
Acta Mech 224, 1849–1864 (2013)
DOI 10.1007/s00707-013-0835-0

K. Asemi · H. Ashrafi · M. Salehi · M. Shariyat

Three-dimensional static and dynamic analysis
of functionally graded elliptical plates,
employing graded finite elements

Received: 29 October 2012 / Revised: 17 January 2013 / Published online: 24 March 2013
© Springer-Verlag Wien 2013

Abstract On the basis of the three-dimensional theory of elasticity, a graded finite element method capable
of modeling static and dynamic behaviors of elliptical plates made of functionally graded materials (FGMs)
subjected to uniform pressure is developed. In the present paper, two different material properties distributions
are considered. For the dynamic analysis, the effective through-the-thickness continuous material properties
distribution of the FGM (which is assumed to be composed of ceramic and metallic constituents) is determined
based on Mori–Tanaka homogenization technique. The three-dimensional graded finite element formulation
is derived based on the principle of minimum potential energy and Rayleigh Ritz method. To solve the time-
dependent equations, Newmark’s direct integration method is employed. To present the efficiency of the present
work, several numerical examples are included. Since similar results are not available in the literature, results
of the present formulations are verified by comparing them with available ones of a homogenous elliptical
plate.

1 Introduction

A new category of composite materials known as functionally graded materials (FGMs) has given signif-
icant attention in recent years. An FGM is a composite material fabricated from two or more constituent
phases with a defined composition [1,2]. Unlike the traditional composites which are piecewise homoge-
neous mixtures or layered structures, material properties of an FGM are affected by those of all constituent
materials, so that mechanical properties of the FGMs can be monitored to vary continuously throughout the
structure. An FGM can be customized to an application by specifying the form of the gradation function
of the material properties, to fit the design requirements. The FGMs can be ideal in applications where the
operating conditions are severe, for example, in heat engine components or rocket heat shields. Different
closed-form and approximate solutions have been proposed so far for structures with spatially varying mate-
rial properties [3–11]. However, full utilization of the FGM structures potential requires development of new,
accurate, and more adequate modeling techniques. This evidence is generally due to the mathematical com-
plexities that accompany the FGM models when deriving exact solutions for various physical problems. Many
researchers have modeled continuous variations of the material properties in the FGM structures by divid-
ing the structure into slices or substructures with isotropic material properties [12,13]. It is evident that this
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type of modeling leads to approximate rather than accurate global results and unreliable local (such as stress)
results.

Plates have been used in various configurations in the engineering structures. Hence, it is important to
investigate responses of the functionally graded plates to optimize their resistance against mechanical fail-
ures. Mechanical responses of the plate-type structures under mechanical loads have generally been studied
for limited (simplest) configurations, that is, rectangular [14] and circular plates [15]. However, elliptical
plates have been employed in many engineering structures, (e.g., as flat heads of the fluid carrying tank-
ers).

The elliptical plates are inherently three-dimensional structures, but often have been treated by the two-
dimensional plate theories. Several two- [16] and three-dimensional [17] theories are available for analyzing
the nonhomogeneous structures. Since variations of the transverse displacement and transverse normal and
shear stress components are discarded in the traditional equivalent single-layer plate theories (that are the bases
for the shell or plate element of the commercial finite element softwares). Many researchers have attempted
to develop closed-form solutions for homogeneous elliptical plates [18–25]. Yüce and Wang [25] determined
fundamental natural frequencies of moderately elliptic plates with concentric circular cores analytically, using
a boundary perturbation method.

However, since analytical methods can only be successfully applied to structural analyses of plates with
very simple geometrical and loading conditions, employing the numerical methods is inevitable for more
complex situations. Due to difficulties in obtaining analytical solutions for dynamic responses of the graded
elliptical plates, many researchers have focused on static analyses. A closed-form solution was obtained
for thermomechanical deformations of a clamped FGM elliptic plate by Cheng and Batra [17]. Lee et al.
[26] presented an optimization method based on a genetic algorithm for the homogenous elliptical plates.
Hsieh and Lee [27] dealt with the inverse problem of an FGM elliptical plate with large deflections and
disturbed boundary under uniform loads based on the classical plate theory and nonlinear von Karman kine-
matic relations. Chakraverty et al. [28] studied the effects of the inhomogeneity of the material of a plate
on the natural frequencies using Gram–Schmidt technique in the Rayleigh Ritz method. Ceribasi et al. [29]
analyzed the static behavior of clamped homogeneous Kirchhoff super elliptical plates under uniformly dis-
tributed surface loads, using Galerkin’s method. A double side approach combining the mathematical pro-
gramming and the subdomain method in the form of the weighted residuals is presented by Tang et al.
[30] for analyzing the deflection of clamped elliptical plates. Ceribasi [31] investigated the elliptical FGM
plates using Kirchhoff’s assumptions and the meshless approximate method for the solution of the govern-
ing equations of the plate. The finite element (FE) technique has been the most powerful and reliable tool
for analyzing the FGM structures in recent years. The majority of the published works on FGM plates have
been presented based on the conventional finite element techniques [32–36]. However, these methods were
based on the classical, first-order and third-order shear deformation plate theories. Kim and Paulino [37],
and Zhang and Paulino [38] developed a graded FE approach for modeling the nonhomogeneous structures.
They compared the results of the graded versus conventional homogeneous elements under various load-
ing conditions. In these studies, it was shown that the conventional FE formulations cause a discontinuous
stress field in the direction perpendicular to the material property gradation, while the graded elements gave
a continuous and smooth variation. Ashrafi et al. [39] presented a comparative study between graded finite
element and boundary element formulations capable of modeling nonhomogeneous behaviors of the FGM
structures.

To the best knowledge of the authors, there are no studies available in the literature on considering the
effects of the material nonhomogeneity of the FGM elliptical plates based on the graded elements. The present
study is aimed to develop a numerical approach for the FGM elliptical plates based on the three-dimensional
theory of elasticity. The governing equations are derived based on the principle of minimum potential energy
and Rayleigh Ritz method. In this regard, variations of the material properties are interpolated using general
shape functions. By using the three-dimensional graded elements for the analysis of the elliptical plates, dis-
continuities of the stress distribution, which are present in the conventional FE results, are eliminated. Two
different material distributions are used to investigate the static and dynamic behaviors of the FGM ellipti-
cal plates. For the static analysis, material properties are considered to vary through-the-thickness direction
according to an exponential law. For the dynamic analysis, variations of the volume fractions through the
thickness are assumed to obey a power law function. In this case, the effective material properties at each point
are determined by the Mori–Tanaka scheme. To solve the time-dependent equations, Newmark’s numerical
integration method is used.
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Fig. 1 Geometric parameters of the elliptical FGM plate

2 The governing equations

2.1 Description of variations of the material properties

Consider the elliptic FGM plate shown in Fig. 1. According to the adopted rectangular Cartesian coordinate
system, the coordinates vary within the (−a < x ≤ a), (−b < y ≤ b), and (0 < z ≤ h) intervals where a and
b are the semimajor and semiminor axes of the elliptical plate. The plate is subjected to a uniform pressure on
its upper surface, while its lower surface is free of tractions.

Two different material distributions are used. For the static analysis, a functionally graded material whose
material properties vary through-the-thickness direction according to an exponential law is considered,

E = E0 exp

((
h − z

h

)n)
(1)

where n is the material gradient parameter and E0 is Young’s modulus of the upper surface of the plate.
For the dynamic analyses, it is assumed that the FGM plate is made of two randomly distributed isotropic

phases and the composition of the FGM varies only in the thickness direction. The volume fraction of ceramic
and metal is given by

Vm = 1 −
( z

h

)n
(2.1)

Vc = 1 − Vm (2.2)

where n is a nonnegative volume fraction exponent and the subscripts c and m stand, respectively, for the
ceramic and the metal.

Mori–Tanaka homogenization method [40] is used to determine the effective properties at each point.
According to the Mori–Tanaka homogenization method, the effective bulk modulus (K ) and the effective
shear modulus (G) of the FGM elliptic plate are given by [40]

K − Kc

Km − Kc
= Vm

1 + (1−Vm)(Km−Kc)

Kc+ 4
3 Gc

, (3)

G − Gc

Gm − Gc
= Vm

1 + (1−Vm)(Gm−Gc)
Gc+ fc

(4)

where

fc = Gc (9Kc + 8Gc)

6 (Kc + 2Gc)
. (5)

The effective values of the modulus of elasticity and Poisson’s ratio of the structure are found from

E = 9K G

3K + G
, (6)

ν = 3K − 2G

2(3K + G)
. (7)

According to these distributions, the bottom surface of the FGM plate is pure metallic, the top surface is pure
ceramic, and different volume fractions of the constituent materials can be obtained for different values of n.
However, the effective mass density of the FGM plate may be determined by the rule of mixtures.
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2.2 Equations of motion

In the absence of the body forces, the equations of motion for an FGM elliptic plate can be written as follows:

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σzx

∂z
= ρ(z)

∂2u

∂t2 , (8.1)

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= ρ(z)

∂2v

∂t2 , (8.2)

∂σzx

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= ρ(z)

∂2w

∂t2 (8.3)

where ρ is the mass density which depends on z coordinate. u, v and w are the displacement components along
the x, y and z axes, respectively, and σi j (i, j = x, y, z) are the stress components.

2.3 Stress–strain relationships

The stress–strain relationships of the linear elasticity may be written based on Hooke’s generalized law as
follows [41]:

σ = Dε (9)

in which

σ = {
σxx σyy σzz σxy σyz σzx

}T
, (10)

ε = {
εxx εyy εzz εxy εyz εzx

}T
, (11)

D = E(z)(1 − ν)

(1 + ν)(1 − 2ν)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ν
1−ν

ν
1−ν

0 0 0
ν

1−ν
1 ν

1−ν
0 0 0

ν
1−ν

ν
1−ν

1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

= E(z)�

where D is the elastic coefficients matrix. It is assumed that the elasticity modulus E varies in the z direction
while Poisson’s ratio ν is constant. The constant part of matrix D is defined as �.

2.4 Strain–displacement relationships

The strain–displacement relationships of the infinitesimal theory of elasticity in the rectangular Cartesian
coordinates are

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εzz = ∂w

∂z
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
,

εyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
, εzx = 1

2

(
∂w

∂x
+ ∂u

∂z

)
, (13)
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Fig. 2 Nodal degrees of freedom of the i th node of the adopted graded three-dimensional element

The strain–displacement relationships (13) may be written as

ε = dq (14)

where

d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

1/2 ∂
∂y 1/2 ∂

∂x 0

0 1/2 ∂
∂z 1/2 ∂

∂y

1/2 ∂
∂z 0 1/2 ∂

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

q =
⎧⎨
⎩

u
v
w

⎫⎬
⎭ . (16)

For a clamped elliptical plate, the essential boundary condition is

u, v, w
(
x2/a2 + y2/b2 = 1, z

) = 0. (17)

3 Graded finite element modeling

Consider the three-dimensional 8-node linear brick element shown in Fig. 2. As it has been mentioned in the
foregoing sections, in contrast to the conventional solid (brick) elements, material properties are among the
nodal degrees of freedom (Fig. 2).

Following the common FE approximation, the displacement components vector q of an arbitrary point of
the element may be related to the nodal displacement vector of the element δ(e) through the shape function
matrix N, where the spatial and time variables are separated as

q (ξ, η, ζ, t) = N (ξ, η, ζ ) δ(e)(t) (18)

where

δ(e) = {U1 V1 W1 . . . U8 V8 W8}T , (19)

N (ξ, η, ζ ) =
⎡
⎢⎣

N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8

⎤
⎥⎦ ,

(20)

and the natural coordinates ξ, η, and ζ are along the coordinate axes x, y, and z, respectively. The components
of the shape matrix may be expressed in terms of the natural coordinates shown in Fig. 2 as [41]:

Ni (ξ, η, ζ ) = 1

8
(1 + ξiξ) (1 + ηiη) (1 + ζiζ ) (21)

where (−1 ≤ ξ ≤ 1), (−1 ≤ η ≤ 1) and (−1 ≤ ζ ≤ 1).
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In addition to the displacement field, the heterogeneity of the material properties of the FGM may also
be determined based on their nodal values. This procedure can be used even for multi-directional function-
ally graded materials. Therefore, a graded finite element method (GFEM) may be used to effectively trace
smooth variations of the material properties at the element level. Using the graded elements for the modeling
of gradation of the material properties leads to more accurate results than dividing the solution domain into
homogenous elements. In this regard, shape functions similar to those of the displacement field may be used:

E(ζ ) =
8∑

i=1

Ei Ni (ξ, η, ζ ) = 


N�,

ρ(ζ ) =
8∑

i=1

ρi Ni (ξ, η, ζ ) = 


N�
(22)

where Ei and ρi are the modulus of elasticity and mass density values corresponding to node i (Fig. 2), and
� and � are, respectively, vectors of the nodal elasticity moduli and mass densities, and




N = 〈N1 N2 . . . N8〉 , � = 〈E1 E2 . . . E8〉T , � = 〈ρ1 ρ2 . . . ρ8〉T . (23)

Therefore, Eq. (12) may be rewritten as:

D = �
(




N�
)

. (24)

Substituting (18) into (14) gives the strain matrix of the element (e) as

ε(e) = dNδ(e) = Bδ(e). (25)

The governing equations of the FE model may be derived based on the principle of minimum potential energy
and Rayleigh Ritz method. The total potential energy of the plate may be expressed as

�(e) = 1

2

∫

V (e)

(
ε(e)

)T
σ (e)dV −

∫

A(e)

(q)T p dA +
∫

V (e)

ρ(q)T q̈(e)dV

= 1

2

∫

V (e)

(
δ(e)

)T
BT �

(


N�
)

Bδ(e)dV −
∫

A(e)

(
δ(e)

)T
NT p dA

+
∫

V (e)

(
δ(e)

)T
NT

(


N�
)

Nδ̈
(e)

dV (26)

where V (e) and A are, respectively, volume and area of the element. p is the traction vector, and the last term
of Eq. (26) represents the work of the inertial loads.

Therefore, employing the principle of minimum total potential energy leads to the following result:

∂�(e)

∂
(
δ(e)

)T
= 0

⇒
⎡
⎢⎣

∫

V (e)

NT
(


N�
)

NdV

⎤
⎥⎦ δ̈

(e) +
⎡
⎢⎣

∫

V (e)

BT �
(


N�
)

BdV

⎤
⎥⎦ δ(e) =

∫

A(e)

NT p dA, (27)

or in a compact form:

M(e)δ̈
(e) + K(e)δ(e) = F(e) (28)



Three-dimensional static and dynamic analysis 1855

where

K(e) =
∫

V (e)

BT �
(


N�
)

BdV, (29)

M(e) =
∫

V (e)

NT
(


N�
)

NdV, (30)

F(e) =
∫

A(e)

NT pdA (31)

and

p =
⎧⎨
⎩

0
0
pz

⎫⎬
⎭ . (32)

Since the plate is subjected to a uniform pressure at its upper surface, the components of the traction vector are
equal to zero in the x and y directions. Integrals of the mass and stiffness matrices are evaluated numerically
using 8-point Gaussian points and Gauss–Legendre technique [41].

By assembling the element matrices, the governing finite element equations of motion of the FGM elliptic
plate will have the following form:

Mδ̈ + Kδ = F. (33)

Various numerical methods can be employed to solve Eq. (33) in the space and time domains. To solve the
equilibrium equation, Newmark’s numerical integration method [41] is used. Newmark integration parameters
[41] are chosen as: γ = 1

2 and β = 1
4 , which lead to a constant average acceleration. This choice of parameters

corresponds to the trapezoidal rule which is unconditionally stable in linear analyses. Moreover, to achieve
convergent results, the time step is adopted as 2e−6 s.

For static analysis, Eq. (33) reduces to

Kδ = F. (34)

4 Numerical results and discussion

4.1 Static analysis

4.1.1 Verification

The prepared three-dimensional GFEM code for analyzing the FGM elliptic plates can be verified using the
results of a homogenous plate obtained by the authors in ANSYS finite element analysis software. The elliptic
plate is fully clamped and subjected to a uniform pressure on its upper surface. Parameter values of the loading
and the homogenous elliptic plate are:

h = 0.2 m, E0 = 70 GPa, ν = 0.3, P = 20 MPa.

To achieve convergent results in the present study and ANSYS software, about 2,000 solid elements (8-node
brick elements) are considered. Through the thickness distribution of the lateral deflection, the central section
of the plate is shown in Fig. 3 and compared with ANSYS results. Figure 3 shows a good agreement between
the results. These results are obtained for two different ratios of major to minor radii of the elliptic plate, that
is, m = a/b = 2 and m = a/b = 3.
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Fig. 3 A comparison between through-the-thickness distributions of the lateral deflection of the central section of the homogenous
elliptic plate predicted by present results and ANSYS software
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Fig. 4 Through-the-thickness distribution of lateral deflection (w) of the central section of the elliptical plate for different gradation
exponents

4.1.2 Numerical results

Consider an FGM elliptical plate with major and minor radii a = 1 and b = 0.5 m, and thickness h = 0.1 m.
The material properties vary through the thickness direction according to an exponential material gradation
presented in Eq. (1) with E0 = 70 GPa. The plate is subjected to a uniform pressure loading P in the z-direction
on its upper surface, while its sides are fully clamped. The static pressure is taken as P = 20 MPa. To obtain
convergent results, about 2,000 brick elements are considered.

Through-the-thickness distribution of the lateral deflection of the central section of the FGM elliptical plate
is shown in Fig. 4 for different gradation exponents n = 1, 3, and 5. It is seen from Fig. 4 that the deflections
increase as n increases from n = 1 to 5. This behavior is due to the resulting decrease in the modulus of
elasticity with an increase in the exponent n. Variations of the stress component σzz at the central section of the
FGM elliptical plate in the transverse direction is shown in Fig. 5. Results illustrated in Fig. 5 reveal that the
transverse distribution of the stress component σzz does not change significantly with the gradation exponent
n. As it can be readily seen from this figure, the natural boundary conditions of upper and lower surfaces are
adequately satisfied.

Distributions of the lateral deflection and the displacement component u of the mid-plane of the elliptical
plate are illustrated along the major axis (y = 0, z = h/2) in Figs. 6 and 7 for different gradation exponents.
Figure 6 shows that the lateral deflection increases by increasing the gradation exponent n. Distributions of
the stress components σxx , σyy , and σzx of the mid-plane are depicted in Figs. 8, 9, and 10, respectively, along
the major axis of the elliptical FGM plate, for different gradation exponents. Figures 8 and 9 show that the
stress components σxx and σyy decrease by increasing the heterogeneity exponent n. Furthermore, Fig. 10
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Fig. 5 Through-the-thickness distribution of the stress component (σzz) of the elliptical plate at the central section for different
gradation exponents
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Fig. 6 Distribution of the lateral deflection of the mid-plane, along the major axis of the elliptical plate for different gradation
exponents
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Fig. 7 Distribution of the displacement component (u) of the mid-plane, along the major axis of the elliptical plate for different
gradation exponents

illustrates that the distribution of the stress component σzx does not change significantly with the heterogeneity
exponent n.

Distributions of the lateral deflection and the displacement component v of the mid-plane are illustrated in
Figs. 11 and 12, respectively, along the minor axis (x = 0, z = h/2) of the elliptical FGM plate for different
gradation exponents. These results show that the values of the displacement components increase by increasing
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Fig. 8 Distribution of the stress component (σxx ) of the mid-plane, along the major axis of the elliptical plate for different
gradation exponents
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Fig. 9 Distribution of the stress component (σyy) of the mid-plane, along the major axis of the elliptical plate for different
gradation exponents

-1 -0.5 0 0.5 1
-40

-20

0

20

40

x (m)

σ xz
 (

M
P

a)

n=1
n=3
n=5

Fig. 10 Distribution of the stress component (σzx ) of the mid-plane, along the major axis of the elliptical plate for different
gradation exponents

the heterogeneity exponent n. Although in Fig. 12 similar behaviors are noticed for n = 1 and n = 3, the
resulting behavior for n = 5 is different. Indeed, this phenomenon is due to nonlinear behaviors of the material
properties.

Distributions of the stress components σxx , σyy and σzy of the mid-plane of the elliptical FGM plate are
depicted in Figs. 13, 14, and 15, respectively, along the minor axis for different gradation exponents. Moreover,
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Fig. 11 Distribution of the lateral deflection of the mid-plane, along the minor axis of the elliptical plate for different gradation
exponents
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Fig. 12 Distribution of the displacement component (v) of the mid-plane, along the minor axis of the elliptical plate for different
gradation exponents
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Fig. 13 Distribution of the stress component (σxx ) of the mid-plane, along the minor axis of the elliptical plate for different
gradation exponents

Fig. 16 shows the variations of the stress σzz along the minor axis of the nonhomogeneous elliptical plate for
different gradation exponents. As can be seen from the results of the stress components, both the through-
the-thickness and longitudinal distributions of the stress components have continuous variations due to using
graded elements.
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Fig. 14 Distribution of the stress component (σyy) of the mid-plane, along the minor axis of the elliptical plate for different
gradation exponents
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Fig. 15 Distribution of the stress component (σyz) of the mid-plane, along the minor axis of the elliptical plate for different
gradation exponents
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Fig. 16 Distribution of the stress component (σzz) of the mid-plane, along the minor axis of the elliptical plate for different
gradation exponents

4.2 Dynamic analysis

Consider the elliptic FGM plate of the previous section once again. As mentioned before, it is assumed that the
FGM plate is fabricated from two randomly distributed isotropic constituent materials. Mori–Tanaka homoge-



Three-dimensional static and dynamic analysis 1861

5 5.5 6 6.5 7 7.5 8

x 10
-3

-3

-2

-1

0

1

2

3

4

t (s)

w
 (

m
m

)

n=1
n=3
n=5

Fig. 17 Time histories of lateral deflection of the center point of an elliptical plate for different gradation exponents
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Fig. 18 Time histories of the stress component (σxx ) of the center point of the elliptical plate for different gradation exponents
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Fig. 19 Time histories of the stress component (σzz) of the center point of the elliptical plate for different gradation exponents

nization method is used to find the effective properties at each point. The material properties of the constituent
materials are assumed to be Ec = 380 GPa, ρc = 3,800 kg/m3, and Em = 70 GPa, ρm = 2,707 kg/m3.

The plate is fully clamped and subjected to a uniformly distributed impact load at its upper surface.
The loading function is assumed as

p(t) =
{

p0t t ≤ 0.005 s
0 t > 0.005 s
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Fig. 20 Time histories of the stress component (σyy) of the center point of the elliptical plate for different gradation exponents
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Fig. 21 Time histories of the stress component (σxz) of the center point of the elliptical plate for different gradation exponents

where p0 is considered as 4 GPa/s. The plate is unloaded in t = 0.005 s. It is obvious that after the unloading a
transient vibration which is affected by the wave propagation, reflection, and interference would occur. Results
of different values of the power law exponents are presented and discussed in the next paragraphs.

Figure 17 shows the time history of the lateral deflection of the center point (x = y = 0, z = h/2) of
the elliptical plate after unloading for different gradation exponents. Figure 17 shows that by increasing the
gradation exponent the volume fraction of the metallic phase increases and subsequently the amplitude of the
vibration increases. Figures 18, 19, 20, and 21 show the time histories of the stress components σxx , σzz, σyy ,
and σxz of the center point of the elliptical plate for different gradation exponents, respectively. Results reveal
that the propagation of the stress waves following the unloading is strongly affected by the gradation exponent.
The obtained results denote that using a graded element has several advantages over using conventional ele-
ments in the dynamic and wave propagation analyses. In the conventional FE methods, continuous variations
of the material properties are approximated by discrete and homogenous ones. Therefore, adjacent elements
may have quite different isotropic material properties. Boundaries of these homogenous elements experience
jumps in the material properties, cause artificial wave reflections, and have cumulative effects on magnitude
and speed of the stress waves propagation. Therefore, by using the graded elements wherein the material
properties vary continuously, improved accuracy may be attained without refining the mesh size.

5 Conclusions

Static and dynamic analyses of the FGM elliptic plate are accomplished in the present research based on the
three-dimensional theory of elasticity. Graded elements, the principle of minimum energy, and Rayleigh–Ritz
energy method are employed. Newmark’s numerical integration method was used to derive time histories of
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the displacement and stress components. For the static analysis, it is assumed that material properties vary
through-the-thickness direction according to an exponential material gradation, and for the dynamic analyses,
the effective material properties distribution of the FGM plate was determined using Mori–Tanaka homog-
enization technique. The proposed approach is validated through comparing the present results for a fully
clamped homogenous elliptical plate with results of ANSYS commercial FE software. The obtained results
reveal that the distribution of the mechanical stress components can be modified to meet a specific requirement
by selecting an appropriate heterogeneity parameter. Furthermore, results confirm that using graded elements
provides smoother and more accurate results than homogeneous elements.

References

1. Miyamoto, Y., Kaysser, W.A., Rabin, B.H.: Functionally Graded Materials: Design, Processing and Applications.
Kluwer, Dordrecht (1999)

2. Suresh, S., Mortensen, A.: Functionally Graded Materials. Institute of Materials, IOM Communications, London (1998)
3. Banks-Sills, L., Rami, E., Yuri, B.: Modeling of functionally graded materials in dynamic analyses. Compos. Part B

Eng. 33, 7–15 (2002)
4. Tornabene, F.: Vibration analysis of functionally graded conical, cylindrical and annular shell structures with a four-parameter

power-law distribution. Comput. Methods Appl. Mech. Eng. 198, 2911–2935 (2009)
5. Akbarzadeh, A.H., Abbasi, M., Hosseini Zad, S.K., Eslami, M.R.: Dynamic analysis of functionally graded plates using the

hybrid Fourier–Laplace transform under thermo mechanical loading. Meccanica 46, 1373–1392 (2011)
6. Tornabene, F., Viola, E., Inman, D.J.: 2-D differential quadrature solution for vibration analysis of functionally graded

conical, cylindrical and annular shell structures. J. Sound Vib. 328, 259–290 (2009)
7. Viola, E., Tornabene, F.: Free vibrations of three parameter functionally graded parabolic panels of revolution. Mech. Res.

Commun. 36, 587–594 (2009)
8. Malekzadeh, P., Golbahar Haghighi, M.R., Atashi, M.M.: Free vibration analysis of elastically supported functionally graded

annular plates subjected to thermal environment. Meccanica 46, 893–913 (2011)
9. Tornabene, F., Liverani, A., Caligiana, G.: FGM and laminated doubly curved shells and panels of revolution with a free-form

meridian: a 2-D GDQ solution for free vibrations. Int. J. Mech. Sci. 53, 446–470 (2011)
10. Asemi, K., Salehi, M., Akhlaghi, M.: Elastic solution of a two-dimensional functionally graded thick truncated cone with

finite length under hydrostatic combined loads. Acta Mech. 217, 119–134 (2011)
11. Shariyat, M., Alipour, M.M.: Differential transform vibration and modal stress analyses of circular plates made of two-

directional functionally graded materials resting on elastic foundations. Arch. Appl. Mech. 81, 1289–1306 (2011)
12. Rahmati Nezhad, Y., Asemi, K., Akhlaghi, M.: Transient solution of temperature field in functionally graded hollow cylinder

with finite length using multi layered approach. Int. J. Mech. Mater. Des. 7, 71–82 (2011)
13. Shao, Z.S.: Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length. Int. J. Press.

Vessel. Pip. 82, 155–163 (2005)
14. Elishakoff, I., Gentilini, C., Viola, E.: Three-dimensional analysis of an all-round clamped plate made of functionally graded

materials. Acta Mech. 180, 21–36 (2005)
15. Liu, C.F., Lee, Y.T.: Finite element analysis of three-dimensional vibrations of thick circular and annular plates. J. Sound.

Vib. 233, 63–80 (2000)
16. Ashrafi, H., Bahadori, M.R., Shariyat, M.: Two-dimensional modeling of functionally graded viscoelastic materials using a

boundary element approach. Adv. Mater. Res. 464, 570–574 (2012)
17. Cheng, Z.Q., Batra, R.C.: Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos.

Part B 31, 97–106 (2000)
18. Prasad, K.L., Rao, A.V., Rao, B.N.: Free vibration of simply supported and clamped elliptical plates. J. Sound Vib. 158,

383–386 (1992)
19. Wang, C.M., Wang, L., Liew, K.M.: Vibration and buckling of super elliptical plates. J. Sound Vib. 171, 301–314 (1994)
20. Lim, C.W., Kitipornchai, S., Liew, K.M.: A free-vibration analysis of doubly connected super-elliptical laminated composite

plates. Compos. Sci. Technol. 58, 435–445 (1998)
21. Laura, P.A.A., Gutiérrez, R.H., Romanelli, E.: Transverse vibrations of a thin elliptical plate with a concentric, circular free

edge hole. J. Sound Vib. 246, 737–740 (2001)
22. Romashchenko, V.A., Storozhuk, V.N.: Theoretical analysis of strong changes in the shape of initially elliptic plates. Strength

Mater. 34, 54–61 (2002)
23. Altekin, M., Altay, G.: Static analysis of point-supported super-elliptical plates. Arch. Appl. Mech. 78, 259–266 (2008)
24. Nallim, L.G., Grossi, R.O.: Natural frequencies of symmetrically laminated elliptical and circular plates. Int. J. Mech.

Sci. 50, 1153–1167 (2008)
25. Yüce, H., Wang, C.Y.: Perturbation methods for moderately elliptical plates with a core. Acta Mech. 215, 105–114 (2010)
26. Lee, Z.Y., Chen, C.K., Hung, C.I.: Upper and lower bounds of the solution for an elliptic plate problem using a genetic

algorithm. Acta Mech. 157, 201–212 (2002)
27. Hsieh, J.-J., Lee, L.-T.: An inverse problem for a functionally graded elliptical plate with large deflection and slightly

disturbed boundary. Int. J. Solids Struct. 43, 5981–5993 (2006)
28. Chakraverty, S., Jindal, R., Agarwal, V.K.: Effect of non-homogeneity on natural frequencies of vibration of elliptic

plates. Meccanica 42, 585–599 (2007)
29. Ceribasi, S., Altay, G., Dokmeci, M.C.: Static analysis of super elliptical clamped plates by Galerkin’s method. Thin-Walled

Struct. 46, 122–127 (2008)



1864 K. Asemi et al.

30. Tang, H.-W., Yang, Y.-T., Chen, C.-K.: Application of new double side approach method to the solution of super-elliptical
plate problems. Acta Mech. 223, 745–753 (2012)

31. Ceribasi, S.: Static and dynamic analyses of thin uniformly loaded super elliptical FGM plates. Mech. Adv. Mater.
Struct. 19, 323–335 (2012)

32. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)
33. Croce, L.D., Venini, P.: Finite elements for functionally graded Reissner–Mindlin plates. Comput. Methods Appl. Mech.

Eng. 193, 705–725 (2004)
34. Mechab, I., Atmane, H.A., Tounsi, A., Belhadj, H.A., Adda Bedia, E.A.: A two variable refined plate theory for the bending

analysis of functionally graded plates. Acta Mechanica Sinica 26, 941–949 (2010)
35. Orakdogen, E., Kucukarslan, S., Sofiyev, A., Omurtag, M.H.: Finite element analysis of functionally graded plates for

coupling effect of extension and bending. Meccanica 45, 63–72 (2010)
36. Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Nguyen-Thoi, T.: Analysis of functionally graded plates by an efficient finite

element method with node-based strain smoothing. Thin-Walled Struct. 54, 1–18 (2012)
37. Kim, J.H., Paulino, G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials.

J. Appl. Mech. 69, 502–514 (2002)
38. Zhang, Z., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded

finite elements. Int. J. Solids Struct. 44, 3601–3626 (2007)
39. Ashrafi, H., Asemi, K., Shariyat, M., Salehi, M.: Two-dimensional modeling of heterogeneous structures using graded finite

element and boundary element methods. Meccanica (2012). doi:10.1007/s11012-012-9623-5
40. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta

Metall. 21, 571–574 (1973)
41. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Oxford (2005)

http://dx.doi.org/10.1007/s11012-012-9623-5

	Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements
	Abstract
	1 Introduction
	2 The governing equations
	2.1 Description of variations of the material properties
	2.2 Equations of motion
	2.3 Stress--strain relationships
	2.4 Strain--displacement relationships

	3 Graded finite element modeling
	4 Numerical results and discussion
	4.1 Static analysis
	4.1.1 Verification
	4.1.2 Numerical results

	4.2 Dynamic analysis

	5 Conclusions
	References


