fluid. Forchheimer’s
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law
∣∣∇ p∗∣∣ = G(Rloc, u∗) can be considered as a function of u∗

c where the function G may have different
expressions which depend on the parameter Rloc.

In order to relate our results with others, it is necessary to take an adequate characteristic velocity U0 in
the definition (25a) of Rloc. Usually, U0 is taken as the central velocity in the straight channel [24], i.e., when
ε = 0

U0 = |∇ p| b2

2μ
. (109)

Then, (25a) yields

Rloc = ρ |∇ p| b2l

2μ2

and (5) implies that

Rloc

R = 1

2

(
b

l

)2

. (110)

Using the dimensionless parameter b′ = b/ l, we obtain

Rloc

b′2 = 1

2
R. (111)

Note that the choice of U0 is convenient since it does not depend on ε. Instead of (109), one could take another
value of U0 which would yield another coefficient in (111) and another scale in Fig. 7.

The numerical results of Sect. 5.2 for the channel (101) suggest the following scales for the Reynolds
numbers Rloc illustrated in Fig. 7.

The following approximate Reynolds numbers are marked:

0 ≤ Rloc ≤ 6: quadratic approximation (104) for h(R).
0 ≤ Rloc � 28: convergence domain for the Taylor series in Rloc.
0 ≤ Rloc � 250 : approximation of h(R) by an even function.
450 � Rloc � 1,500: weak dependence of

∣
∣∇ p∗∣∣ on the velocity.

Rloc � 15,000: the power law (108).

The Reynolds numbers derived from the stability theory are also given (see [4,5,24] and others); the
following critical values are marked:

Rloc of order 100 for curvilinear channels [25,26].
Rloc of order 1,000: spatial stability.
Rloc = 5,772: plane stability.
2,300 ≤ Rloc ≤ 50,000: transition to turbulence.

Fig. 7 Scale of Reynolds numbers Rloc = 1
2 R. Known stability results are also indicated
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This diagram for Forchheimer’s law (98) with b′ = 1 is based on the function h(R) shown in Fig. 1. The
cubic law is obtained from (98) by substitution of (104) and the “odd law” by substitution of (102) or (103).

Experimental results for different step channels were obtained by [10]. The cubic Forchheimer’s law is
shown to hold up to Rloc ∼ 20−70 and it becomes a quadratic law for greater Rloc (see Fig. 7). This corresponds
to our results for the channel (101) when the Taylor series converges up to Rloc = 28. Theoretically, this value
can be considered as the critical one up to which the cubic law holds for sinusoidal channels. Moreover, above
Rloc = 100, the flow becomes unstable [25] and this should disturb the theoretical cubic law.

The theoretical justification of the radical change from the cubic to the quadratic dependence in Forch-
heimer’s law follows from different rational approximations of the function h(R) depending on the complex
variable R. Let R1 and R2 be complex singularities of the function h(R) which are closest to zero and
|R1| < |R2|. Then, h(R) can be represented by a Taylor series in the complex disk |R| < |R1| and in the
annulus |R1| < |R| < |R2| by a Laurent series. Of course, these two representations of the same function h(R)
analytic in two disjoint domains have different structures. In particular, the function h(R) can be approximated
by polynomials in the real segment |R1| < R < |R2| which corresponds to the quadratic Forchheimer’s law.
The scales in Fig. 7 correspond to complex singularities of h(R) that justify different analytic representations
of Forchheimer’s law for different Reynolds numbers.

6 Conclusion

The main result of this paper is that there is no quadratic correction to Darcy’s law for small R, but that there is
one for large R. This result is proved by the application of two different analytical–numerical algorithms to the
full Navier–Stokes equations. The first method described in Sect. 3 is based on the double expansion in ε and
in the Reynolds number R defined by (5); hence, it is valid for sufficiently small R. A theoretical investigation
of the method applied to channels bounded by symmetric walls leads to “the odd law” (41) which yields the
cubic dependence (6). All the examples including various non-symmetric channels presented in Sect. 3.3 and
[11] confirm this assertion.

The second method is based on the ε expansion and formally holds for practically arbitrary R. The final
formula (92) expresses the nonlinear Darcy law where the deviation of the linear term is described by the
numerically calculated function h given by (91).

Stability and transition to turbulence are not studied here; known results [4,5,24–27] are put in Fig. 7
under the axis Rloc. Our results concern the nonlinear Darcy flow which are above the axis Rloc. The results
of the various regimes for nonlinear Darcy flow and stability were not compared in previous works. From
a mathematical point of view, the question is stated as follows: are the domains of inverse stationary flow
(Moffat’s eddies) and the bifurcation points (in terms of the Reynolds number) related to stability of the
non-stationary Navier–Stokes equations. It should be noted that physicists frequently confuse Moffat’s eddies
and turbulence. Our previous results [15] suggest that Moffat’s eddies are not related to turbulence while the
bifurcation points perhaps are related to them. However, this is only a qualitative observation.

As is pointed out above, it is not known which relation is valid between the characteristic parameters of
the stationary and non-stationary flows for R ∼ 3,200–50,000 (transition to turbulence observed in various
cases) and for R ∼ 5,772 for plane channels. As was demonstrated in [15], domains of inverse stationary
flow (Moffat’s eddies) roughly speaking increase with the Reynolds number. The effect of turbulence for
R ∼ 3,200–50,000 means that the flow changes unpredictably in time by change of the domains of inverse
flow (structure of the flow). There are many possible scenarios of such flows, but their structures are similar
to a mixture of vortices [27]. Our description of the flow for any R is one of the many possible scenarios of
the non-stationary flows beyond stability.

The nonlinear Darcy flow is obtained through the average velocity. It was shown in [15,16] that the local
velocity for stationary flows essentially depends on eddies while the average velocity weakly depends on eddies.
This suggests that the average velocity does not drastically change in various scenarios for R ∼ 50,000. Thus,
the average velocity of one flow described in our paper for any Reynolds number can possibly correspond
to the average velocity of all possible flows. So, one scenario is discussed here up to R = ∞ among many
possible scenarios and this scenario is thought to be typical.

This paper could be extended in many ways, but the most important is certainly the analysis of bifurcations
and the stability of the solutions which were obtained and their influence on the nonlinear Darcy law.
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7 Appendix: Proof of (41)

7.1 Structure of the solution of the primary problem

In the present section, the structure of the primary problem which has to be solved at each step of the cascades
in R and ε is studied. Consider the equations

∇2v = ∇q + F,

∇ · v = 0
(112)

in −b < z < b with the boundary conditions

v(x, y, b) = f(x, y), v(x, y,−b) = g(x, y). (113)

Lemma 1 Let v = (v1, v2, v3) and the given functions F = (F1, F2, F3), f = ( f1, f2, f3), g = (g1, g2, g3)
satisfy the following conditions as functions of x and y:

(i) F1, F2, f1, f2, g1, g2 are even, F3, f3, g3 are odd. Then, v1, v2 are even and v3 is odd.
(ii) F1, F2, f1, f2, g1, g2 are odd and F3, f3, g3 are even. Then, v1, v2 are odd and v3 is even.

Proof Let F1, F2, f1, f2, g1, g2 be even functions of x and y, and F3, f3, g3 be odd. Then, they are represented
as Fourier series

F1(x, y, z) =
∞∑

s,t=0

F (s,t)
1 (z) cos sx cos t y, F2(x, y, z) =

∞∑

s,t=0

F (s,t)
2 (z) cos sx cos t y,

F3(x, y, z) =
∞∑

s,t=1

F (s,t)
3 (z) sin sx sin t y,

f1(x, y) =
∞∑

s,t=0

f (s,t)
1 cos sx cos t y, f2(x, y) =

∞∑

s,t=0

f (s,t)
2 cos sx cos t y,

f3(x, y) =
∞∑

s,t=1

f (s,t)
3 sin sx sin t y,

g1(x, y) =
∞∑

s,t=0

g(s,t)
1 cos sx cos t y, g2(x, y) =

∞∑

s,t=0

g(s,t)
2 cos sx cos t y,

g3(x, y) =
∞∑

s,t=1

g(s,t)
3 sin sx sin t y.

(114)

The problem (112)–(113) can be solved by separation of variables. Fix a wave vector (s, t) with non-zero
components. The case s = 0 or (and) t = 0 is considered in the same way. Consider the following special
problem

∇2Ust = ∇Qst +
(
F (st)

1 (z) cos sx cos t y, F (st)
2 (z) cos sx cos t y, F (st)

3 (z) sin sx sin t y
)

,

∇ · Ust = 0
(115)

in −b < z < b with the boundary conditions

Ust (x, y, b) =
(

f (st)
1 (x, y), f (st)

2 (x, y), f (st)
3 (x, y)

)
,

Ust (x, y,−b) =
(

g(st)
1 (x, y), g(st)

2 (x, y), g(st)
3 (x, y)

)
.

(116)
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This problem has a unique solution up to an additive constant in Q(st) as a boundary value problem for the
Stokes equations. We now demonstrate that U(st) and Q(st) can be constructed in the form

Ust (x, y, z) = (αst (z) cos sx cos t y, βst (z) cos sx cos t y, γst (z) sin sx sin t y),

Qst (x, y, z) = δst (z) sin sx sin t y.
(117)

Substitution of (117) into (115) yields the ordinary differential equations

α
′′
st (z) − (s2 + t2)αst (z) − δst (z) = F (st)

1 (z),

β
′′
st (z) − (s2 + t2)βst (z) − δst (z) = F (st)

2 (z),

γ
′′
st (z) − (s2 + t2)γst (z) − δ

′
st (z) = F (st)

3 (z),

γ
′
st (z) − sαst (z) − tβst (z) = 0.

(118)

Substitution of (117) and (114) into (116) yields the boundary conditions

αst (b) = f (st)
1 , αst (−b) = g(st)

1 , βst (b) = f (st)
2 , βst (−b) = g(st)

2 , γst (b) = f (st)
3 , γst (−b) = g(st)

3 . (119)

The problem (118)–(119) has been solved in [15,16]. Exact formulae for αst (z), βst (z) and γst (z) were written
and are not repeated here. Then, Ust (x, y, z) has the form (117) and

v(x, y, z) =
∞∑

s,t=0

(αst (z) cos sx cos t y, βst (z) cos sx cos t y, γst (z) sin sx sin t y) . (120)

v1(x, y, z) and v2(x, y, z) are seen to be even functions in x and y while v3(x, y, z) is odd in these two
variables.

The second part of the lemma is proved by the same method. ��

7.2 Structure of the cascade and of its solutions

In the present section, Lemma 1 is applied to the cascade (33)–(34). First, consider the zeroth problem (33)
which is reduced to the following cascade in ε. The partial differential equations are given in the layer −b <
z < b by

∇2u(0)
m = ∇ p(0)

m ,

∇ · u(0)
m = 0,

(121)

with the boundary conditions

u(0)
m (x, y, b) = −

m∑

n=1

(bT )n

n!
∂nu(0)

m−n

∂zn
(x, y, b),

u(0)
m (x, y,−b) = −

m∑

n=1

(bB)n

n!
∂nu(0)

m−n

∂zn
(x, y, −b).

(122)

The zeroth solution u(0)
0 , p(0)

0 has the form (36).

Lemma 2 Let u(0)
m = (u(0)

m , v
(0)
m , w

(0)
m ) be the solutions of the cascade (121)–(122). Then, u(0)

m , v
(0)
m are even,

and w
(0)
m odd in x and y for all m = 0, 1, 2, . . ..
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Proof It is based on the principle of induction on m. The functions u(0)
0 = b2 − z2, v

(0)
0 = 0 are even functions

of x and y; w(0)
0 = 0 is odd. Let us assume that the same is true for u(0)

n , v
(0)
n and w

(0)
n (n = 1, 2, . . . , m−1) and

let us prove it for n = m. Consider the right hand sides of the boundary conditions (122). The differentiation
on z of u(0)

n (x, y, z) (n = 1, 2, . . . , m − 1) does not change the evenness of u(0)
n (x, y, z), v(0)

n (x, y, z) and
oddness of w

(0)
n (x, y, z) in x and y. Since T (x, y) and B(x, y) are even, u(0)

m (x, y, ±b) and v
(0)
m (x, y,±b) are

even while w
(0)
m (x, y, ±b) is odd. Then, Lemma 1 implies that u(0)

m (x, y, z) and v
(0)
m (x, y, z) are even while

w
(0)
m (x, y, z) is odd.

The lemma is proved. ��
Since u(0) is a sum of u(0)

m , Lemma 2 implies the following

Corollary 1 Let u(0) = (u(0), v(0), w(0)). Then, u(0)(x, y, z) and v(0)(x, y, z) are even in x and y while
w(0)(x, y, x) is odd.

Lemma 3 Let u(k) = (u(k), v(k), w(k)) be solutions of the cascade (34). Then, u(k)(x, y, z), v(k)(x, y, z) are
even on x and y, w(k)(x, y, x) is odd for even numbers k; u(k)(x, y, z), v(k)(x, y, z) are odd, w(k)(x, y, x) is
even for odd numbers k.

Proof Let u(k) = (u(k), v(k), w(k)) and u(k+1) = (u(k+1), v(k+1), w(k+1)) be solutions of two successive
problems of the cascade (34). It follows from Corollary 3 that u(0) and v(0) are even while w(0) is odd. To
prove the lemma, it is sufficient to demonstrate that the transformation u(k) �→ u(k+1) maps even components
to odd ones and vice versa. This property will be shown by induction on k.

At the beginning, u(1) and v(1) are proved to be odd and w(1) even, i.e., the induction assumption is verified
for k = 0. Consider (34) with k = 1

∇2u(1) = ∇ p(1) + F(1),

∇ · u(1) = 0,
(123)

where

F(1) = (F1, F2, F3) = (u(0) · ∇)u(0), (124)

F1 = u(0) ∂u(0)

∂x
+ v(0) ∂u(0)

∂y
+ w(0) ∂u(0)

∂z
,

F2 = u(0) ∂v(0)

∂x
+ v(0) ∂v(0)

∂y
+ w(0) ∂v(0)

∂z
,

F3 = u(0) ∂w(0)

∂x
+ v(0) ∂w(0)

∂y
+ w(0) ∂w(0)

∂z
.

(125)

The functions F1(x, y, z), F2(x, y, z) are odd functions of x and y since all summands of the definition (125)
of F1(x, y, z) are odd. For instance, u(0)(x, y, z) is even and ∂u(0)

∂x (x, y, z) is odd (as a derivative of an even
function). Similar arguments yield that F2(x, y, z) is odd and F3(x, y, z) even.

The problem (123) is reduced to the cascade in ε (37)–(38) with k = 1:

∇2u(1)
m = ∇ p(1)

m + F(1)
m ,

∇ · u(1)
m = 0, m = 0, 1, 2, . . .

u(1)
m (x, y, b) = −

m∑

n=1

(bT )n

n!
∂nu(1)

m−n

∂zn
(x, y, b),

u(1)
m (x, y, −b) = −

m∑

n=1

(−bB)n

n!
∂nu(1)

m−n

∂zn
(x, y,−b),

(126)

where (39) implies

F(1)(x, y, z) =
∞∑

m=1

F(1)
m (x, y, z)εm . (127)
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F(1)
0 = (u(0) · ∇)u(0) = 0 in accordance with (36). Let the vectorial function F(1)

m (x, y, z) have the form

F(1)
m = (F (1)

m1 (x, y, z), F (1)
m2 (x, y, z), F (1)

m3 (x, y, z)). The functions F (1)
m1 (x, y, z) and F (1)

m2 (x, y, z) are odd, and

F (1)
m3 (x, y, z)) even for all m = 1, 2, . . .. The problem (126) for m = 0 has only the trivial solution since it is

homogeneous (F(1)
0 = 0, u(1)

0 (x, y,±b) = 0 with a zero pressure jump).
The induction on k will include another induction on m. For instance, in order to check the required

assertion for k = 1, it will be proved that u(1)
m (x, y, z) and v

(1)
m (x, y, z) are odd and w

(1)
m (x, y, z) even

for all m = 0, 1, 2, . . . by induction on m. The trivial functions u(1)
0 (x, y, z) ≡ 0, v

(1)
0 (x, y, z) ≡ 0 and

w
(1)
0 (x, y, z) ≡ 0 satisfy the required even–odd property. Let us assume that u(1)

n (x, y, z) and v
(1)
n (x, y, z)

are odd, and w
(1)
n (x, y, z) even for n = 1, 2, . . . , m − 1 and consider the next problem (126) with n = m.

One can see that u(1)
n (x, y,±b) and v

(1)
n (x, y,±b) are odd and w

(1)
n (x, y,±b) even since T (x, y) and B(x, y)

are even. Then, Lemma 1 implies that u(1)
m (x, y, z), v(1)

m (x, y, z) are odd and w
(1)
m (x, y, z) even. Thus, the

induction on m is completed. u(1)
m (x, y, z) and v

(1)
m (x, y, z) are proved to be odd and w

(1)
m (x, y, z) even for all

m = 0, 1, 2, . . . The latter fact implies that u(1)(x, y, z) and v(1)(x, y, z) are odd while w(1)(x, y, z) is even.
Therefore, the first step of the induction can be performed on k and the mapping u(0) �→ u(1) satisfies the
required property.

For definiteness, consider the mapping u(k) �→ u(k+1) for even k, i.e., we assume that the functions
u(0), u(2), . . . , u(2p) have even first and second components and odd third components; the functions u(1), u(3),
. . . , u(2p−1) have odd first and second components and even third components. We now investigate u(2p+1)

satisfying (34) with k = 2p + 1:

∇2u(2p+1) = ∇ p(2p+1) + F(2p+1),

∇ · u(2p+1) = 0.
(128)

By virtue of (39)

F(2p+1) =
(
F (2p+1)

1 , F (2p+1)
2 , F (2p+1)

3

)
=

2p∑

n=0

(u(2p−n) · ∇)u(n), (129)

where

F (2p+1)
1 =

2p∑

n=0

(

u(2p−n) ∂u(n)

∂x
+ v(2p−n) ∂u(n)

∂y
+ w(2p−n) ∂u(n)

∂z

)

,

F (2p+1)
2 =

2p∑

n=0

(

u(2p−n) ∂v(n)

∂x
+ v(2p−n) ∂v(n)

∂y
+ w(2p−n) ∂v(n)

∂z

)

,

F (2p+1)
3 =

2p∑

n=0

(

u(2p−n) ∂w(n)

∂x
+ v(2p−n) ∂w(n)

∂y
+ w(2p−n) ∂w(n)

∂z

)

.

(130)

The assumption of the induction implies that F (2p+1)
1 and F (2p+1)

2 are odd and F (2p+1)
3 even.

Equations (128) with zero boundary conditions are reduced to the cascade in ε

∇2u(2p+1)
m = ∇ p(2p+1)

m + F(2p+1)
m ,

∇ · u(2p+1)
m = 0, m = 0, 1, 2, . . .

u(2p+1)
m (x, y, b) = −

m∑

n=1

(bT )n

n!
∂nu(2p+1)

m−n

∂zn
(x, y, b),

u(2p+1)
m (x, y,−b) = −

m∑

n=1

(−bB)n

n!
∂nu(2p+1)

m−n

∂zn
(x, y, −b), m = 0, 1, 2 . . .

(131)
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Now, apply again the induction on m to (131) and demonstrate that u(2p+1)
m and v

(2p+1)
m are odd and w

(2p+1)
m

even. It is true for m = 0 since u(2p+1)
0 = 0. Let it be valid for n = 0, 1, . . . , m − 1. Check it for n = m. It

follows from the boundary conditions (131) that u(2p+1)
m (x, y,±b) has odd first and second coordinates and

even third coordinates. Then, Lemma 1 implies that the same property holds for u(2p+1)
m (x, y, z). The latter

fact yields the required property for u(2p+1)(x, y, z).
This completes the induction on m and subsequently on k; hence, the lemma is proved. ��
We are interested in the average first component (24) of the velocity u(x, y, z) solving the problem (18)–

(20). Substitution of (32) into (24) yields the expansion (recall that the primes are omitted for dimensionless
values)

u =
∞∑

p=0

K pRp, (132)

where

K p = 1

|τ |
π∫

−π

π∫

−π

dxdy

S+(x,y)∫

S−(x,y)

u(p)(x, y, z)dz. (133)

Let us prove that K p = 0 for odd p. It follows from Lemma 3 that u(p)(x, y, z) is odd in x and y. Then, the
primitive in z

U (p)(x, y, z) =
∫

u(p)(x, y, z)dz (134)

is also odd in x and y. Then, the integral in (133)

V (p)(x, y) =
S+(x,y)∫

S−(x,y)

u(p)(x, y, z)dz = U (p)[x, y, S+(x, y)] − U (p)[x, y, S−(x, y)] (135)

is an odd function in x and y because U (p)(x, y, z) is odd in the first and the second variables and S±(x, y)
are even in x and y. Substitute the odd function V (p)(x, y) into (133). It is easily seen that

K p = 1

|τ |
π∫

−π

π∫

−π

V (p)(x, y)dxdy = 0, (136)

which justifies the odd expansion (41).
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