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Abstract The propagation of SH-type wave is studied in a composite structure consisting of alternating
polymeric layers and porous piezoelectric layers. The porous piezoelectric materials of the composite struc-
ture are assumed to have 6 mm symmetry and their poling direction is along z-axis. Layers of the polymer are
considered as isotropic dielectric elastic material. Solutions of the field equations for the porous piezoelectric
material and for the polymeric material are obtained. Two cases, first when the direction of propagation of the
SH-type wave is taken along the direction normal to the layering of the composite structure, and second when
the propagation direction is taken along the layering, are considered for the derivation of the phase velocity.
The dispersion and the stop-pass band behavior of the Floquet wave is also discussed. Numerical results for
phase velocity and stop band effect are presented for a periodic system of alternating PZT-5H and polythene
layers. The influence of volume fraction on phase velocity and stop band effect is discussed.

1 Introduction

Piezoelectric materials produce an electric field when deformed and undergo deformation when subjected
to an electric field. Piezoelectric materials are integrated with structural systems to form a class of smart
structures and are extensively used in various functional devices, such as sensors, actuators, filters and delay
lines, medical appliances, SAW (surface acoustic wave) devices and others. Due to the brittle nature of pie-
zoelectric ceramics and due to the possible defects of impurities, cavities and microcracks, failures of devices
occur easily under mechanical and/or electrical loadings. However, the introduction of a controlled porosity
into a piezoelectric material could strongly improve its acoustic performances and therefore its ultrasonic
response. Materials containing tailored porosity exhibit special properties and features that usually cannot be
achieved by their conventional dense counterparts. Therefore, porous piezoceramics find, nowadays, many
applications as ultrasonic transducers. Composites are materials that are receiving growing attention by the
scientific as well as the industrial world. They can, in fact, show specific properties (electronic, magnetic,
mechanical, etc.) that cannot be achieved otherwise by single phase materials. This approach has been applied
for the first time to piezoelectric materials at the end of the 1970s combining them with polymeric and/or
metallic phases to obtain actuators or transducers. The development of such piezoelectric composites aims
to combine the specific properties of each single phase to maximize the electromechanical and ultrasonic
response of a particular device. Composites, consisting of porous piezoelectric ceramics and polymers, not
only can eliminate the defects of strength and brittleness in pure piezoelectric ceramic, but also can increase
its performance.
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The details of piezoelectric composite structures can be found in [1,2,4,5]. Shear horizontal surface waves
were studied in piezoelectric ceramics with metal surface layer in [14]. The study presented the conditions for
the existence of a B-G surface wave and discussed a new surface wave in the piezoelectric structure. Using a
formulation of periodic Hamiltonian system, dispersion relations for the propagation of shear waves in pie-
zoelectric layered structures were analyzed in [36,38]. Besides the existence condition for Love-type waves,
a new existence condition for shear horizontal surface waves in a layered structure of piezoelectric ceramics
was derived in [11,12]. The propagation of quasi-shear horizontal acoustic waves was investigated in lithium
niobate plates [13,37]. The propagation characteristics of waves have been discussed in magnetoelectric mate-
rials [15], piezoelectric materials [7,20], piezoelectric composite structures [17,18,30], functionally graded
piezoelectric material [9] and piezoelectric coupled plates [23,33].

The theory of the scattering process of shear horizontal waves in layered piezoelectric composites in terms
of a recursive system of equations involving the piezoelectric impedance was discussed in [19]. The disper-
sion relations and mode shapes of the deflection and the electric potential of the piezoelectric coupled plate
by the use of interdigital transducer (IDT) materials were discussed in [34,35]. The propagation behavior of
shear waves in multilayered piezoelectric composites structures was investigated in [24–26]. A shear hori-
zontal wave in metal gratings deposited on piezoelectric bounded plates was investigated and effects of the
electromechanical coupling coefficient on width and attenuation of the stop bands were shown [6]. A finite
element model was developed to study the effect of porosity on the electromechanical response of porous
piezoelectric ceramics [10]. The study on interfacial waves has been extended from piezoelectric materials
to a piezoelectric–piezomagnetic bi-material [29]. Constitutive equations for porous piezoelectric materials
were derived and vibration characteristics of such a plate were studied [31]. Wave propagations in transversely
isotropic porous materials were studied in [32]. Dynamic behavior of wave propagation in layered periodic
composites consisting of piezoelectric and piezomagnetic phases have been discussed [21] and the dispersion
curves and displacement fields have been characterized [16].

New physical insights into the behavior of periodic systems were obtained by analyzing SH modes in
terms of Floquet waves [8]. For guided waves, polarized in the vertical plane in plates of alternating alumi-
num–epoxy and aramid–epoxy composites, the dispersion and frequency bands do not at all scale with the
frequency-thickness product, unlike the behavior expected for a homogeneous plate [28]. The propagation of
Floquet waves has been investigated in a composite plate composed of periodic layers together with experi-
mental measurements and demonstrated that transverse resonance can be established only in the Floquet pass
bands of the periodic composite [27]. The coupled electro-elastic SH-waves propagating oblique to the lam-
ination of a one-dimensional piezoelectric periodic structure have been studied [22] by using Floquet wave
theory, and results demonstrate the significant effect of piezoelectricity on the widths of band gaps. Floquet
analysis of the SH-wave propagating in periodically layered plates has been studied [3] and results show that
this phenomenon can be attributed to the pass band and stop band structures caused by the layering. The model
of periodically layered porous piezoelectric composites has not been studied so far.

In the present work, we consider the propagation of SH-waves in periodically porous piezoelectric layered
media. The main aim is to reveal the propagation properties of SH-waves in such new composite materials,
and the results obtained are expected to be useful for the analysis and design of such a type of composite
acoustic wave devices. The composite structure consists of polymeric layers and porous piezoelectric layers.
Frequency equations are derived for the SH-propagation along the direction normal to the layering as well as
along the direction of layering. In addition, SH modes in terms of Floquet waves by using Floquet wave theory
have also been studied. Two particular materials, that is, Polythene and PZT-5H are taken for the numerical
computation. The effects of volume fraction, shear modulus and porosity on phase velocity and stop band
effect are discussed.

2 Formulation of the problem

The propagation behavior of horizontally polarized shear waves in a periodic composite structure, as shown in
Fig. 1, is taken for the study. The composite structure consists of isotropic polymeric thin films with thickness
h1, bonded perfectly to the transversely isotropic porous piezoelectric thin films with thickness h2, alternately.
The poling direction of the piezoelectric layer is considered along the z-axis, perpendicular to the x–y plane.
The propagation direction of SH-waves is considered along the x-axis (the direction normal to the layering)
and the y-axis (the direction of the layering), separately. The constitutive equations for the polymeric material
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Fig. 1 Piezoceramic layered structure

(M1) which is treated as isotropic dielectric medium are as follows:

σ ′
i j = c′

i jklε
′
kl ,

D′
i = ξ ′

ik E ′
k .

(1a)

In these equations, σ ′
i j is the stress tensor, ε′

i j is strain tensor, D′
i is electric displacement and E ′

i is the
electric field for M1. c′

i jkl , ξ ′
kl are the elastic and dielectric constants.

The constitutive equations for the porous piezoelectric material (M2) are [31]

σi j = ci jklεkl + mi jε
∗ − eki j Ek − ζki j E∗

k ,

σ ∗ = mi jεi j + Rε∗ − ζk Ek − e∗
k E∗

k ,

Di = eiklεkl + ζiε
∗ + ξil El + Ail E∗

l ,

D∗
i = ζiklεkl + e∗

i ε∗ + Ail El + ξ∗
il E∗

l .

(1b)

σi j (σ
∗) and εi j (ε

∗) are the stress and strain tensor components for the solid (fluid) phase in M2. Di (D∗
i ) and

Ei (E∗
i ) are the electric displacement and electric field vector for the solid (fluid) phase in M2. Also ci jkl , mi j , R

are elastic constants; ei jk, e∗
i , ζi jk, ζi are the piezoelectric constants and ξi j , ξ

∗
i j , Ai j are the dielectric

constants.
The equations of motion, in the absence of body forces and surface charge density for M1 and M2, are as

follows:

σ ′
i j, j = ρ′ü′

i ,

D′
i,i = 0,

(2a)

and

σi j, j = (ρ11)i j ü j + (ρ12)i j Ü∗
j ,

σ ∗
,i = (ρ12)i j ü j + (ρ22)i j Ü∗

j ,

Di,i = 0,

D∗
i,i = 0,

(2b)

where u′
i and ρ′ are the mechanical displacement and mass density for M1, and ui , U∗

i are the mechanical
displacement components of M2. (ρ11)i j , (ρ12)i j , (ρ22)i j are dynamical mass coefficients.

Further, we have

ε′
i j = 1

2
(u′

i, j + u′
j,i ), E ′

i = −φ′
,i , (3a)

and
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εi j = 1
2 (ui, j + u j,i ), ε∗ = U∗

i,i ,

Ei = −φ,i , E∗
i = −φ∗

,i ,
(3b)

where φ′ is the electric potential function for M1, and φ (φ∗) is the electric potential function for the solid
(fluid) phase for M2.

The constitutive equations for the medium M1 are

σ ′
11 = c′

11ε
′
11 + c′

12ε
′
22 + c′

12ε
′
33,

σ ′
22 = c′

12ε
′
11 + c′

11ε
′
22 + c′

12ε
′
33,

σ ′
33 = c′

12ε
′
11 + c′

12ε
′
22 + c′

11ε
′
33,

σ ′
32 = 2c′

44ε
′
32,

σ ′
31 = 2c′

44ε
′
31,

σ ′
12 = 2c′

44ε
′
12,

D′
1 = ξ ′

11 E ′
1,

D′
2 = ξ ′

11 E ′
2,

D′
3 = ξ ′

11 E ′
3.

(4a)

The constitutive equations for the medium M2 can be written as

σ11 = c11ε11 + c12ε22 + c13ε33 + m11ε
∗ − e31 E3,

σ22 = c12ε11 + c11ε22 + c13ε33 + m11ε
∗ − e31 E3,

σ33 = c13ε11 + c13ε22 + c33ε33 + m33ε
∗ − e33 E3,

σ32 = 2c44ε32 − e15 E2,

σ31 = 2c44ε31 − e15 E1,

σ12 = 2c66ε12,

σ ∗ = m11ε11 + m11ε22 + m33ε33 + Rε∗,
D1 = 2e15ε13 + ξ11 E1 + A11 E∗

1 ,

D2 = 2e15ε23 + ξ11 E2 + A11 E∗
2 ,

D3 = e31ε11 + e31ε22 + e33ε33 + ζ3ε
∗ + ξ33 E3 + A33 E∗

3 ,

D∗
1 = A11 E1 + ξ∗

11 E∗
1 ,

D∗
2 = A11 E2 + ξ∗

11 E∗
2 ,

D∗
3 = e∗

3ε∗ + A33 E3 + ξ∗
33 E∗

3 ,

(4b)

where c′
44 = (c′

11 − c′
12)/2, c66 = (c11 − c12)/2.

For an SH-wave propagating in the xy-plane, the mechanical displacements and electric potential functions
can be represented as

u′
1 = 0, u′

2 = 0, u′
3 = w′(x, y, t), φ′ = φ′(x, y, t), (5a)

and

u1 = 0, u2 = 0, u3 = w(x, y, t), U∗
3 = W ∗(x, y, t), φ = φ(x, y, t), φ∗ = φ∗(x, y, t). (5b)

Using Eqs. (3a)–(5a) in Eq. (2a), we get

c′
44

(
∂2w′
∂x2 + ∂2w′

∂y2

)
= ρ′ ∂2w′

∂t2 ,

ξ ′
11

(
∂2φ′
∂x2 + ∂2φ′

∂y2

)
= 0.

(6a)

Similarly, using Eqs. (3b)–(5b) in Eq. (2b) and eliminating U∗
3 and φ∗, we get
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c44

(
∂2w
∂x2 + ∂2w

∂y2

)
+ e15

(
∂2φ

∂x2 + ∂2φ

∂y2

)
= ρ p ∂2w

∂t2 ,

e15

(
∂2w
∂x2 + ∂2w

∂y2

)
− ξ

p
11

(
∂2φ

∂x2 + ∂2φ

∂y2

)
= 0,

(6b)

where ρ p = (ρ11)33 − (ρ12)
2
33/(ρ22)33, ξ

p
11 = ξ11 − A2

11/ξ
∗
11, ∇2φ∗ = − A11

ξ∗
11

∇2φ.

At the interface x = 0, the boundary conditions require that normal displacement, shear stress, electrical
displacement and electrical potential function should be continuous, that is,

w′(0, y) = w(0, y),

φ′(0, y) = φ(0, y),

σ ′
13(0, y) = σ13(0, y),

D′
1(0, y) = D1(0, y) + D∗

1(0, y).

(7a)

The periodicity of the components of the stress, mechanical displacement, electrical displacement and
electrical potential function at all interfaces leads to the following conditions:

w′(h1, y) = w(−h2, y),

φ′(h1, y) = φ(−h2, y),

σ ′
13(h1, y) = σ13(−h2, y),

D′
1(h1, y) = D1(−h2, y) + D∗

1(−h2, y).

(7b)

3 Solutions

We consider the following two cases for solving Eqs. (6) and (7).

3.1 Wave propagation along the direction normal to the layering

For the composite layered structures, when the SH-waves propagate along the positive direction of the x-axis
(along the direction normal to the layering), the solutions of Eqs. (6a) and (6b) can be considered as follows:

w′(x, t) = W ′(x) exp[ik(x − ct)],
φ′(x, t) = 	′(x) exp[ik(x − ct)],

(8a)

and

w(x, t) = W (x) exp[ik(x − ct)],
φ(x, t) = 	(x) exp[ik(x − ct)],

(8b)

where k is the wave number, i = √−1, c is the propagation velocity of the SH-waves, W ′(x), W (x), 	′(x)
and 	(x) are undetermined functions.

Using Eqs. (8a) and (8b) in Eqs. (6a) and (6b) gives

c′
44

(
∂2W ′
∂x2 + 2ik ∂W ′

∂x − k2W ′
)

= −ρ′k2c2W ′,

∂2	′
∂x2 + 2ik ∂	′

∂x − k2	′ = 0,

(9a)

and

c44

(
∂2W
∂x2 + 2ik ∂W

∂x − k2W
)

+ e15

(
∂2	
∂x2 + 2ik ∂	

∂x − k2	
)

= −ρ pk2c2W,

e15

(
∂2W
∂x2 + 2ik ∂W

∂x − k2W
)

− ξ
p

11

(
∂2	
∂x2 + 2ik ∂	

∂x − k2	
)

= 0.

(9b)

The above equations give
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w′(x, t) = [A1e(−1+c/c′
SH)ikx + B1e(−1−c/c′

SH)ikx ]eik(x−ct),

φ′(x, t) = (A′
1 + B ′

1x)e−ikx eik(x−ct),
(10a)

and

w(x, t) = [
A2e(−1+c/cSH)ikx + B2e(−1−c/cSH)ikx

]
eik(x−ct),

φ(x, t) =
[
(A′

2 + B ′
2x)e−ikx + e15

ξ
p

11

[
A2e(−1+c/cSH)ikx + B2e(−1−c/cSH)ikx

]]
eik(x−ct),

(10b)

where c′
SH =

√
c′

44
ρ′ and cSH =

√
P
ρ p are the bulk shear wave velocity in the polymeric layer and the porous

piezoelectric layer, respectively, and P = c44 + e2
15

ξ
p

11
.

3.2 Wave propagation along the direction of the layering

For the case of the wave propagation along the positive direction of the y-axis (along the direction of layering),
we can obtain the solutions of mechanical displacement and electrical potential functions for the polymeric
layer and the porous piezoelectric layer as follows:

w′(x, y, t) = [
A1e−ib1x + B1eib1x

]
eik(y−ct),

φ′(x, y, t) = [
A′

1e−kx + B ′
1ekx

]
eik(y−ct),

(11a)

and

w(x, y, t) = [
A2e−b2x + B2eb2x

]
eik(y−ct),

φ(x, y, t) =
[

A′
2e−kx + B ′

2ekx + e15
ξ

p
11

(
A2e−b2x + B2eb2x

)]
eik(y−ct),

(11b)

where b1 = k
√

c2

c′2
SH

− 1, b2 = k
√

1 − c2

c2
SH

.

4 Dispersion equation

4.1 Wave propagation along the direction normal to the layering

Using Eqs. (10a) and (10b) in Eqs. (4a) and (4b), respectively, we have

σ ′
13 = ikcc′

44
c′

SH

[
A1e(−1+c/c′

SH)ikx − B1e(−1−c/c′
SH)ikx

]
eik(x−ct),

D′
1 = −ξ ′

11 B ′
1e−ikx eik(x−ct),

(12a)

and

σ13 =
[
e15 B ′

2e−ikx + ikcP
cSH

(
A2e(−1+c/cSH)ikx − B2e(−1−c/cSH)ikx

)]
eik(x−ct),

D1 =
[

ikc
cSH

(
e15 − l11

e15
ξ

p
11

) (
A2e(−1+c/cSH)ikx − B2e(−1−c/cSH)ikx

) − l11 B ′
2e−ikx

]
eik(x−ct),

D∗
1 = −l12

[
ikce15
ξ

p
11cSH

(
A2e(−1+c/cSH)ikx − B2e(−1−c/cSH)ikx

) + B ′
2e−ikx

]
eik(x−ct).

(12b)
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Making use of the above equations and boundary conditions (7a) and (7b), we obtain the following homo-
geneous system of linear algebraic equations with unknowns A1, B1, A′

1, B ′
1, A2, B2, A′

2 and B ′
2:

A1 + B1 − A2 − B2 = 0,

A′
1 − A′

2 − e15
ξ

p
11

A2 − e15
ξ

p
11

B2 = 0,

A1 − B1 − e15c′
SH

ikcc′
44

B ′
2 − Q A2 + Q B2 = 0,

−ξ ′
11 B ′

1 − ikcl13
cSH

A2 + ikcl13
cSH

B2 + l B ′
2 = 0,

A1eiα + B1e−iα − A2ei(kh−β) − B2ei(kh+β) = 0,

A′
1 + B ′

1h1 − A′
2eikh + B ′

2h2eikh − e15
ξ

p
11

A2ei(kh−β) − e15
ξ

p
11

B2ei(kh+β) = 0,

A1eiα − B1e−iα − e15c′
SH

ikcc′
44

B ′
2eikh − Q A2ei(kh−β) + Q B2ei(kh+β) = 0,

−ξ ′
11 B ′

1 − ikcl13
cSH

A2ei(kh−β) + ikcl13
cSH

B2ei(kh+β) + l B ′
2eikh = 0,

(13)

where

l11 = ξ11 − (A2
11/ξ

∗
11)Cv, l12 = A11(1 − Cv), Cv = c2

φ∗/c2
φ,

l13 = e15[1 − (l11/ξ
p

11) − (l12/ξ
p

11)], l = l11 + l12,

α = (ckh1)/c′
SH, β = (ckh2)/cSH, Q = (Pc′

SH)/(c′
44cSH).

The non-trivial solution of system (13) exists when

cos(kh) = cos(α) cos(β) − (1 + Q2)

2Q
sin(α) sin(β)

+ l15

2Q
[cos(α) + cos(β) + cos(α) cos(β) − Q sin(α) sin(β) − 1 − 2 cos(kh)], (14)

in which h = h1 + h2, l14 = (lc′
44cSH)/(l13e15c′

SH), l15 = 1/ l14.
Equation (14) is the dispersion equation of the SH-waves propagating in a periodic piezoelectric composite

layered structure along the direction normal to the layering.

4.2 Wave propagation along the direction of the layering

For the case of the SH-wave propagation along the direction of layering, the corresponding stress and electrical
displacement components in the polymeric layer and porous piezoelectric layer can be obtained by substituting
Eqs. (11a) and (11b) into Eqs. (4a) and (4b) as follows:

σ ′
13 = ic′

44b1[−A1e−ib1x + B1eib1x ]eik(y−ct),

D′
1 = −ξ ′

11k[−A′
1e−kx + B ′

1ekx ]eik(y−ct),
(15a)

and

σ13 = [Pb2(−A2e−b2x + B2eb2x ) + e15k(−A′
2e−kx + B ′

2ekx )eik(y−ct),

D1 =
[

b2

(
e15 − l11

e15
ξ

p
11

)
(−A2e−b2x + B2eb2x ) − l11k(−A′

2e−kx + B ′
2ekx )

]
eik(y−ct),

D∗
1 = −l12[(−k A′

2e−kx + k B ′
2ekx ) + e15

ξ
p

11
(−b2 A2e−b2x + b2 B2eb2x )]eik(y−ct).

(15b)

Using the above equations and the boundary conditions (7a) and (7b), we get
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2e2
15

ξ ′
11

ξ
p

11

[(c′
44q1T1 F2 + Pq2S1G2)(ξ

′
11 M1 N2 + l M2 N1) − (c′

44q1 F2 + Pq2S1)

× (ξ ′
11 M1 + l M2) + l13e15q2S1 M2(1 − G2 N1)] − e4

15

(
ξ ′

11

ξ
p

11

)2

S1 F2 M2 M1

− [(P2q2
2 − c′2

44q2
1 )S1 F2 + 2Pc′

44q1q2(T1G2 − 1)][(l2 + ξ ′2
11)M1 M2 + 2(N1 N2 − 1)lξ ′

11]
+ l13e15q2[2Pξ ′

11S1 F2q2(1 − N1 N2) + 2lc′
44q1 M1 M2(1 − T1G2) − 4ξ ′

11c′
44q1(1 − N1 N2)

× (1 − T1G2) − (l13e15q2 + 2Plq2)S1 M1 M2 F2] = 0, (16)

where q1 =
√

c2

c′2
SH

− 1, q2 =
√

1 − c2

c2
SH

and F2, G2, M1, N1, M2, N2, S1, T1 are given in Appendix A.

Equation (16) is the dispersion equation of SH-waves propagating in the periodic porous/piezoelectric lay-
ered structure along the direction of layering. It is readily seen from the phase velocity equations (14) and (16)
that the phase velocity c is related to wave number, layer thickness, elastic, dielectric and piezoelectric con-
stants.

5 Reduced case

In this section, the dispersion equations (14) and (16) are reduced for the piezoelectric case. For the case of
SH-waves propagating along the direction normal to the layering, when l15 = 0, that is, the porous piezoelectric
media becomes piezoelectric, Eq. (14) reduces to

cos(kh) = cos(α) cos(β) − (1 + Q2)

2Q
sin(α) sin(β), (17)

which is the dispersion relation for an SH-wave propagating in a periodic piezoelectric layered structure along
the direction normal to the layering [24].

For the case of an SH-wave propagating along the direction of layering, when l13 = 0, Eq. (16) reduces to

2e2
15

ξ ′
11

ξ
p

11

[(c′
44q1T1 F2 + Pq2S1G2)(ξ

′
11 M1 N2 + l M2 N1) − (c′

44q1 F2 + Pq2S1)

× (ξ ′
11 M1 + l M2)] − e4

15

(
ξ ′

11

ξ
p

11

)2

S1 F2 M2 M1 − [(P2q2
2 − c′2

44q2
1 )S1 F2

+ 2Pc′
44q1q2(T1G2 − 1)][(l2 + ξ ′2

11)M1 M2 + 2(N1 N2 − 1)lξ ′
11] = 0, (18)

which is the dispersion relation for an SH-wave propagating in a periodic piezoelectric layered structure along
the direction of layering [24].

6 Floquet wave

Floquet modes are characteristic modes for an infinite periodically layered medium. It is shown in [27] that
Floquet modes can be utilized to significantly simplify the solution to the plate wave problems in the presence
of periodic structures. Following this and the methodology used in [22], we study the propagation of Floquet
wave in the periodic piezoceramic layered structure in the present section.

The boundary conditions at the interface x = 0 are similar as in the case of SH-waves, whereas at x = −h2,
the wave must satisfy Bloch–Floquet quasi-periodicity conditions [27] which are given as

w′(h1, y) = λw(−h2, y),

φ′(h1, y) = λφ(−h2, y),

σ ′
13(h1, y) = λσ13(−h2, y),

D′
1(h1, y) = λ[D1(−h2, y) + D∗

1(−h2, y)],
(19)
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Table 1 Material constants

Materials Elastic constants
(1010N/m2)

Piezoelectric constants
(C/m2)

Dielectric constants
(10−10F/m)

Mass density
(kg/m3)

Polythene c′
44 = 0.128 – ξ ′

11 = 0.2036 ρ′ = 1,180
PZT-5H c44 = 2.3 e15 = 17 ξ11 = 277 (ρ11)33 = 4,950

ξ∗
11 = 299 (ρ12)33 = −1,125

A11 = 112 (ρ22)33 = 4,800
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Fig. 2 Variation of ω with h2 for c = 1,500 m/s, h1 = 0.1 mm
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Fig. 3 Variation of ω with h1 for c = 1,500 m/s, h2 = 0.1 mm

where λ = eiγ h, γ is a component of wave vector called Bloch–Floquet wave number. Making use of
Eqs. (11a), (11b), (15a) and (15b) in boundary conditions (7a) and (19) and after simplifications, we obtain

λ2 + d2

d1
λ − d3

d1
= 0, (20)

where d1, d2, d3 are given in the Appendix B, and Eq. (20) is the dispersion relation for Floquet wave propa-
gating in a periodic piezoelectric layered structure along the direction of layering.
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Fig. 5 Variation of ωh2/c′
SH with kh2 for wave propagation in the direction normal to the layering for r = 0.4

If the wave propagates normal to the layering (k = 0), the dispersion equation (20) becomes

cos(γ h) = cos(α) cos(β) − (1 + Q2 + l15 Q)

2(Q + l15)
sin(α) sin(β), (21)

which is the dispersion relation for a Floquet wave propagating in a periodic piezoelectric layered structure
along the direction normal to the layering.

7 Numerical examples and discussions

In the previous section, analytical solutions of the phase velocity for the SH-wave propagation in the periodic
porous piezoelectric layered structure have been obtained. Based on the dispersion equations (14) and (16),
numerical computations are performed to illustrate the results of dispersion characteristics. There exists the
relationship ω = kc for the wave velocity c, wave number k and circular frequency ω. To study the propagation
behavior of SH-waves in this kind of structure, the polymeric material is considered as polythene, and PZT-5H
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Fig. 6 Variation of ωh2/c′
SH with kh2 for wave propagation in the direction normal to the layering for r = 0.6
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Fig. 7 Variation of c/cSH with kh1 of wave propagation in the direction normal to the layering for α1 = 10, α1 = 50, α1 = 100.
and r = 0.8

as porous piezoelectric material. The value of the constant Cv is taken as 0.02752. The material constants taken
for numerical computations are given in the Table 1. Some of these material constants are taken from [24].

For the case of wave propagation along the direction normal to the layering, the variation of the wave
frequency with the thickness of layers is computed for a specified value of phase velocity c. The value of c for
computation purposes is considered as 1,500 m/s. This variation is shown in Figs. 2, 3 and 4. In Fig. 2, h1 is
treated as constant and in Fig. 3, h2 is treated as constant. In Fig. 4, both h1 and h2 are taken to be equal. It is
observed that the wave frequency decreases sharply with an increase in thickness of the layer.

The volume fraction of a polythene layer is defined as r = h1
h1+h2

. We study the variation patterns of the two
variables ωh2/c′

SH and kh2 for two values r = 0.4 and r = 0.6 of the volume fraction, and result are shown in
Figs. 5 and 6. It can be seen that the number of stop bands increases with increasing volume fraction r , while
the width of the successive stop band decreases. For the case of SH-wave propagation along the direction of
layering, there exist no curves similar to Figs. 5 and 6. The fact also indicates that no stop band or filter wave
effect exists for that case.
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Fig. 8 Variation of c/cSH with kh1 of wave propagation in the direction of layering for α1 = 10, α1 = 50, α1 = 100 and r = 0.8
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For the case of wave propagation along the direction normal to the layering, the variation pattern of the
non-dimensional phase velocity c/cSH versus the non-dimensional wave number kh1 is shown in Fig. 7 for
different ratios of shear modulus (α1 = P/c′

44) in the PZT-5H ceramic layer to that of the polythene layer for

r = 0.8. The factor P = c44 + e2
15

ξ
p

11
can be regarded as the effective modulus of the PZT-5H ceramic layer.

In case of SH-wave propagation along the direction of the layering, the variation pattern of non-dimensional
phase velocity c/cSH versus non-dimensional wave number kh1 is shown in Fig. 8 for different values of
the parameter α1. It can be noticed from Figs. 7 and 8 that, although the phase velocity decreases with non-
dimensional wave number kh1 in both cases, the variation pattern is different. In case of propagation direction
along layering, it decreases steadily with kh1. However, in case of direction normal to layering, the change
is noticeable for large values of kh1, that is, for high frequency waves, the effect of the shear modulus is less
dominant than in case of comparative lower frequency waves.

To study the effect of volume fraction, the phase velocity is computed for different values of kh1 and is
shown in Figs. 9 and 10 for the above-mentioned two cases. As expected, the effect of volume fraction (r) is
important when we consider the waves propagating along the direction normal to the layering, as shown in
Fig. 9. The nodal points decrease when r increases. In the other case (Fig. 10), the phase velocity decreases
with an increase of kh1 and the stop band effect is not observed in this case.
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Fig. 10 Variation of c/cSH with kh1 of wave propagation in the direction of layering for r = 0.2, r = 0.5, r = 0.8
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Fig. 11 Variation of c with r of wave propagation in the direction normal to the layering for ω = 1,000 Hz, h1 = 1 mm

Further, the effect of volume fraction on the phase velocity for specified values of frequency and polythene
layer thickness is shown in Figs. 11 and 12. The values of the phase velocity at the extreme ends (r = 0 and
r = 1) correspond to the cases when h2 is very large in comparison with h1 and when h2 is zero, respectively.
It is seen from Fig. 11 that the phase velocity is smaller than the bulk shear wave velocity in the polythene
medium, when volume fraction ranges from 0.303 to 1. It is also seen from Fig. 12 that for the case of the
SH-wave propagating along the direction of the layering, the phase velocity of SH-waves satisfies the following
expression: c′

SH < c < cSH.
To determine the effect of porosity on phase velocity, the non-dimensional phase velocity is calculated

separately for shear modulus α1 = 50, r = 0.8 for both piezoelectric and porous piezoelectric media. Its
variation with kh1 along the direction normal to the layering and along the layering is shown in Figs. 13 and 14,
respectively.

The stop band and pass band gaps for the Floquet wave propagating normal to the layering are shown in
the Figs. 15 and 16. for r = 0.4 and r = 0.6, respectively. The effect of porosity on stop band and pass band
gaps are also observed. It is observed that the number of stop band and pass bands increases with increasing
volume fraction. For a particular value of volume fraction, the porosity factor has a small effect on the first
band gap width while the width of the second band gap decreases in case of periodic porous piezoelectric
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Fig. 12 Variation of c with r of wave propagation in the direction of layering for ω = 1,000 Hz, h1 = 1 mm
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structures, shown in Figs. 15 and 16. Figure 17 depicts the variation of phase velocity of a Floquet wave with
non-dimensional wave number for different values of volume fraction. It is observed that the phase velocity
decreases exponentially with increasing wave number and becomes almost constant after kh = 3.5. The phase
velocity of the Floquet wave decreases with increasing volume fraction. The effect of porosity on the dispersion
curve of the Floquet wave is observed in Fig. 18. The phase velocity of the Floquet wave propagating in the
porous piezoelectric periodic layered structure is less in comparison with the periodic piezoelectric structure.

8 Conclusions

The phase velocity equations of SH-wave propagation in the periodic porous piezoelectric layered structure
are obtained for the case of waves propagating along the direction of the layering and normal to the layering,
respectively. The conclusions are obtained as follows: For shear horizontal waves propagating along the
direction normal to the layering,

(i) The phase velocity decreases with increasing wave number for fixed shear modulus.
(ii) The phase velocity of the wave is smaller than cSH when the volume fraction of the polythene layer

ranges from 0.303 to 1.
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Fig. 18 Variation of c/cSH with kh of Floquet wave propagating in the direction of layering of piezoelectric and porous piezo-
electric media for r = 0.8 and γ h = 1

(iii) The number of stop bands increase with increasing magnitude of volume fraction r , while the width
of the individual stop band decreases. So such a kind of structure has the potential of being applied
to vibration insulation of mechanical devices. Theoretically speaking, when the wave propagates in
the direction normal to the layering, by selecting the proper volume fraction of the two materials
and adjusting the frequency of vibration within the stop bands, we can yield the effect of vibration
insulation.

For SH-waves propagate along the direction of the layering,

(i) The phase velocity decreases with increasing wave number for fixed volume fraction r .
(ii) There exist no stop band effects, that is, no wave filter effect exists.

(iii) The phase velocity of the wave exists in the range c′
SH < c < cSH.

The stop band and pass band effects of the Floquet wave are observed. The number of stop and pass bands
increases with increasing volume fraction. The phase velocity of the Floquet wave decreases with increasing
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wave number. In addition, the phase velocity becomes small as the porosity is introduced in the piezoelectric
media for both SH and Floquet waves propagating along the direction normal to the layering as well as along
the direction of layering.
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Appendix A

F2 = sinh(b2h2), G2 = cosh(b2h2),

M1 = sinh(kh1), N1 = cosh(kh1),

M2 = sinh(kh2), N2 = cosh(kh2),

S1 = sin(b1h1), T1 = cos(b1h1).

Appendix B

a1 = 2e2
15

ξ ′
11

ξ
p

11

, a2 = l13e15q2,

d11 = c′
44q1T1 F2 + Pq2S1G2, d12 = a1[d11 − c′

44lq1 F2 M2 − a2S1 M2G2 N1],
d13 = a1[c′

44ξ
′
11q1 F2 M1 + Plq2S1 M2 − a2S1 M2], d14 = a1 Pq2ξ

′
11S1 M1,

d15 = e4
15

(
ξ ′

11

ξ
p

11

)2

S1 F2 M2 M1, d16 = (P2q2
2 − c′2

44q2
1 )S1 F2 + 2Pc′

44q1q2T1G2,

d17 = (l2 + ξ ′2
11)M1 M2 + 2lξ ′

11 N1 N2,

d18 = a2[2Pξ ′
11q2S1 F2 N1 N2 + 2lc′

44q1 M1 M2T1G2 + 4ξ ′
11c′

44q1 N1 N2T1G2

+ (l13e15q2 + 2Plq2)S1 M1 M2 F2],
d19 = a2[2Pξ ′

11q2S1 F2 + 2lc′
44q1 M1 M2 + 4ξ ′

11c′
44q1 N1 N2 + 4ξ ′

11c′
44q1T1G2], d20 = 4a2ξ

′
11c′

44q1,

d21 = 2ld16ξ
′
11 + 2Pd17c′

44q1q2, d22 = 4Plξ ′
11c′

44q1q2,

d1 = d12 − d15 − d18 − d16d17, d2 = d19 − d13 + d21 d3 = d14 + d20 + d22.
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