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Abstract This paper proposes an improvement of the Legendre polynomial series method to solve the harmonic
wave propagation in multilayered piezoelectric spherical plates, which are used in point-focusing transduc-
ers. The conventional Legendre polynomial method can deal with the multilayered structures only when the
material properties of two adjacent layers do not change significantly and cannot obtain correctly normal
stress and normal electric displacement shapes unlike the proposed improved orthogonal polynomial approach
which overcomes these drawbacks. Detailed formulations are given to highlight its differences from the con-
ventional Legendre polynomial approach. Through the comparisons of numerical results given by an exact
solution (obtained from the reverberation-ray matrix method), and by the conventional polynomial approach
and the improved polynomial approach, the validity of the proposed approach is illustrated. The influences of
the radius-to-thickness ratio on dispersion curves, stress and electric displacement distributions are discussed.
It is found that three factors determine the distribution of mechanical energy and electric energy at higher
frequencies: radius-to-thickness ratio, wave speed, and position of the component material.

1 Introduction

Piezoelectric materials (PEM) allow to fabricate acoustic devices that are widely used in the fields of electrical
engineering, mechanical engineering, and communications. To enhance piezoelectric materials’ potentialities,
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piezoelectric structures are often designed in the form of multilayered structures to meet specific application
purposes.

For design and optimization purposes, appropriate theoretical models and efficient numerical methods
are highly desirable to investigate wave propagation behavior in layered piezoelectric structures. There have
been numerous methods to model this problem, such as the finite element method [1,2], the transfer matrix
method [3–5], the reverberation-ray matrix method [6], the layer element method [7,8], the scattering matrix
method [9], the orthogonal polynomial series method [10,11], and so on. Among various geometries, lay-
ered piezoelectric flat plates and hollow cylinders have all attracted considerable attention. But the layered
piezoelectric spherical plates, which are used in point-focusing transducers, received very limited atten-
tions.

This paper proposes an improved orthogonal polynomial series method to investigate the harmonic wave
propagation in multilayered spherical curved plates. The improved method overcomes the limitations of the
conventional orthogonal polynomial method, which has been used to solve the wave motion for about forty
years, from Laguerre polynomial for half infinite media [12,13] to Legendre polynomial for finite thickness
structures [14,15], from homogeneous structures [16] to multilayered structures [10,17] and to functionally
graded structures [18,19], from pure elastic structures [20] to various multi-field coupled structures [21–23],
from a flat plate [11] to various curved structures [24–26]. All these references show that the orthogonal
polynomial series method is quite versatile to calculate wave motion in quite various structures.

However, the orthogonal polynomial series method can deal with the layered plates only when the mate-
rial properties of two adjacent layers do not change significantly and cannot obtain correct continuous normal
stress and normal electric displacement profiles. The conventional orthogonal polynomial method uses a single
polynomial expansion which is continuous in level and in slope over the entire structure even at the frontier
between two adjacent layers. This results in continuous mechanical displacement and electric potential dis-
tributions in level and in slope and therefore discontinuous normal stress and normal electric displacement
distributions because of different material constants of two adjacent layers. But for such a real structure, the
true or physical mechanical displacement and electric potential are continuous at the interfaces between two
adjacent layers, but their derivatives are not. These discontinuous derivatives with different elastic constants
allow the normal stress and normal electric displacement components to be continuous.

In this paper, detailed formulations of the improved orthogonal polynomial method are given to highlight
the differences to the conventional polynomial approach. The validity of the improved method is verified by
numerical comparisons. The influences of the radius-to-thickness ratio and the stacking sequence on dispersion
curves, stress and electric displacement distributions are discussed.

2 Mathematics and formulation of the problem

Consider an orthotropic N -layered piezoelectric spherical plate which is polarized in radial direction with a
total thickness h, as shown in Fig. 1. In the spherical coordinate system ( θ, ϕ, r ), a and b are the inner and
outer radii. The outer radius-to-thickness ratio is defined as η = b/h.

For the wave propagation considered in this paper, the body forces and electric charges are assumed to be
zero. Thus, the dynamic equation for the layered piezoelectric spherical plate is governed by
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where Ti j , ui , and Di are the stress, mechanical displacements, and electric displacements, respectively; ρ is
the density of the material.
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Fig. 1 Schematic diagram of a multilayered piezoelectric spherical plate

The relationships between the general strain and general displacement can be expressed as
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where εi j , Ei , and 	 are the strain, the electric field, and the electric potential, respectively.
The traction-free and open circuit boundary conditions for a multilayered piezoelectric structure require

that (i) the mechanical displacement, the normal components of the stress, and the electric displacement should
be continuous at the interfaces; (ii) the normal components of the stress and of the electric displacement should
be zero at the inner and outer surfaces.

By introducing the rectangular window function πa,hN (r)

πa,hN (r) =
{

1, a ≤ r ≤ hN
0, elsewhere ,

the traction-free and open circuit boundary conditions (Trr = Trθ = Trϕ = 0 and Dr = 0 at r = h0 = a and
r = hN = b) are automatically incorporated in the constitutive relations of the plate [10]:

Tθθ = C11εθθ + C12εϕϕ + C13εrr − e31 Er ,

Tϕϕ = C12εθθ + C22εϕϕ + C23εrr − e32 Er ,

Trr = (C13εθθ + C23εϕϕ + C33εrr − e33 Er )πa,hN (r), (3.1)

Trϕ = (
2C44εrϕ − e24 Eϕ

)
πa,hN (r),

Trθ = (2C55εrθ − e15 Eθ ) πa,hN (r),

Tθϕ = 2C66εθϕ,

Dθ = 2e15εrθ+ ∈11 Eθ ,

Dϕ = 2e24εrϕ+ ∈22 Eϕ, (3.2)

Dr = (
e31εθθ + e32εϕϕ + e33εrr+ ∈33 Er

)
πa,hN (r)

where Ci j , ei j , and ∈i j are, respectively, the elastic, piezoelectric, and dielectric coefficients given in the
crystallographic axes.
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The elastic coefficients of the layered spherical plate are expressed as

Ci j =
N∑

n=1

Cn
i jπhn−1,hn (r), (4.1)

where N is the number of the layers and Cn
i j are the elastic constants of the N th material. Similarly, the other

material coefficients can be expressed as

ei j =
N∑

n=1

en
i jπhn−1, hn (r), ∈i j=

N∑

n=1

∈n
i j πhn−1,hn (r), ρ =

N∑

n=1

ρnπhn−1,hn (r). (4.2)

According to Kargl and Marston [27] and Towfighi and Kundu [28], the wave front on the surface of a
spherical shell is assumed to be toroidal. In addition, to study wave propagation in a spherical plate seg-
ment from point A to B, the two points A and B can always be aligned along the equator of a sphere by
adjusting the positions of the north and south poles. Therefore, to study the wave propagation between two
points in a spherical plate segment, it is sufficient to solve the governing equations for θ = π/2 only. Thus,
the propagating wave is independent of θ . Then, the displacement components of this toroidal wave can be
written as

ur (r, θ, ϕ, t) = exp(ikbϕ − iωt)U (r), (5.1)

uθ (r, θ, ϕ, t) = exp(ikbϕ − iωt)V (r), (5.2)

uϕ(r, θ, ϕ, t) = exp(ikbϕ − iωt)W (r), (5.3)

	(x, y, ϕ, t) = exp(ikbϕ − iωt)X (r). (5.4)

U (r), V (r), W (r) represent the amplitude of vibration in the r , θ, ϕ directions and X (r) represents the ampli-
tude of the electric potential. k is the magnitude of the wave vector in the propagation direction, and ω is the
angular frequency.

Substituting Eqs. (2), (3), (4), (5) into Eq. (1), the governing differential equations in terms of displacement
and electric potential can be obtained:

(
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where the superscript ( )′ is the partial derivative with respect to r . Obviously, Eq. (6.2) is independent of the
other three equations. It represents the propagating circumferential SH wave. The other two Eqs. (6.1) and
(6.2) control the propagating circumferential Lamb-like waves and are coupled with Gauss’ equation.

To solve the coupled wave Eq. (6), the conventional orthogonal polynomial approach expands U (r), V (r),
W (r), and X (r) into four Legendre orthogonal polynomial series,

U (r) =
∞∑

m=0

p1
m Qm(r), V (r) =

∞∑

m=0

p2
m Qm(r), W (r) =

∞∑

m=0

p3
m Qm(r), X (r) =

∞∑

m=0

p4
m Qm(r), (7)

where pi
m(i = 1, 2, 3) are the expansion coefficients and

Qm(r) =
√

2m + 1

hN − a
Pm

(
2r − hN − a

hN − a

)
(8)

with Pm being the mth Legendre polynomial. Theoretically, m runs from 0 to ∞. In practice, the summation
over the polynomials in Eq. (7) can be halted at some finite value m = M when higher-order terms become
essentially negligible.



1340 J. G. Yu et al.

However, as is mentioned above, the conventional orthogonal polynomial method can only solve the mul-
tilayered curved plate when the material properties of two adjacent layers do not change significantly and
cannot obtain correct continuous normal stress and normal electric displacement shapes. Here, we improve the
orthogonal polynomial method so as to make it suitable for the multilayered piezoelectric spherical plates with
or without very dissimilar material properties. We adopt, for each layer, specific shifted Legendre polynomials
defined as follows:

• for the first layer : Q1
m (r) =

√
2m + 1

h1 − a
Pm

(
2r − h1 − a

h1 − a

)
(9.1)

• for the second layer : Q2
m (r) =

√
2m + 1

h2 − h1
Pm

(
2

h2 − h1
r − h2 + h1

h2 − h1

)
(9.2)

• . . .

• for the N th layer : QN
m (r) =

√
2m + 1

hN − hN−1
Pm

(
2

hN − hN−1
r − hN + hN−1

hN − hN−1

)
(9.3)

Moreover, in order to automatically incorporate them into the calculation, the interface continuity con-
ditions relative to the components of the mechanical displacement and to the electric potential, ua(a =
1, 2, 3)(ur , uθ , uz), and 	 are expanded as follows:

• In the first layer :

⎧
⎪⎪⎨

⎪⎪⎩

u1
a =

∞∑
m=0

pa
m,1 Q1

m (r) exp (ikbϕ)

	1 =
∞∑

m=0
rm,1 Q1

m (r) exp (ikbϕ)

with :

⎧
⎪⎪⎨

⎪⎪⎩

u1
a (r = h1) = u1,h1

a =
∞∑

m=0
pa

m,1 Q1
m (r = h1) exp (ikbϕ)

	1 (r = h1) = 	
h1
1 =

∞∑
m=0

rm,1 Q1
m (r = h1) exp (ikbϕ) (10.1)

• In the second layer :

⎧
⎪⎪⎨

⎪⎪⎩

u2
a = u1,h1

a + (r − h1)
∞∑

m=0
pa

m,2 Q2
m (r) exp (ikbϕ)

	2 = (r/h1)
2 	

h1
1 + (r − h1)

∞∑
m=0

rm,2 Q2
m (r) exp (ikbϕ)

with :

⎧
⎪⎪⎨

⎪⎪⎩

u2
a (r = h2) = u2,h2

a = uh1
a + (h2 − h1)

∞∑
m=0

pa
m,2 Q2

m (r = h2) exp (ikbϕ)

	2 (r = h2) = 	
h2
2 = (h2/h1)

2 	
h1
1 + (h2 − h1)

∞∑
m=0

rm,2 Q2
m (r = h2) exp (ikbϕ) (10.2)

• In the third layer :

⎧
⎪⎪⎨

⎪⎪⎩

u3
a = u2,h2

a + (r − h2)
∞∑

m=0
pa

m,3 Q3
m (r) exp (ikbϕ)

	3 = (r/h2)
2 	

h2
2 + (r − h2)

∞∑
m=0

rm,3 Q3
m (r) exp (ikbϕ)

with :

⎧
⎪⎪⎨

⎪⎪⎩

u3
a (r = h3) = u3,h3

a = u2,h2
a + (h3 − h2)

∞∑
m=0

pa
m,3 Q3

m (r = h3) exp (ikbϕ)

	3 (r = h3) = 	
h3
3 = (h3/h2)

2 	
h2
2 + (h3 − h2)

∞∑
m=0

rm,3 Q3
m (r = h3) exp (ikbϕ) (10.3)

and so on . . ..
Substituting Eqs. (9) and (10) into Eq. (6), then multiplying by Q1∗

j (r), Q2∗
j (r) . . . QN∗

j (r), with j running
from 0 to M , respectively, integrating over r from a to hN , and taking advantage of the orthonormality of
Legendre polynomials gives the following systems:
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n A j,m
11 p1

m,n + n A j,m
12 p2

m,n + n A j,m
13 p3

m,n + n A j,m
14 p4

m,n = −ω2 · n M j
m p1

m,n, (11.1)
n A j,m

21 p1
m,n + n A j,m

22 p2
m,n + n A j,m

23 p3
m,n + n A j,m

24 p4
m,n = −ω2 · n M j

m p1
m,n, (11.2)

n A j,m
31 p1

m,n + n A j,m
32 p2

m,n + n A j,m
33 p3

m,n + n A j,m
34 p4

m,n = −ω2 · n M j
m p1

m,n, (11.3)
n A j,m

41 p1
m,n + n A j,m

42 p2
m,n + n A j,m

43 p3
m,n + n A j,m

44 p4
m,n = 0 (11.4)

where n A j,m
αβ (α, β = 1, 2, 3), and n M j

m are the elements of a non-symmetric matrix. They can be obtained
according to Eq. (6).

Equation (11.4) can be written as:

p4
m,n = −

(
n A j,m

44

)−1 (
n A j,m

41 p1
m,n + n A j,m

42 p2
m,n + n A j,m

43 p3
m,n

)
. (12)

Substituting Eq. (12) into Eqs. (11.1), (11.2), and (11.3) gives:

[
n A j,m

11 − n A j,m
14

(
n A j,m

44

)−1 · n A j,m
41

]
p1

m,n +
[

n A j,m
12 − n A j,m

14

(
A j,m

44

)−1 · n A j,m
42

]
p2

m,n

+
[

n A j,m
13 − n A j,m

14

(
n A j,m

44

)−1 · n A j,m
43

]
p3

m,n = −ω2n M j
m,n p1

m,n, (13.1)
[

n A j,m
21 − n A j,m

24

(
n A j,m

44

)−1 · n A j,m
41

]
p1

m,n +
[

n A j,m
22 − n A j,m

24

(
A j,m

44

)−1 · n A j,m
42

]
p2

m,n

+
[

n A j,m
23 − n A j,m

24

(
n A j,m

44

)−1 · n A j,m
43

]
p3

m,n = −ω2n M j
m,n p1

m,n, (13.2)
[

n A j,m
31 − n A j,m

34

(
n A j,m

44

)−1 · n A j,m
41

]
p1

m,n +
[

n A j,m
32 − n A j,m

34

(
A j,m

44

)−1 · n A j,m
42

]
p2

m,n

+
[

n A j,m
33 − n A j,m

34

(
n A j,m

44

)−1 · n A j,m
43

]
p3

m,n = −ω2n M j
m,n p1

m,n . (13.3)

Equation (13) can be written compactly as

⎡

⎢
⎢⎢
⎣

n Ā j,m
11

n Ā j,m
12

n Ā j,m
13

n Ā j,m
21

n Ā j,m
22

n Ā j,m
22

n Ā j,m
31

n Ā j,m
32

n Ā j,m
33

⎤

⎥
⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

p1
m,n

p2
m,n

p3
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⎪⎪⎩

p1
m,n

p2
m,n

p3
m,n

⎫
⎪⎪⎬

⎪⎪⎭
. (14)

So, Eq. (14) yields a form of the eigenvalue problem. The eigenvalue ω2 gives the angular frequency of the
guided wave; eigenvectors pi

m,n(i = 1, 2, 3) allow the components of the particle displacement to be cal-
culated; and p4

m,n , which can be obtained thanks to Eq. (12), determines the electric potential distribution.
According to V ph = ω/k, the phase velocity can be obtained. The complex matrix Eq. (14) can be solved
numerically making use of standard computer programs for the diagonalization of non-symmetric square
matrices. 3N (M+1) eigenmodes are generated from the order M of the expansion and the layer number N .
Acceptable solutions are those eigenmodes for which convergence is obtained as M is increased. We determine
that the eigenvalues obtained are converged solutions when a further increase in the matrix dimension does
not result in a significant change in the eigenvalues.

3 Numerical results

Based on the foregoing formulations, two computer programs have been written using Mathematica to calculate
the dispersion curves and the field profiles for the multilayered piezoelectric spherical curved plates.
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Table 1 Material parameters of the materials used in this section

Property C22 C23 C12 C33 C13 C11 C55 C66 C44

PZT-4 13.9 7.4 7.4 13.9 7.4 11.5 2.56 2.56 3.05
Hypothetical 139 74 74 139 74 115 256 256 305
BSN 23.9 10.4 5 24.7 5.2 13.5 6.5 6.6 7.6

E26 E35 E12 E13 E11 ∈22 ∈33 ∈11 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5
Hypothetical 139.7 139.7 −57.2 −57.2 166.1 5,850 5,850 5,040 67.5
BSN 2.8 3.4 −0.4 −0.3 4.3 196 201 28 5.3
Units : Ci j (1010N/m2), ∈i j (10−11F/m), ei j (C/m2), ρ(103kg/m3)
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Fig. 2 Phase velocity dispersion curves for the two-layered piezoelectric structures; a the results from the reverberation-ray
matrix method [6], b the results from the conventional polynomial method

3.1 Validation of the method in comparison with the exact solution obtained from the reverberation-ray
matrix method

As is well known, the dispersion curves for a flat plate are the same as those for a spherical plate with a very
large ratio of radius to thickness. So, we use the polynomial method to calculate a two-layered spherical plate
with η = 100 to make a comparison with the corresponding flat plate. The spherical plate is composed of a
BSN layer (inner layer) and a PZT-4 layer (outer layer) with equal thicknesses. Their material constants are
shown in Table 1. Figure 2a shows the exact solution of the Lamb-like wave and SH-guided wave dispersion
curves from the reverberation-ray method. Results are taken from Fig. 9 in [6]. It should be noted that Fig. 9 in
Science in China Series G contains both the body wave modes and the Rayleigh wave modes. This paper just
considers the guided waves (Lamb-like and SH-guided waves). Figure 2b is obtained from the conventional
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Fig. 3 Phase velocity dispersion curves for the three-layered piezoelectric structures with very dissimilar materials; a the results
of the flat plate from the reverberation-ray matrix method, b the results of the spherical plate with η = 100 from the improved
polynomial method, c the results of the spherical plate with η = 100 from the conventional polynomial method

polynomial approach. The solution of the improved polynomial approach is the same as in Fig. 2b. In order to
save space, it is not shown here. As can be seen, Figs. 2a, b agree very well except at very small wave numbers
(Wavelength at a very small wave number is very long, so that the influence of the curvature is considerable).
So, we can say that for the two-layered piezoelectric structure without very dissimilar material parameters, the
conventional polynomial approach can obtain correct dispersion curves.

Next, we show an example of a three-layered sandwich structure with very dissimilar materials,
PZT-4/hypothetical material/PZT-4 with relative thicknesses 1/2/2. Here, in order to bring into play materials
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Fig. 4 Phase velocity dispersion curves for the P/B/P-1/2/2 layered piezoelectric spherical plate; a with η = 10, b with η = 2

with very dissimilar properties, a hypothetical material is used. Its material constants, about ten times higher
than those of PZT-4, are also given in Table 1. Figure 3a shows the exact dispersion curves for the three-layered
flat plate obtained from the reverberation-ray approach. Figures 3b, c give the dispersion curves for the three-
layered spherical plate with η = 100 obtained from the improved and conventional polynomial approaches,
respectively. It can be seen that Figs. 3a and b agree well. Figure 3c exhibits serious differences with Figs. 3a,
b. This illuminates the validity of the improved polynomial approach.

3.2 Dispersion curves for the multilayered piezoelectric spherical plates

This section illustrates the influences of the radius-to-thickness ratio and of the stacking sequence on disper-
sion curves. The multilayered piezoelectric spherical plates are composed of BSN (B) and PZT-4 (P). Figure 4
shows the phase velocity dispersion curves for the P/B/P-1/2/2 multilayered piezoelectric spherical plate with
(a) η = 10 and (b) η = 2. It illustrates the influence of the radius-to-thickness ratio. As the ratio decreases, the
wave velocities and the cutoff frequencies increase. Figure 5 gives the phase velocity dispersion curves for the
layered piezoelectric spherical plates with η = 10. The stacking sequence and thicknesses are (a) B/P/P-2/2/1
and (b) P/P/B-1/2/2. Comparing the three figures, Figs. 4a, 5a, b, we can see that although with the same
material volume fractions and the same radius-to-thickness ratio, different stacking sequences result in very
different dispersion curves.

3.3 Stress and electric displacement shapes

This section analyzes stress and electric displacement profiles for the Lamb-like waves of the above multi-
layered piezoelectric spherical plates. Figures 6 and 7 show stress and electric displacement profiles for the
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Fig. 5 Phase velocity dispersion curves for the three-layered piezoelectric spherical plates with η = 10; a B/P/P-2/2/1,
b P/P/B-1/2/2

(a)

(b)

Mode1 Mode 2 Mode 3 

Fig. 6 Stress profiles for the P/B/P-1/2/2 spherical plate with η = 2 at kh = 5.5; dashed line: Trr , solid line: T		, Long-short-
line: Tr	; abscissa: radial coordinate (unit: m), ordinate: stress (arbitrary units); a the conventional polynomial method, b the
improved polynomial method
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(a)

(b)

Mode1 Mode 2 Mode 3

Fig. 7 Electric displacement profiles for the P/B/P-1/2/2 spherical plate with η = 2 at kh = 5.5; dashed line: Dr , solid line: D	;
abscissa: radial coordinate (unit: m), ordinate: electric displacement (arbitrary units); a the conventional polynomial method, b
the improved polynomial method

(a)

(b)

Mode1 Mode 2 Mode 3

Fig. 8 Stress profiles for the P/B/P-1/2/2 spherical plate at kh = 50.5; dashed line: Trr , solid line: T		, Long-short-line: Tr	;
abscissa: radial coordinate (unit: m), ordinate: stress (arbitrary units); a η = 10, b η = 2

P/B/P-1/2/2 spherical plate with η = 2 at kh = 5.5: Figs. 6a and 7a are obtained from the conventional
polynomial method and Figs. 6b and 7b from the improved polynomial method. It can be seen that even for the
layered spherical plate without dissimilar material properties, the conventional polynomial approach cannot
give correct results. The obtained normal stress Trr , Trϕ , and normal electric displacement Dr are discontin-
uous at the interfaces and they are not zero at the inner and outer surfaces, unlike the improved polynomial
approach which overcomes these drawbacks. As expected, Tϕϕ and Dϕ are not continuous at the interfaces
and are not zero at the inner and outer surfaces. This also validates the improved method.

Figures 8 and 9 show the case of large wave number, kh = 50.5, for the P/B/P-1/2/2 spherical plates with
η = 10 and 2, respectively. It can be seen that for the spherical plate with a large η, the stress and the electric
displacement mainly distribute on the inner or outer layers. The inner or outer layers are all PZT-4. For the
spherical plate with a small η, the stress and electric displacement just distribute on the outer layer PZT-4, but
not on the inner layer PZT-4.
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(a)

(b)

Mode1 Mode 2 Mode 3

Fig. 9 Electric displacement profiles for the P/B/P-1/2/2 spherical plate at kh = 50.5; dashed line: Dr , solid line: D	; abscissa:
radial coordinate (unit: m), ordinate: electric displacement (arbitrary units); a η = 10, b η = 2

(a)

(b)

Mode1 Mode 2 Mode 3

Fig. 10 Stress profiles for the P/P/B-1/2/2 spherical plate at kh = 50.5; dashed line: Trr , solid line: T		, Long-short-line: Tr	;
abscissa: radial coordinate (unit: m), ordinate: stress (arbitrary units); a η = 10, b η = 2

Figures 10 and 11 give the cases of another stacking sequence, P/P/B-1/2/2 spherical plates with η = 10
and η = 2 at kh = 30.5. It can be seen that when the ratio η is large, the stress and the electric displacement
always distribute on the inner and middle layers. The material of both layers is PZT-4. When the ratio η is
small, the stress and electric displacement distribute on the outer layer BSN or middle layer PZT-4 (the outer
side of the PZT-4 layer).

Making a comprehensive understanding about Figures 8, 9, 10, and 11, we can find two phenomena: (i)
for a spherical plate with a large ratio η, the stress and electric displacement always distribute on the PZT-4
layer, whatever its position. The reason lies in that the wave speed of PZT-4 is lower than that of BSN. The
high-frequency-guided waves always propagate in the layer with the lower wave speed. Simultaneously, the
electric displacement also occurs in the layer with the lower wave speed. (ii) For a spherical plate with a small
ratio η, besides the wave speed of the layer material, the position of the material is also important for the stress
and electric displacement distributions. The distributions tend to move toward the outer layer for the spherical
plate with a small ratio. As can be seen in Figs. 10b and 11b, the distributions of the first mode are on the
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(a)

(b)

Mode1 Mode 2 Mode 3

Fig. 11 Electric displacement profiles for the P/P/B-1/2/2 spherical plate at kh = 50.5; dashed line: Dr , solid line: D	; abscissa:
radial coordinate (unit: m), ordinate: electric displacement (arbitrary units); a η = 10, b η = 2

outer layer but not on the low-wave-speed layer. And the distributions of the second and third modes are on
the middle layer (i.e., the outer layer PZT-4 but not the inner layer PZT-4).

4 Conclusions

Considering the intrinsic limitations of the orthogonal polynomial method, this paper proposed the improved
orthogonal polynomial method to make it suitable for solving the multilayered piezoelectric spherical curved
plate, whatever material properties. Through the numerical analysis, we can draw the following conclusions:

(a) Numerical comparison on dispersion curves and stress and electric displacement profiles verified that the
improved method can correctly solve the wave propagation in a multilayered piezoelectric spherical plate
whatever material properties.

(b) Radius to thickness ratio and stacking sequence have significant influences on dispersion curves and
stress and electric displacement profiles.

(c) For a multilayered spherical plate with a large ratio η, stress and electric displacement of high frequency
waves always distribute on the layer with the lower wave speed; for a spherical plate with a small ratio η,
both wave speed and position of the layer are important for stress and electric displacement distributions.
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