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Abstract Thermal buckling analysis of a transversely graded circular plate attached to a centric partial elastic
foundation is studied, analytically. Thermomechanical properties of the circular plate are distributed across
the thickness based on a power law function. The governing equations of the plate are obtained by means of
the classical plate theory. A conventional Winkler-type foundation is assumed to be in contact with the plate
which acts in compression as well as in tension. Proper boundary conditions are chosen after pre-buckling
analysis of the plate, and stability equations are established via the adjacent equilibrium criterion. To analyze
the thermal stability problem, the plate is divided into two sections, a foundation-less domain and an in-contact
region. An exact procedure is presented to accurately predict the critical buckling temperature as well as the
buckled configuration of the plate. Analysis of various involved parameters including the Winkler parameter,
foundation radius, power law index, and loading type is presented. It is concluded that while the loading is
symmetric, in many cases, the buckled configuration of the plate is asymmetric.

1 Introduction

As one of the frequently used structural elements, circular plates have been the subject of many researches
for a long time. A literature survey shows the existence of numerous works on thermal/mechanical buckling
of circular plates. Wang and his co-authors [1–4] presented the mechanical buckling analysis of plates con-
sidering various effects on plates. Axisymmetric buckling analysis of a Mindlin plate supported on a middle
ring support [1], axisymmetric buckling of thick plates over a complete Winkler elastic foundation [2], and
the effect of non-ideal boundary condition on stability of thin and Mindlin-type plates [3,4] are some topics
discussed analytically. Also, Wang and his co-authors [3,5–7] covered other main topics in their research.
For instance, simultaneous effects of a complete annular crack and Winkler elastic foundation [5], partial
elastic foundation effect on the stability analysis of a thin plate [6], asymmetrical buckling analysis of a plate
located on an intermediate elastic ring support [3], and existence of asymmetrical buckling configurations
with the onset of symmetrical loading for a plate supported on a Winkler foundation [7] are reported in their
research. Motivated by [1–7], Rao and Rao established the asymmetrical buckling analysis of a circular plate
with elastically restrained edge and elastic ring supports [8,9]. In all of these works [1–9], the authors have
presented analytical solutions to study the buckling problem of circular plates considering various effects when
the loading type is uniform compression.

When buckling points of structures are extracted through the post-buckling paths, the nonlinear equilib-
rium equations have to be solved. Among the post-buckling analyses of circular plates, only few considered
asymmetrical deformations for the plate, that is, the governing equations of the plate are established when
displacements are functions of radial parameters only. Due to the geometrically nonlinear path of the plate,
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most of these works seem to employ a numerical method. For a class of these investigations, one may see the
works reported in [10–14].

Due to their advantages over composites, especially when thermal effects are included, in recent years
the functionally graded materials have attracted increasing attention in literature. Both the thermal buckling
analysis and the mechanical buckling analysis of an FGM circular plate are of interest. The primary investiga-
tions on thermal and mechanical buckling analysis of circular plates are reported by Najafizadeh and Eslami
[15,16]. In these works, the thin plate theory of Kirchhoff is assumed to obtain the partial differential equations
of equilibrium. Stability equations are established and eigenvalue analysis is performed to analyze the stability
problem of a circular plate. After that, Najafizadeh and Heydari [17,18] extended the same problem to the
stability analysis of thick plates based on Reddy’s third-order plate theory.

Some works are reported on stability analysis of Levy-type sectorial or annular sectorial plates by Saidi
and his co-authors. Some of these works cover the mechanical buckling [19–21] and thermal buckling [22].
As we show later, the real state of an FG plate with at least one simply supported boundary conditions is not
of the bifurcation type, and therefore, linearizing the problem in the stability equation is questionable.

Furthermore, Jalali and Naei [23] presented the buckling of moderately thick circular FG plates when the
thickness of the plate is non-uniform. Stability equations of the plate are obtained in terms of Chebyshev
polynomials, and pre-buckling analysis is done using the shooting method. A shooting method-based thermo-
mechanical post-buckling analysis of circular FG plates is reported by Ma and Wang [24,25]. Most recently,
Sepahi et al. [26] obtained the nonlinear equilibrium paths of a radially graded annular plate under the action of
in-plane thermal loads. This analysis is limited to the case of symmetrical behavior of the plate. Imperfection
sensitivity of a transversely graded thin FG plate under the action of nonlinear temperature distribution is done
by Li et al. [27] based on a numerical shooting method.

Thermal buckling analyses of circular plates in contact with elastic foundation are limited in number, and
all of them are restricted to the complete foundation condition. In this work, an exact analytical procedure
is presented to predict the critical buckling temperature as well as the buckled configuration of a circular
plate attached to a partially centric circular Winkler-type elastic medium. A conventional type of foundation
is considered, which acts the same in compression and tension. Each thermomechanical property of the FG
plate follows a power law form of the property distribution. The classical plate theory and von Karman type
of geometrical nonlinearity are adopted to establish the governing equilibrium equations via the static version
of virtual displacements. After a linear pre-buckling analysis, proper edge conditions are chosen to assure the
occurrence of the bifurcation the phenomenon. The stability equations are obtained following the adjacent
equilibrium criterion. The plate is divided into two sections, and for each one, the exact solution is obtained.
Imposing the boundary and continuity conditions on the two regions yields a system of homogeneous algebraic
equations which has to be treated as an eigenvalue problem to find the critical buckling load and the associated
buckled shape. Effects of each involved parameter, such as power law index, loading type, contact domain,
and elastic foundation coefficient, are discussed in detail.

2 Governing equations

Consider a thin solid circular plate made of FGMs of thickness h and radii a, referred to by the polar coordinates
(r, θ, z), resting over a partial elastic foundation, as shown in Fig. 1. The elastic foundation is in contact with
the plate only in the region 0 ≤ r ≤ b. The material properties of the FG plate are assumed to be graded in
thickness direction following the power law form for distribution of the constituent materials (ceramic and
metal). The ceramic volume fraction Vc is assumed in the form [15–22]

Vc =
(

1

2
+ z

h

)k

, Vm = 1 − Vc (1)

Following Voigt’s rule, each property of the FG plate such as P may be described as a function of constituents’
properties and volume fractions as

P(z) = Pm + Pcm

(
1

2
+ z

h

)k

, Pcm = Pc − Pm, (2)

where Pm and Pc are the corresponding properties of the metal and ceramic, respectively, and k is a nonnegative
constant called the power law index and shows the sharpness of the property dispersion. In the present work,
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Fig. 1 Coordinate system and geometry for a thin circular FG plate supported by a partial Winkler foundation

we assume that the modulus of elasticity E , thermal conductivity K , and the thermal expansion coefficient α
are described by Eq. (2), while Poisson’s ratio ν is considered to be constant across the thickness [15–22].

Based on the von Karman assumptions, suitable for moderately large class of rotations, the nonlinear
strain-displacement relations in polar coordinates may be written as [15,16]

εrr = u,r + 1

2
w2

,r ,

εθθ = 1

r
v,θ + 1

r
u + 1

2r2 w2
,θ ,

γrθ = 1

r
u,θ + v,r − 1

r
v + 1

r
w,θw,r .

(3)

Here, εrr and εθθ are the normal strains and γrθ is the shear strain, and a comma indicates partial derivative.
The classical theory of plates, based on Kirchhoff’s assumptions, is adopted in the present work which esti-

mates the displacements of an arbitrary point (u, v, w) in terms of middle surface displacements (u0, v0, w0)
as [15,16]

u(r, θ, z) = u0(r, θ) − zw0,r (r, θ),

v(r, θ, z) = v0(r, θ) − z

r
w0,θ (r, θ),

w(r, θ, z) = w0(r, θ).

(4)

Within the framework of linear thermoelasticity of a continuum medium, the stress–strain relation is written
as [28]

⎧⎨
⎩

σrr
σθθ

τrθ

⎫⎬
⎭ = E

1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦

⎛
⎝

⎧⎨
⎩

εrr
εθθ

γrθ

⎫⎬
⎭ − (T − T0)

⎧⎨
⎩

α
α
0

⎫⎬
⎭

⎞
⎠ , (5)

where T and T0 are the temperature distribution through the plate and the reference temperature, respectively.
The stress resultants, based on the classical plate theory, are related to the stress tensor components as

follows [16,17]:
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(Nrr , Nθθ , Nrθ ) =
h
2∫

− h
2

(σrr , σθθ , τrθ )dz,

(Mrr , Mθθ , Mrθ ) =
h
2∫

− h
2

z(σrr , σθθ , τrθ )dz.

(6)

Substituting Eqs. (3)–(5) into Eq. (6) gives the stress resultants in terms of the mid-plane displacements as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nrr

Nθθ

Nrθ

Mrr

Mθθ

Mrθ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

1 − ν2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 νE1 0 E2 νE2 0

νE1 E1 0 νE2 E2 0

0 0
1 − ν

2
E1 0 0

1 − ν

2
E2

E2 νE2 0 E3 νE3 0

νE2 E2 0 νE3 E3 0

0 0
1 − ν

2
E2 0 0

1 − ν

2
E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,r + 1

2
w2

0,r

1

r
v0,θ + 1

r
u0 + 1

2r2 w2
0,θ

1

r
u0,θ + v0,r − 1

r
v0 + 1

r
w0,r w0,θ

−w0,rr

− 1

r2 w0,θθ − 1

r
w0,r

−2

r
w0,rθ + 2

r2 w0,θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N T

N T

0

MT

MT

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where N T and MT are the thermal force and thermal moment resultants, and E1, E2, and E3 are constants to
be calculated as

E1 =
h
2∫

− h
2

E(z)dz = h

(
Em + Ecm

k + 1

)
,

E2 =
h
2∫

− h
2

zE(z)dz = h2 Ecm

(
1

k + 2
− 1

2k + 2

)
,

E3 =
h
2∫

− h
2

z2 E(z)dz = h3
(

1

12
Em + Ecm

(
1

k + 3
− 1

k + 2
+ 1

4k + 4

))
,

N T = 1

1 − ν

h
2∫

− h
2

E(z)α(z)(T − T0)dz,

MT = 1

1 − ν

h
2∫

− h
2

zE(z)α(z)(T − T0)dz.

(8)
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The equilibrium equations of a circular FGM plate on a partial elastic foundation under thermal loadings may
be established on the basis of a static version of a virtual displacements method [29]. The total virtual potential
energy of the plate, δV , is equal to the sum of total virtual strain energy of the plate and virtual strain energy
of the elastic foundation as

δV =
a∫

0

2π∫
0

h
2∫

− h
2

(σrrδεrr + σθθ δεθθ + τrθ δγrθ ) rdzdθdr

+
a∫

0

2π∫
0

H(r − b)Kww0δw0rdrdθ. (9)

Here, H is the Heaviside step function. H(r − b) = 1 for 0 ≤ r < b and H(r − b) = 0 for b < r ≤ a. Also,
Kw stands for the stiffness of the foundation.

Recalling Eqs. (7) and (8) and integrating the displacement gradients by parts to relieve the virtual dis-
placements [29] and performing some mathematical simplifications to omit the common terms, expressions
for the equilibrium equations of the FGM plate are obtained as follows:

δu0 : Nrr,r + 1

r
Nrθ,θ + 1

r
(Nrr − Nθθ ) = 0,

δv0 : Nrθ,r + 2

r
Nrθ + 1

r
Nθθ,θ = 0,

δw0 : Mrr,rr + 2

r
Mrr,r + 1

r2 Mθθ,θθ − 1

r
Mθθ,r + 2

r
Mrθ,rθ + 2

r2 Mrθ,θ + Nrrw0,rr

+ Nθθ

(
1

r2 w0,θθ + 1

r
w0,r

)
+ 2Nrθ

(
1

r
w0,rθ − 1

r2 w0,θ

)
− Kww0 H(r − b) = 0.

(10)

3 Existence of bifurcation-type buckling

In the previous section, the equilibrium equations are derived for a partially in-contact circular FGM plate. A
pre-buckling analysis of the plate has to be studied to assure the existence of a primary–secondary equilibrium
path. Assuming that bifurcation-type buckling occurs in the plate, the pre-buckling state of the plate is revealed
when the equilibrium equations are rewritten and nonlinear terms are omitted from Eq. (7) [30].

For any type of boundary conditions, to produce in-plane thermal loads, immovability and periodicity
conditions have to be satisfied. Neglecting the lateral deflection of the plate in pre-buckling state and solving
the symmetrical type of the equilibrium equations yield

u0
0(r, θ) = 0. (11)

Here, a superscript 0 indicates the pre-buckling configuration. Now, by means of Eq. (7), the following pre-
buckling forces are obtained:

N 0
rr = N 0

θθ = −N T , N 0
rθ = 0. (12)

While the in-plane force resultants are obtained, extra pre-buckling moments exist which are equal to

M0
rr = M0

θθ = −MT , M0
rθ = 0. (13)

As is observed from Eq. (13), due to the stretching–bending coupling of FG plates (or non-coincidence of
mid-plane and neutral plane of the plate), even for the case of uniform temperature rise loading, initiation
of thermal loading causes thermal moments through the plate. In general, these thermal moments force the
plate to deflect. Only for some special cases, when the thermal moment vanishes for a thermal loading type or
when the boundary conditions are capable of handling these extra moments, buckling may occur. Due to the
asymmetrical mid-plane configuration of the plate, thermal moments do not omit for general cases of thermal
loading (that are uniform temperature rise, linear temperature across the thickness/radial direction, tent-like
thermal loading, and heat conduction across the thickness). Only for a special case of boundary conditions, and
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that is the clamped one, the plate remains un-deformed in the pre-buckling state. The fact is that immovable
clamping conditions are not influenced by the thermal loading. This conclusion which results from linear pre-
buckling analysis is compatible with the result of Fallah and Nosier [31]. Therefore, this study covers FGM
plates with clamped outer edge.

Also, the elastic foundation has no effect on the pre-buckling forces of the plate, because the pre-buckling
state of the plate is free of deflection.

4 Stability equations

The adjacent equilibrium criterion may be used to obtain the stability equations of a circular-shaped plate
[15–23,26]. For this purpose, assume an equilibrium position which is governed by the displacement compo-
nents u0

0, v
0
0, and w0

0. The displacement components of a neighboring state of the stable equilibrium differ by
u1

0, v
1
0, and w1

0 with respect to the equilibrium position. Thus, the total displacements of a neighboring state
are [16–19]

u0 = u0
0 + u1

0, v0 = v0
0 + v1

0, w0 = w0
0 + w1

0. (14)

Note that in this study, u0
0 = v0

0 = w0
0 = 0. Nonetheless, we present Eq. (14) in this form to present a general

approach.
Similar to the displacements, the stress resultants are divided into two terms representing the stable equi-

librium and the neighboring state. The stress resultants with superscript 1 are linear functions of displacement
with superscript 1 [16]. Considering this, and using Eqs. (7) and (10), and performing proper simplifications,
the stability equations become

N 1
rr,r + 1

r
N 1

rθ,θ + 1

r
(N 1

rr − N 1
θθ ) = 0,

N 1
rθ,r + 2

r
N 1

rθ + 1

r
N 1

θθ,θ = 0,

M1
rr,rr + 2

r
M1

rr,r + 1

r2 M1
θθ,θθ − 1

r
M1

θθ,θ + 2

r
M1

rθ,rθ + 2

r2 M1
rθ,θ +N 0

rrw
1
0,rr +N 0

θθ

(
1

r2 w1
0,θθ + 1

r
w1

0,r

)

+ 2N 0
rθ

(
1

r
w1

0,rθ − 1

r2 w1
0,θ

)
− Kww1

0 H(r − b) = 0.

(15)

To obtain the stability equations in terms of the displacement components, Eq. (7) has to be inserted into
the above equations. Upon substitution, second- and higher-order terms of incremental displacements may be
omitted [16–19]. The resulting equations are three stability equations based on the classical plate theory for
an FGM plate partially in contact with the Winkler elastic foundation:

E1

(
u1

0,rr + 1

r
u1

0,r − 1

r2 u1
0 − 1

r2 v1
0,θ + 1

r
v1

0,rθ

)
+ (1 − ν)

2
E1

(
1

r2 u1
0,θθ − 1

r
v1

0,rθ − 1

r2 v1
0,θ

)

− E2

(
w1

0,rrr − 1

r2 w1
0,r + 1

r
w1

0,rr − 2

r3 w1
0,θθ + 1

r2 w1
0,θθr

)
= 0,

E1

(
1

r2 v1
0,θθ + 1

r
u1

0,rθ + 1

r2 u1
0,θ

)
+ (1 − ν)

2
E1

(
v1

0,rr + 1

r
v1

0,r − 1

r2 v1
0 + 1

r2 u1
0,θ − 1

r
u1

0,rθ

)

− E2

(
1

r
w1

0,rrθ + 1

r2 w1
0,rθ + 1

r3 w1
0,θθθ

)
= 0,

E2

1 − ν2

(
u1

0,rrr + 2

r
u1

0,rr − 1

r2 u1
0,r − 1

r3 u1
0 + 1

r3 u1
0,θθ + 1

r2 u1
0,rθθ − 1

r2 v1
0,rθ + 1

r3 v1
0,θ + 1

r3 v1
0,θθθ

+1

r
v1

0,rrθ

)
− E3

1 − ν2

(
w1

0,rrrr + 2

r
w1

0,rrr − 1

r2 w1
0,rr + 1

r3 w1
0,r + 2

r2 w1
0,rrθθ − 2

r3 w1
0,rθθ + 4

r4 w1
0,θθ

+ 1

r4 w1
0,θθθθ

)
+N 0

rrw
1
0,rr +N 0

θθ

(
1

r2 w1
0,θθ + 1

r
w1

0,r

)
+2N 0

rθ

(
1

r
w1

0,rθ − 1

r2 w1
0,θ

)
−Kww1

0 H(r − b) = 0.

(16)
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Since the buckling state of the plate is the initiation of out-of-plane deformations, it is reasonable to uncouple the
above-mentioned equations to obtain an equation in terms of only the out-of-plane displacement component.
With some mathematical manipulations, one may obtain an uncoupled equation in terms of the incremental
lateral displacement w1

0. The uncoupling process is presented below:

1. The first of Eq. (16) is differentiated with respect to r .

2. The first of Eq. (16) is divided by r .

3. The second of Eq. (16) is differentiated with respect to θ and then divided by r .

4. The obtained equations in steps (1)–(3) are added and the result is multiplied by
E2

E1(1 − ν2)
.

5. The obtained equation in step (4) is subtracted from the third of Eq. (16).

The resulting equation is an uncoupled equation in terms of w1
0 obtained as

Dk

(
w1

0,rrrr + 2

r
w1

0,rrr − 1

r2 w1
0,rr + 1

r3 w1
0,r + 2

r2 w1
0,rrθθ − 2

r3 w1
0,rθθ

+ 4

r4 w1
0,θθ + 1

r4 w1
0,θθθθ

)
− N 0

rrw
1
0,rr − N 0

θθ

(
1

r2 w1
0,θθ + 1

r
w1

0,r

)

−2N 0
rθ

(
1

r
w1

0,rθ − 1

r2 w1
0,θ

)
+ Kww1

0 H(r − b) = 0, (17)

where Dk = E1 E3 − E2
2

E1(1 − ν2)
is the equivalent flexural rigidity of an FG plate. As can be seen, D0 and D∞ are

flexural rigidities of a plate made of ceramic and metal constituents, respectively. To reformulate the governing
equations of a circular FGM plate based on first-order shear deformation plate theory, one may refer to Nosier
and Fallah [32].

5 Solving the stability equation

In this section, an exact solution for the stability equation (17) is presented. Substituting pre-buckling forces
from Eq. (12) into Eq. (17) gives us{(

∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)(
∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2 + N T

Dk

)
+ Kw

Dk
H(r − b)

}
w1

0(r, θ) = 0. (18)

It is more convenient to introduce the following non-dimensional parameters:

r = r

a
, β = b

a
, δ = h

a
, kw = Kwa2

D0
, d = Dk

D0
, nT = N T a2

D0
. (19)

To obtain an exact solution, the plate is divided into two sections: in-contact and contact-less regions.

5.1 Interior region, in-contact domain

The interior domain of the plate is a solid circular plate on a foundation. The buckled shape of the plate,
considering the asymmetric configurations and periodic conditions, has the following shape:

w1i
0 (ar , θ) = W i

n(r) cos(nθ), (20)

where the superscript i indicates that the solution is associated to the interior domain. Also, n is the number of
nodal diameters. Its positive values describe the asymmetrical buckling configuration, while for n = 0, where
the solution (20) is independent of the circumferential variable, symmetrical buckling is concluded. Substituting
Eq. (20) into Eq. (18), with the simultaneous aid of the non-dimensional parameters (19), the following ordinary
differential equation is obtained:(

d2

dr2 + 1

r

d

dr
− n2

r2 + k2
1

)(
d2

dr2 + 1

r

d

dr
− n2

r2 + k2
2

)
W i

n(r) = 0. (21)

The solution of this equation depends on k1 and k2 and should be classified as follows:
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Case 1: nT > 2
√

kwd. In this case, the exact solution of the stability equation (21) can be found as

W i
n(r) = C1n Jn(k1r) + C2n Jn(k2r) + C3nYn(k1r) + C4nYn(k2r), (22)

where

k1,2 =
√

nT ±
√

nT 2 − 4dkw

2d
(23)

and Jn and Yn stand for the Bessel functions of the first and second kind, respectively.
Case 2: nT = 2

√
kwd. For this case, the solution of the stability equation has the following exact solution:

W i
n(r) = C1n Jn(k1r) + C2nr Jn+1(k1r) + C3nYn(k1r) + C4nrYn+1(k1r), (24)

where

k1 =
√

nT

2d
. (25)

Case 3: nT < 2
√

kwd. In such condition, the solution of the stability equation has the following explicit
solution:

W i
n(r) = C1n

(
Jn(k1r) + Jn(k2r)

2

)
+ C2n

(
Jn(k1r) − Jn(k2r)

2i

)

+C3n

(
Yn(k1r) + Yn(k2r)

2

)
+ C4n

(
Yn(k1r) − Yn(k2r)

2i

)
, (26)

where

k1,2 =
√

nT ± i
√

4dkw − nT 2

2d
(27)

and i is the square root of −1. Note that, since the point r = 0 is in the domain, both constants C3n and C4n
have to be zero.

5.2 Exterior region, contact-less domain

This domain is an annular plate free to deflect. Recalling the stability equations (18), the following solution is
adopted for this region:

w1o
0 (ar , θ) = W o

n (r) cos(nθ), (28)

where a superscript o shows that the discussions are about the exterior domain. Substituting Eq. (28) into the
stability equation (18) yields a fourth-order differential equation in terms of W o

n (r), where its solution may be
written as

W o
n (r) = C5n Jn

⎛
⎝

√
nT

d
r

⎞
⎠ + C6nYn

⎛
⎝

√
nT

d
r

⎞
⎠ + C7nrn + C8n

{
Lnr
r−n

}
. (29)

Note that the top form of the solution (29) is associated with symmetrical buckling (n = 0), while the lower
solution presents the asymmetric buckling (n > 0).

5.3 Continuity and boundary conditions

The solution of the stability equation is accomplished when two out-of-plane boundary conditions on the outer
edge and four continuity conditions on r = β are imposed into the associated equations.
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5.3.1 Boundary conditions

As only a clamped circular plate results in a bifurcation point, slope and deflection of the outer edge (r = a)
have to vanish. By means of the assumed solution (28), one arrives at

W o
n (1) = dW o

n (1)

dr
= 0. (30)

5.3.2 Continuity conditions

At any point on r = b, we have a unified quantity for deflection, slope, normal moment, and shear. Therefore,

w1i
0 = w1o

0 ,

w1i
0,r = w1o

0,r ,

M1i
rr = M1o

rr ,

M1i
rr,r + 1

b
M1i

rθ,θ + 1

b

(
M1i

rr − M1i
θθ

)
− N T w1i

0,r = M1o
rr,r + 1

b
M1o

rθ,θ + 1

b

(
M1o

rr − M1o
θθ

) − N T w1o
0,r ,

(31)

where the last equality holds for the definition of the shear force according to the Kirchhoff plate theory
considering the pre-buckling in-plane force effect. The two last continuity conditions contain the stretch-
ing-bending coupling effects. Since only the out-of-plane displacement is under solution, stretching-bending
coupling effects should be dropped out of the two aforementioned conditions in a reasonable manner.

With the aid of Eqs. (20) and (28), the first and second conditions of Eq. (31) change to

W i
n(β) = W o

n (β),

dW i
n(β)

dr
= dW o

n (β)

dr
.

(32)

The third condition, recalling the definition of linearized moment resultant along with the linearized in-plane
force resultant, leads us to the following equality in r = β:

E1 Fi (
u1

0, v
1
0

) − E2Gi (
w1

0

) = E1 Fo (
u1

0, v
1
0

) − E2Go (
w1

0

)
,

E2 Fi (
u1

0, v
1
0

) − E3Gi (
w1

0

) = E2 Fo (
u1

0, v
1
0

) − E3Go (
w1

0

)
,

(33)

where we have set

F
(
u1

0, v
1
0

) = u1
0,r + ν

b
v1

0,θ + ν

b
u1

0,

G
(
w1

0

) = w1
0,rr + 1

b
w1

0,r + 1

b2 w1
0,θθ .

(34)

Also, a superscript on the functions F and G has to be transmitted to displacements u1
0, v

1
0, and w1

0.
As seen from Eq. (33), both functions F and G have to be continuous. From the continuity of G(w1

0), and
with the simultaneous aid of Eqs. (20), (28), and (32), the following smoothness condition is gained:

d2W i
n(β)

dr2 = d2W o
n (β)

dr2 . (35)

To gain the last condition in terms of Wn , the first stability equation and the fourth continuity condition are
rewritten as

E1 I i (
u1

0, v
1
0

) − E2Li (
w1

0

) = E1 I o (
u1

0, v
1
0

) − E2Lo (
w1

0

) = 0,

E2 I i (
u1

0, v
1
0

) − E3Li (
w1

0

) = E2 I o (
u1

0, v
1
0

) − E3Lo (
w1

0

)
,

(36)
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where we have set

I (u1
0, v

1
0) =

(
u1

0,rr + 1

b
u1

0,r − 1

b2 u1
0 − 1

b2 v1
0,θ + 1

b
v1

0,rθ

)
+ (1 + ν)

2

(
1

b2 u1
0,θθ − 1

b
v1

0,rθ − 1

b2 v1
0,θ

)
,

L(w1
0) =

(
w1

0,rrr − 1

b2 w1
0,r + 1

b
w1

0,rr − 2

b3 w1
0,θθ + 1

b2 w1
0,θθr

)
.

(37)

Similarly, both functions L and I have to be continuous. Concurrent assist of Eqs. (20), (28), (32), and (35)
leads us to

d3W i
n(β)

dr3 = d3W o
n (β)

dr3 . (38)

Substituting the two boundary conditions (30) and four continuity conditions (32), (35), and (38) into Eqs. (22),
(24), (26), and (29) provides a system of six linear homogeneous equations in terms of Cpn, p = 1, 2, 5, 6, 7, 8.
As usual, the determinant of the coefficient matrix has to be set equal to zero to obtain a non-trivial solution.
The smallest root of the determinantal equation, through the minimum positive roots of the buckling criteria
equations, is the critical buckling load which is called nT

cr . Note that, while the solution is exact, due to the
classification of the solutions and complicated algebraic expression, presenting a closed form expression to
estimate the critical buckling force is not easy.

Now, to obtain the critical buckling temperature, the temperature distribution through the plate should be
known.

6 Types of thermal loading

6.1 Uniform temperature rise

A circular FG plate at reference temperature T0 is assumed. When radial extension of the plate is prevented,
temperature through the plate may be increased uniformly to T = T0 + T such that, at the onset of pertur-
bation, bifurcation occurs. Substituting T = T0 + T into the fourth of Eq. (8) gives

N T = T h

1 − ν

(
Emαm + Ecmαm + Emαcm

k + 1
+ Ecmαcm

2k + 1

)
. (39)

Using the definition of nT
cr and solving for T , the critical buckling temperature difference of the plate in this

case is obtained as

Tcr = δ2

12(1 + ν)
× Ec

P
nT

cr (40)

with

P = Emαm + Emαcm + Ecmαm

k + 1
+ Ecmαcm

2k + 1
. (41)

For an isotropic homogeneous circular plate k = 0 and Eq. (40) reduces to

Tcr = δ2

12(1 + ν)αc
nT

cr . (42)
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6.2 Linear temperature across the thickness

Consider a thin FGM circular plate where the temperatures at the ceramic-rich and metal-rich surfaces are
Tc and Tm , respectively. The temperature distribution for the given boundary conditions is obtained by solv-
ing the heat conduction equation across the plate thickness. If the plate thickness is thin enough, as the first
approximation, the temperature distribution is approximated linear through the thickness. So the temperature
as a function of the thickness coordinate z may be written in the form

T = Tm + (Tc − Tm)

(
1

2
+ z

h

)
. (43)

Substituting Eq. (43) into Eq. (8) and solving for T = Tc − Tm gives the critical buckling temperature
difference between the metal-rich and ceramic-rich surfaces as

Tcr = δ2

12(1 + ν)
× Ec

Q
nT

cr − (Tm − T0)
P

Q
, (44)

where P is defined by Eq. (41) and Q is equal to

Q = Emαm

2
+ Emαcm + Ecmαm

k + 2
+ Ecmαcm

2k + 2
. (45)

For an isotropic homogeneous circular plate k = 0, and Eq. (44) reduces to

Tcr = δ2

6(1 + ν)αc
nT

cr − 2(Tm − T0). (46)

6.3 Nonlinear temperature through the thickness

Assume an FGM circular plate where the temperature in ceramic-rich and metal-rich surfaces is Tc and Tm ,
respectively. The governing equation for the steady-state 1-D heat conduction equation, in the absence of heat
generation, becomes

d

dz

(
K (z)

dT

dz

)
= 0,

T

(
h

2

)
= Tc, T

(
−h

2

)
= Tm .

(47)

Solving this equation via the polynomial series and taking the sufficient terms yield the temperature distribution
across the thickness of the plate. Following the same method used for the linear temperature type, the critical
buckling temperature difference between the upper and lower surfaces of the plate may be evaluated as

Tcr = δ2

12(1 + ν)
× Ec

R
nT

cr − (Tm − T0)
P

R
(48)

with the following definitions:
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Table 1 Material properties of aluminum and alumina as constituents of the FGM circular plate

Property Aluminum (Al) Alumina (Al2O3)

E (GPa) 70 380
K (W/mK) 204 10.4
α(1/K ) 23 × 10−6 7.4 × 10−6

ν 0.3 0.3

D =
N∑

i=0

(
− Kcm

Km

)i

ik + 1
,

R = 1

D
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Emαm

N∑
i=0

(
− Kcm

Km

)i

(ik + 1)(ik + 2)
+ (Ecmαm + Emαcm)

N∑
i=0

(
− Kcm

Km

)i

(ik + 1)(ik + k + 2)

+ Ecmαcm

N∑
i=0

(
− Kcm

Km

)i

(ik + 1)(ik + 2k + 2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(49)

where N , the number of expanded terms, should be chosen to assure the convergence of the series.
For an isotropic homogeneous plate k = 0, and expression (48) simplifies to

Tcr = δ2

6(1 + ν)αc
nT

cr − 2(Tm − T0), (50)

which is similar to Eq. (46), since the solution of the heat conduction equation (47) is linear across the thickness
when the thermal conductivity of the plate is position independent.

7 Results and discussion

To illustrate the proposed approach, a ceramic–metal functionally graded circular plate is considered. The
combination of materials consists of aluminum and alumina. The plate is assumed to be clamped at the outer
edge. The material properties are graded across the thickness. For each constituent, the thermomechanical
properties are given in Table 1.

To show the validity and accuracy of the present method, the non-dimensional critical buckling force of
a homogeneous foundation-less plate is compared with those reported in [16] and [23]. In our study, when
kw = β = 10−10 are assumed, nT = 14.6820 is gained which is the same as reported in [16] based on an
exact analysis and the available result in [23] based on the Chebyshev polynomial series solution.

The critical buckling force of isotropic homogeneous plates (k = 0) for various values of kw and β is
presented in Table 2. As observed in this table, while the value of Winkler constant increases the thermal
buckling force becomes larger, which is due to the resistance of the elastic foundation against the deflection
of the plate. Some interesting behaviors are observed through the results. Note that a partial elastic foundation
may change the number of nodal diameters, while this change may be of an increasing type or decreasing type.
It is worth mentioning that as loading type is symmetric, in many cases the buckling configuration of the plate
is asymmetric which proves the necessitation of the asymmetrical eigenvalue analysis of the buckling problem
under the action of symmetrical loading. As the constant β increases, nT

cr increases permanently, since a larger
domain is adopted to resist against the deformation of the plate. Furthermore, for each constant of kw, the
effect of foundation radii on the number of nodal points is not monotonic. As apparent, the number of nodal
points is constant and equal to zero for kw = 16. For kw = 256, an increase in the number of nodal points is
observed. A fluctuation exists for n when the Winkler foundation constant is kw = 4,096.

Some buckled configurations of an FGM plate (k = 0.5), located on a partial Winkler elastic foundation
with foundation radii β = 0.5, are shown in Fig. 2. As can be seen, for foundation-less condition, the plate
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Table 2 Non-dimensional critical thermal force nT
cr of isotropic homogeneous circular plates on a partial Winkler elastic

foundation

β kw = 0 kw = 24 kw = 44 kw = 64 kw = 84

0.0 14.6820 14.6820 14.6820 14.6820 14.6820

0.1 14.6820 14.8110 16.7130 24.2620 26.9051

0.2 14.6820 15.1580 22.0620 28.6761 32.6471

0.3 14.6820 15.6250 28.3511 35.2391 44.9512

0.4 14.6820 16.0920 31.1411 46.5542 55.2932

0.5 14.6820 16.4640 34.7391 55.1032 73.1973

0.6 14.6820 16.6970 37.9841 67.1872 94.1673

0.7 14.6820 16.8070 39.8681 76.9960 124.2651

0.8 14.6820 16.8430 40.5131 79.9410 135.7921

0.9 14.6820 16.8480 40.6141 80.4180 137.0431

1.0 14.6820 16.8510 40.6171 80.4250 138.4591

Numbers of nodal diameters are shown as superscript

n = 0 n = 1

n = 2 n = 3

Fig. 2 Influence of Winkler elastic foundation on buckled shape of a partially supported (β = 0.5) FGM plate (k = 0.5)

buckles in a symmetrical manner, where the peak deflection is at the center. Note that since the deformation
is symmetric, the slope at the center point of the plate vanishes. In this case, the buckling load is the smallest
positive root of the equation J1(1.242

√
nT

cr ) = 0, which is nT
cr = 9.517. The symmetric shape of the plate

persists as long as kw < 99. As the Winkler constant stands in the range 99 < kw < 466, the number of nodal
diameters increases up to one and asymmetrical shapes are observed. In this domain, the peak deflection of
the plate moves toward the edge of the plate. The asymmetrical shape of the plate persists when kw increases
from 466, while the number of nodal diameters also increases up to 2. This configuration is persistent as
long as a Winkler foundation with kw < 2,305 acts against the deflection. For kw > 2,305, the buckled
shapes are asymmetric where the lowest critical load of the plate is associated with n = 3. For instance, the
first four buckling configurations (n = 1, 2, 3, 4) are depicted in Fig. 2 which are associated to a foundation
with stiffness kw = 0, 200, 2,000, 4,000, respectively. Consequently, the associated non-dimensional loads
are nT

cr = 9.517, 24.806, 44.764, 50.734.
The critical buckling temperatures of an FGM circular plate, when the complete surface of the plate is

attached to the foundation, are given in Table 3. Three cases of Tcr are considered. Various power law indexes
(k = 0, 0.5, 1, 2, 5,∞) and various foundation coefficients are considered. For linear and nonlinear temper-
ature distribution cases (LTD and NLTD, respectively), a 5K increase in the metal rich surface is assumed,
that is, Tm − T0 = 5K . An interesting behavior is observed for kw = 500 where the number of nodal points
fluctuates when the power law index becomes larger. The LTD case, as the most simple approximation of
NLTD, always underrates the critical buckling temperature except for the cases of k = 0,∞, when an FGM
plate reduces to a homogeneous one made of its constituents. Note that while the Winkler elastic foundation
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Table 3 Critical buckling temperature difference Tcr [K ] of FGM circular plates (δ = 0.015) subjected to different types of
thermal loading over a complete elastic foundation

kw Load type k = 0 k = 0.5 k = 1 k = 2 k = 5 k = ∞
UTR 28.6160 16.2130 13.2940 11.7860 12.1590 9.2070

0 LTD 47.2320 22.4330 15.5560 11.9460 12.3240 8.4140

NLTD 47.2320 39.0450 27.6520 19.9130 17.3590 8.4140

UTR 53.8960 37.4650 34.0441 32.6541 35.7811 34.8331

100 LTD 97.7930 64.9500 54.4701 48.6811 52.9841 59.6401

NLTD 97.7930 113.0470 96.8301 81.1491 74.6311 59.6401

UTR 109.8111 72.2290 65.4240 64.3390 71.5950 72.0191

500 LTD 198.0511 134.4970 113.3230 104.4570 114.6300 132.1691

NLTD 198.0511 234.0960 201.4500 174.1260 161.4640 132.1691

UTR 140.6510 96.1180 89.4700 89.7611 100.4801 98.4780

1,000 LTD 271.3020 182.2880 158.4210 149.7001 161.2781 186.9570

NLTD 271.3020 317.2790 281.6190 246.2111 227.1711 186.9570

UTR 192.2880 132.4711 122.8761 123.1000 136.8110 136.7381

2,000 LTD 374.5770 255.0171 221.0721 207.8960 226.8860 263.4761

NLTD 374.5770 443.8651 392.9931 346.5560 319.5850 263.4761

UTR 294.8961 203.7800 190.1310 189.3661 211.8281 212.4570

5,000 LTD 579.7911 397.6760 347.2070 324.5461 356.0111 414.9140

NLTD 579.7911 682.1680 617.2170 541.0071 501.4671 414.9140

Numbers of nodal diameters are shown as superscript

postpones the branching point of the plate, this effect may be compensated with the composition rule of the
constituents.

The first four buckled configurations of a homogeneous circular plate over a complete elastic foundation are
depicted in Fig. 3. Starting from a foundation-less plate, it is seen that the plate exhibits a symmetrical buckled
shape (n = 0) and this persists until kw < 177. In this case, the peak deflection of the plate is at the center point,
and due to the symmetric configuration, the slope vanishes at the center. In the range 176 < kw < 723, the
plate buckles in an asymmetrical shape when the number of nodal diameters is equal to one. In the mentioned
range, the center deflection is equal to zero. In the third domain 722 < kw < 2,283, again, symmetrical buck-
ling exists. Peak deflection stands at the center, the same as in the first region. The major difference between
this region and the first one is the existence of a ring without deflection. The fourth region covers the range
2,282 < kw < 5,095. In this domain, the same as the second one, asymmetrical shapes are distinguished. The
existence of one un-deflected point on each radial line is the only difference between the schematic of fourth
and second domains. When the Winkler constant becomes larger than 5,094, again, buckling without nodal
points occurs. Configurations are in a way that each radial line of the plate consists of two un-deflected points.
Similar to the results reported in [7], for the mechanical buckling of isotropic homogeneous plates, within the
studied domain, no buckling is observed for n > 1. For sufficiently stiff Winkler foundation, however, it may
occur [7]. It is worth noting that the mode transition of fully supported circular plates is totally different from
that which occurs in a partially supported plate, as stated in the discussions of Fig. 2.

8 Conclusion

To demonstrate the effects of thickness, foundation radii, power law index, elastic foundation coefficients, and
loading type, an analytical method is presented for the accurate prediction of critical buckling temperature
differences as well as buckled shapes of heated circular FG plates. The derivation of equations is based on
the classical plate theory, while the constituent materials follow a power law form of property distribution.
A circular plate with immovable clamped boundary condition is considered. An eigenvalue analysis of the
stability equations is presented, and analytical expressions are derived for the critical buckling temperatures.
It is concluded that:

1. For a transversely graded FGM circular plate with or without (complete or partial) Winkler elastic foun-
dation restrained from thermal expansion, thermally induced bifurcation occurs only for a clamped one.
For FGM plates with hard simply supported edge or extensionally fixed free edge, the plate exhibits
a lateral deflection with the onset of thermal load. Considering the occurrence of primary–secondary
equilibrium paths for these two later cases is quantitatively wrong.
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k
w

 = 0 k
w

 = 250

k
w

 = 1000 k
w

 = 3000

Fig. 3 Influence of foundation coefficient on buckled configuration of homogeneous plate over a complete Winkler elastic
foundation (figures are schematically shown and are not normalized)

2. For a contact-less circular FG plate, the thermal buckled shape is symmetric, while in some cases buckled
configurations of partially in-contact clamped FG plates may be asymmetric with non-zero nodal points.
Therefore, when the stability equations are solved independent of the variable θ , Tcr is over-estimated
and the buckled shape of the plate is predicted wrongly.

3. For a completely supported plate, the number of nodal diameters with the increase of Winkler stiffness
fluctuates between 0 and 1, permanently, while Tcr increases monotonically when kw becomes larger.

4. For contact-less plates, the buckled configuration of a plate is independent of the power law index, while
for partially/completely in-contact plates, the power law index may change the number of nodal diameters
in some cases.
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