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Abstract In a previous study (Xiao in Acta Mechanica 223:2039–2063, 2012), an explicit, straightforward
approach has been proposed to obtain multi-axial elastic potentials for incompressible rubberlike materials.
With a new idea of treating compressibility behavior, we extend this explicit, straightforward approach for
incompressible deformations to a general case of finite compressible deformations. From data of a uniaxial
test and a simple shear test, we obtain unified forms of multi-axial compressible elastic potentials which
accurately match data of four benchmark tests. Reduced results are presented for the slight compressibility
case. In particular, we apply the new approach with a simple form of rational interpolating function with two
poles and from the uniaxial case derive a simple form of multi-axial compressible potential with a strain limit.
It is found that this strain limit is a counterpart of the well-known von Mises limit for stress in elastoplasticity.
For highly elastic materials with strain stiffening effects, this simple compressible potential is shown to be in
good accord with data of four tests from small to large deformations.

1 Introduction

In Part 1 of this serial study (cf. [70]), an explicit, direct approach has been proposed to obtain multi-axial
elastic potentials which exactly match data of four benchmark tests for highly elastic solids such as rubberlike
materials. The results therein are for incompressible deformations. Accordingly, a hyper-elastic stress–strain
relation subjected to the constraint of incompressibility should be introduced, which incorporates an indeter-
minate hydrostatic stress part. In numerical implementations, particular procedures should be introduced to
deal with the incompressibility condition for the purpose of bypassing possible related issues. However, such
issues will not be involved without assuming the incompressibility condition and then with a stress–strain rela-
tion based on a compressible elastic potential. This consideration in a broad sense applies to realistic material
behavior. Indeed, the incompressibility is not the reality but merely an idealization, albeit volumetric deforma-
tions of rubberlike materials are actually very small, as shown in experimental studies earlier in, for example,
[15,22,31,34,37,61,67,68] and recently in, for example, [3,18], and many others. Extensive data may be found
in the monograph by Treloar [66]. Constitutive models for rubber elasticity with compressibility behavior were
investigated earlier in, for example, [1,13,19–21,27,50,54–56] and recently in [5,6,11,12,23,25,29,30,42–
46,49,51–53,62,64,65] and many others. Summaries/reviews of results may be found in [7,28] and [57–60].

The statistical and phenomenological approaches for obtaining elastic potentials (strain-energy or stored-
energy functions) have been discussed in Part 1, and related representative references may be found therein.
Here we relax the constraint of incompressibility and treat compressible deformations in a broad sense. Toward
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this goal, we shall extend and develop the main ideas and procedures suggested in Part 1, in conjunction with
new ideas of treating compressibility behavior. The main content is as follows. In Sect. 2, following Beatty
and Stalnaker [10] we introduce the Poisson function in the case of uniaxial extension/compression, which
will play an essential role in characterizing the compressibility behavior in the subsequent development. In
Sect. 3, with Hencky strain we introduce bridging and matching invariants for a general compressible case
and study their properties for future use. In Sect. 4, we first introduce a multi-axial bridging procedure based
on the bridging invariants given in Sect. 3 and then extend two one-dimensional potentials derived separately
from the uniaxial case and the shear case to obtain two multi-axial potentials; after that we further introduce a
multi-axial matching procedure based on the matching invariants given in Sect. 3 to eventually obtain a unified
form of multi-axial potential and then derive a unified form of multi-axial stress–strain relation. In Sect. 5, we
apply the explicit approach proposed with a simple form of rational interpolating function with two poles for
the uniaxial case and obtain a simple form of multi-axial potential with strain limit. We then show that this
limit is a counterpart of the well-known von Mises limit for stress in elastoplasticity. Finally, we derive the
predictions of the obtained model for the uniaxial, biaxial, plane-strain compression and simple shear cases
and compare the model predictions with test data. In Sect. 6 we present discussions and remarks concerning
a few related respects.

At the end of this introduction, we explain some relevant notations and facts concerning finite deformation
kinematics and hyper-elastic formulation. An account in a broad sense may be found in Haupt [35]. Let
(λ1, λ2, λ3) and (n1, n2, n3) be the three principal stretches and three corresponding orthonormal principal
axis vectors (Eulerian triad). Hencky strain of Eulerian type is of the form

h =
3∑

r=1

(ln λr )nr ⊗ nr .

The first, second, and third Hencky invariants are given by

ir = trhr = λr
1 + λr

2 + λr
3, r = 1, 2, 3,

and the second and third invariants of the deviatoric Hencky strain h̃ by

j2 = trh̃
2 = i2 − 1

3
i2
1 , j3 = trh̃

3
,

with

h̃ = h − i1

3
I .

Throughout, trT is used to represent the trace of tensor T , and I is the second-order identity tensor. Details
concerning Hencky strain and its computation may be found in [70].

Let σ be the Cauchy stress and τ the Kirchhoff stress (weighted Cauchy stress), that is,

τ = Jσ ,

with J the volumetric ratio. For a general case of compressible, isotropic hyper-elastic materials, there exists
an isotropic potential

W = W (h),

in terms of Hencky strain h, such that the Kirchhoff stress is directly derivable from this potential, namely (see
Hill [38,39], Fetzjerald [26], and also Xiao and Chen [79])

τ = ∂W

∂h
. (1)

As in [70], Hencky’s logarithmic strain [36] with its invariants will play a basic role. Hill [38,39] demon-
strated the inherent advantages of Hencky strain and gave prominence to Hencky strain in a general study
of constitutive inequalities (see also [40] and [63]). It is widely used in finite deformation problems. Its far-
reaching role in the consistent formulation of Eulerian finite elastoplasticity has further been disclosed most
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recently in, for example, [16,17] and [69–79] (see also [69] and [77] for review). Recent applications of Hencky
strain to finite elasticity are given in [1,2,4,16,17,23,24,26,44,76,79] and many others.

As indicated in [70], here Hencky strain stands out not only with its remarkable efficacy in constitutive
modeling with sharp accuracy, as evidenced in the studies by Anand [1,2], Criscione et al. [23], Diani and
Gillormini [24], Horgan and Murphy [44], and others, but perhaps more essentially with the fact that Hencky
strain will supply desirable invariants that will prove crucial to obtaining unified forms of multi-axial elastic
potentials via the multi-axial bridging/matching procedures, as will be seen in Sect. 4.

2 Poisson function and compressibility

In this section, with Hencky strain we study the uniaxial extension/compression of a compressible elastic
sample, with an intention to capture the essential feature of compressibility behavior.

Let e be a unit vector in the axial direction, and let λ and ρ be the axial stretch and the lateral stretch,
respectively. The Hencky strain h and the Cauchy stress σ for the uniaxial case are of the form

h = (ln λ)e ⊗ e + ln ρ(I − e ⊗ e), (2)

σ = σ e ⊗ e. (3)

In a uniaxial test, usually the nominal axial stress, denoted P , is given as a function of the axial stretch λ,
that is,

P = P(λ). (4)

The following relation holds true:

τ ≡ Jσ = λP(λ) (≡ f (ln λ)). (5)

In the above, τ is the axial component of the Kirchhoff stress τ = Jσ with J the volumetric ratio. Note
that the last equality simply indicates that the axial Kirchhoff stress τ is given above as a function of the axial
Hencky strain ln λ through the nominal axial stress as a function of the axial stretch, namely P(λ).

Significant information of the material characteristics, here rubber elasticity, is embraced in the relation P =
P(λ) and hence the relation τ = f (ln λ). Usually, data set for the pair (λ, P) (and hence for the pair (ln λ, τ))
will be supplied. Such data set is sufficient for the characterization of incompressible deformation behavior.
However, to characterize compressible deformation behavior, additional information will be necessary. This
has been shown in a detailed study by Beatty and Stalnaker [10] with a quantity named Poisson function. This
quantity establishes the relation between the axial and the lateral stretch. Inspired by Beatty and Stalnaker’s
idea, here we introduce the following relation:

ln ρ = −ν ln λ. (6)

In the above, the quantity ν is the ratio of the lateral to the axial Hencky strain. It is just the classical
Poisson ratio in the infinitesimal strain case. Generally, the ratio ν may rely on the axial stretch. As a result, in
a general case it is referred to as Poisson function. Its significance lies in the fact that essentially it represents
the compressibility property of a rubberlike material, as will be seen in the subsequent development. Toward
our goal, we regard the ratio ν to be a function of the first Hencky invariant i1, namely

ν = α(i1) = α(ln J ). (7)

This establishes the relationship between the ratio ν and the volumetric ratio J . For the case of incompress-
ibility, the volumetric ratio is constant, that is, J ≡ 1, and accordingly, the Poisson function is also constant
and given by 0.5. Namely,

ν = 1

2
for J ≡ 1. (8)

Both the data for axial stress (cf. Eq. (3) or (4)) and the data for the Poisson function (cf. Eq. (6)) will be
of significance for the purpose of characterizing compressible material behavior. From experimental facts, as
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will be indicated later on, the ratio ν changes with i1 very slowly, and therefore, its derivative will be treated
to be zero in the subsequent study, namely

ν′ = dν

di1
≈ 0. (9)

Other forms of the Poisson function may be introduced by different relations between the lateral and axial
stretches ρ and λ. Here, the use of Hencky strain will prove advantageous in treating rubberlike materials with
slight compressibility.

Experimental facts and properties of the Poisson function can be found in Beatty and Stalnaker [10].

3 Bridging invariants and matching invariants

As in [70], the main procedures of the explicit, straightforward approach to be proposed will be carried out by
means of certain Hencky invariants of desirable properties. Two groups of Hencky invariants will be introduced
here. Of them, one group is composed of the following three Hencky invariants:

q = i1

1 − 2ν
, (10)

ϕ = 1.5

1 + ν
ψ =

√
1.5 j2

1 + ν
, (11)

β = 2 sinh
(√

0.5 j2
)
, (12)

and the other group of the following two:

γ = √
6

j3√
j3
2

, (13)

χ = γ 2 = 6
j2
3

j3
2

. (14)

In the above, ν is the Poisson function introduced in the last section, and j2 and j3 are the second and third
invariants of the deviatoric Hencky strain h̃, as given at the end of the introduction. Moreover, the invariant ψ
is given by

ψ =
√

2

3
j2, (15)

which has been introduced in Part 1 for the incompressibility case.
The two groups of Hencky invariants as given above will be referred to as bridging invariants and matching

invariants for compressible deformations, respectively. Their meanings and roles will be explained in the next
section.

The three invariants β, γ , and χ are identical to their respective counterparts in Part 1. For the case of
incompressibility, the following hold:

i1 ≡ 0, ν = 1

2
.

In this case the invariant ϕ given here reduces to the invariant ψ , that is, the incompressibility counterpart
as given in [70]. Besides, the invariant q is here introduced exclusively for the purpose of capturing the feature
of compressibility.

The matching invariants are of the following properties:
{−1 ≤ γ ≤ 1,

0 ≤ χ ≤ 1. (16)

Refer to Part 1 for details.
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The gradients of the above invariants are given as follows:

∂q

∂h
= 1

1 − 2ν
I, (17)

∂ϕ

∂h
= 1

1 + ν

1

ψ
h̃, (18)

∂β

∂h
= 1

3

√
12 + 3β2 1

ψ
h̃ (19)

for the bridging invariants ϕ and β, and

∂γ

∂h
= 2

ψ
h̆, (20)

∂χ

∂h
= 4

γ

ψ
h̆ (21)

for the matching invariants γ and χ . As in Part 1, here and henceforth we use h̆ to designate the following
dimensionless tensor:

h̆ = 1

j2
2

(
3 j2 h̃

2 − 3 j3 h̃ − j2
2 I

)
, (22)

or, alternatively,

h̆ = 2

(
h̃
ψ

)2

− γ
h̃
ψ

− I . (23)

As in Part 1, this tensor will play a significant role in the ensuing development. Since the magnitude of the
tensor h̃/ψ is given by

√
1.5, the tensor h̆ is of finite magnitude for nonvanishing ψ = 0, that is, for

√
j2 �= 0.

A useful property of the tensor h̆ is as follows:

h̆ = O for repeated principal stretches. (24)

The following fact will also be useful: The three tensors (I, h̃, h̆) are three mutually orthogonal tensor
generators, and therefore, a complete, orthogonal representation for isotropic stress–strain relations may be
given in terms of these three generators. Details may be found in [70].

4 Multi-axial potentials via bridging and matching procedures

In this section, first we shall derive two one-dimensional potentials from test data of the uniaxial and shear
cases by means of an interpolating procedure for single-variable functions, and then from these two we obtain
two multi-axial potentials using a multi-axial bridging procedure and, eventually, obtain a unified form of
multi-axial potential using a multi-axial matching procedure.

4.1 One-dimensional potentials from uniaxial and shear tests

This will be done separately for the two cases at issue.
(a) Uniaxial case

The deformation and the stress of the uniaxial extension/compression is described in Sect. 2.4(a) in [70].
Usually, a data set for the pair (P, λ) is provided in the uniaxial test. Here P is the nominal axial stress, and
λ is the axial stretch. As in Part 1, let the data set (Pα, λα), α = 0, 1, . . . , N , supply N + 1 values of the
nominal stress P corresponding with N + 1 axial stretches λα, α = 0, 1, . . . , N . We convert such a data set



484 H. Xiao

to a data set (τα, hα) for the axial Kirchhoff stress τ = Jσ and the axial Hencky strain h = ln λ. This can be
done using the following relations:

{
τα = λαPα,
hα = ln λα.

(25)

First we intend to find out a one-dimensional relation between the axial Kirchhoff stress τ and the axial
Hencky strain h, that is,

τ = f (h),

which exactly matches the data set (τα, hα), α = 0, 1, . . . , N . This can be done by choosing a usual interpolat-
ing function in a certain class of functions. To this end we may take three classes of functions into consideration,
namely polynomial functions, cubic spline functions, and rational functions, as elaborated upon in [70]. Here
we record the results below. Details may be found in [70].
(a1) Polynomial interpolating function:

In this case, the one-dimensional stress–strain relation is of the following form:

τ = f (h) =
N∑

α=0

σαLα(h), (26)

where the (N + 1) base functions are of the form

Lα(h) =
N∏

t=0(�=α)

h − ht

hα − ht
, α = 0, 1, . . . , N . (27)

(a2) Cubic spline functions
In this case, the one-dimensional stress–strain relation is piecewise given by

{
τ = f (h) = ar (h − hr )

3 + br (h − hr )
2 + cr (h − hr )+ σr , hr ≤ h ≤ hr+1,

r = 0, 1, . . . , N − 1,
(28)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar = 1
6
πr+1−πr
hr+1−hr

,

br = 1
2πr ,

cr = πr+1−πr
hr+1−hr

− 1
6 (hr+1 − hr )(πr+1 + πr ),

r = 0, 1, . . . , N − 1.

(29)

In the above, the (N + 1) parameters π0, π1, . . . , πN will be determined by the continuity conditions up to
twice differentiation at the (N − 1) inner points as well as two conditions at the two endpoints. Different kinds
of conditions may be prescribed at the two endpoints, which result in different types of cubic spline functions,
for instance, the vanishing curvature, parabolic runout, cubic runout conditions at the two endpoints, etc. Here
we take the first as an illustrative example. Thus, we obtain a natural cubic spline function with the N + 1
parameters π0, π1, . . . , πN given by

π0 = πN = 0 (30)

and
{
πN = 0,
πi−1 = piπi + qi for i = N , . . . , 2, (31)
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where
⎧
⎨

⎩

p1 = 0,

pi = −1
4+pi−1

,
(32)

⎧
⎨

⎩

q1 = 0,

qi = σi+1−2σi +σi−1−qi−1
4+pi−1

,
(33)

for i = 2, . . . , N .
(a3) Rational interpolating functions

In this case, in general the stress–strain relation is given by a rational function of the form:

σ = f (h) = Qm(h)

Qn(h)
, (34)

where the nominator Qm(h) and the denominator Qn(h) are polynomial functions of degree m and degree n,
respectively. For given positive integers m and n of interest, it is to find out two such polynomials Qm(h) and
Qn(h) that the rational function Qm(h)/Qn(h) exactly matches or best approximates the test data. The typical
features of rational functions are the incorporation of certain limiting points known as poles. Whenever the
variable, here the axial Hencky strain h, is approaching a pole, the value of the function grows indefinitely.
Rational functions with any given number of poles may be constructed. The simplest case of rational functions
with two poles he and −hc at extension and compression is as follows:

τ = f (h) = Eh(
1 − h

he

) (
1 + h

hc

) . (35)

Further discussion will be made in Sect. 6.
With a one-dimensional stress–strain relation as given above, it is then ready to arrive at a one-dimensional

potential. As in Part 1, this will be done simply by integrating the stress power.
For compressible deformations, the stress power per unit reference volume is given by

Ẇ = τ : D. (36)

For the case of uniaxial loading, this yields

Ẇ = τ ḣ, h = ln λ.

By integrating this, we arrive at a one-dimensional potential for the uniaxial case as follows:

w1 =
h∫

0

τdh =
h∫

0

f (h)dh (≡ w1(h)). (37)

It should be noted that, for the uniaxial case, a complete one-dimensional potential w1 = w1(h) should be
given for both positive and negative values of the axial Hencky strain h. This means that the test data should
be available for both extension and compression.
(b) Simple shear case

The deformation and the stress for the simple shear case may be found in Sect. 2.4(d) in [70]. In this
case, a data set (τ0, ω0), (τ1, ω1), . . . , (τN , ωN ) is supplied for the shear stress τ and the shear amount ω.
Here we set

ω0 = 0, τ0 = 0;
0 < ω1 < ω2 < · · · < ωN .

The former corresponds with an undeformed natural state.
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Following the procedures as elaborated upon for the uniaxial case, via an interpolating function, we obtain
a relation between the shear amount ω and the shear stress τ :

τ = g(ω). (38)

The function g(ω) is given simply by replacing (τ, h) with (τ, ω) and then replacing f with g in the case of
uniaxial loading.

Now the stress power is given by

Ẇ = τ : D = τ ω̇,

for the simple shear case. Hence, by integrating the above expression, we obtain a one-dimensional potential
as follows:

w0 =
ω∫

0

g(ω)dω (≡ w0(ω)). (39)

One-dimensional potentials may be obtained from other approaches. Details in this respect may be found
in Sect. 4.3 in [70].

4.2 Multi-axial potentials via bridging procedure

The two one-dimensional potentials in the last section are derived exclusively for the uniaxial case and the
simple shear case, separately. As has been done in Part 1, we shall obtain two multi-axial potentials by means
of a multi-axial bridging procedure based on the Hencky invariants q, ϕ, β, and γ as introduced by Eqs. (10)–
(13) in Sect. 3. The first three are referred to as bridging invariants because they establish bridging relationships
between the uniaxial and shear cases and multi-axial cases. This may be seen from their following properties:

q = ln λ, (40)

ϕ =
{+ ln λ for λ ≥ 1,

− ln λ for λ ≤ 1, (41)

for the uniaxial loading case (cf. Eqs. (2) and (6)), and
{
ψ = 2√

3
sinh−1

(
ω
2

)
,

β = ω,
(42)

for the simple shear case. Note that for the simple shear case the Hencky strain is of the form (cf. Eq. (53) in
[70]):

h = h̃ = sinh−1
(
ω
2

)
√

1 + (
ω
2

)2

(
ē ⊗ ā + ā ⊗ ē + ω

2
(ē ⊗ ē − ā ⊗ ā)

)
. (43)

From Eqs. (41)–(42) it may be clear that the Hencky invariants ϕ and −ϕ yield the axial Hencky strain for
uniaxial extension and compression, respectively, while the Hencky invariant β produces the shear amount for
simple shear. The relationships between the uniaxial and shear cases and multi-axial cases are thus established
via the Hencky invariants q, ϕ, and β.

Now it is opportune to extend the two one-dimensional potentialsw0(ω) andw1(h) to the multi-axial case.
At first, the multi-axial extension of the one-dimensional potentialw0(ω) for the simple shear is straightforward
and leads to the following multi-axial potential:

W0 = w0(β) = w0

(
2 sinh

(√
3

2
ψ

))
. (44)

However, it may not be so directly possible to achieve a multi-axial extension of the one-dimensional
potentialw1(h), since here two cases for extension and compression need to be distinguished and, furthermore,
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the volumetric deformation should be taken into account. The Hencky invariants q, ϕ, γ given by Eqs. (10)–
(11) and (13) are introduced just for this purpose. In fact, with Eq. (2) we infer that the invariant γ is of the
following property:

γ =
{+1 for λ ≥ 1,

−1 for λ ≤ 1, (45)

for the uniaxial case. As such, the invariant γ plays a role in matching uniaxial tension and compression.
On the other hand, a bridging invariant characterizing the volumetric deformation should come into play

in a general case of compressible deformations. This is just the invariant q (cf. Eq. (10)), which will be used to
incorporate into the final unified potential a direct contribution exclusively from the volumetric deformation
part, as will be seen in next subsection. Here, with the Hencky invariants q, ψ, −ψ and γ as well as the
Poisson function ν, we obtain a multi-axial extension of the one-dimensional potential for the uniaxial case as
follows:

W̄1 = 1 − 2ν

3
w1(q)+ 2

3
(1 + ν)

(
1 + γ

2
w1(ϕ)+ 1 − γ

2
w1(−ϕ)

)
, (46)

with the Hencky invariants q, ϕ and γ given by Eqs. (10), (11), and (13). From the bridging properties of q and
ϕ and the matching property of γ , as shown in Eqs. (40)–(41) and (45), it follows that the above multi-axial
potential W̄1 indeed yields the one-dimensional potential in the uniaxial case. Note that the factor (1 − 2ν)/3
emerges in the first part above representing a direct contribution exclusively from volumetric deformation.
This factor arises from the fact that the hydrostatic stress part in the derived stress–strain relation should be
given by f (q)/3. Since both w1(q) and the content in the brackets in the second part above, that is,

1 + γ

2
w1(ϕ)+ 1 − γ

2
w1(−ϕ),

yield the one-dimensional potential w1(h) in the uniaxial case, as has been shown in Part 1, it may be clear
that the matching factors for w1(q) and for this content are just the factor (1 − 2ν)/3 and 1 − (1 − 2ν)/3, thus
leading to the multi-axial potential W̄1 given by Eq. (46).

4.3 Unified multi-axial potential via matching procedure

Since no correlation need be assumed between the two one-dimensional potentials, the two multi-axial poten-
tials in the last subsection are independent of each other and therefore either of them could not exactly match
two data sets for both uniaxial test and shear test, albeit either of them exactly matches one corresponding
data set on account of the bridging properties of the four Hencky invariants therein. However, it is possible
to obtain a unified form of potential from a simple combination of these two. The idea is to use a multi-axial
matching method based on the Hencky invariant χ given by Eq. (14), as will be explained below.

The invariant χ given by Eq. (14) is of the following property (cf. Eq. (2) and (43)):

χ =
{

0 for simple shear,
1 for uniaxial case. (47)

It is just owing to the above matching properties that the Hencky invariant χ is referred to as matching
invariant. Now with this invariant we combine the two multi-axial potentials W0 and W1 given by Eqs. (44)
and (46) into the following unified potential:

W = χ W̄1 + (1 − χ)

(
W0 + 1 − 2ν

3
w1(q)

)
. (48)

In the second part above, the term (1 − 2ν)w1(q)/3 is also included as in W̄1. This term vanishes in the
simple shear case and hence gives no contribution to the one-dimensional potential in this case. In so doing,
we intend to incorporate into the unified potential a direct contribution from the volumetric deformation part
as represented by the bridging invariant q and, in the meantime, to simplify the final result. Now we have

W = 1 − 2ν

3
w1(q)+ 1 + ν

3
χ ((1 + γ )w1(ϕ)+ (1 − γ )w1(−ϕ))+ (1 − χ)w0 (β) , (49)
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with the bridging and matching invariants q, ψ, β, γ, χ given by Eqs. (10)–(14). It is clear that the first part
above represents a direct contribution from the volumetric deformation part. The factor (1 − 2ν)/3 arises
from the fact that the derived hydrostatic stress part should be given by f (q)/3, as has been indicated before.
Another significant role of the bridging invariant q will be indicated shortly at the end of this subsection.

With the expression (49) for the unified potential and with the bridging/matching properties as shown by
Eqs. (40)–(42), (45), and (47), the meanings of the bridging invariants ψ and β and the matching invariants
γ and χ may become evident. Indeed, thanks to their respective “bridging” and “matching” properties, the
unified potential exactly matches data of uniaxial and shear tests.

Now with the unified potential W given by Eq. (49), the multi-axial stress–strain relation is obtainable
from Eq. (1) for compressible hyper-elastic materials. We have

τ = ∂W

∂h
= 1 − 2ν

3
f (q)

∂q

∂h
+ χ

∂W1

∂h
+ (1 − χ)

∂W0

∂h
+ (W1 − w0(β))

∂χ

∂h
, (50)

with

W1 = 1 + ν

3
((1 + γ )w1(ϕ)+ (1 − γ )w1(−ϕ)) . (51)

∂W0

∂h
= g(β)

∂β

∂h
, (52)

∂W1

∂h
= 1 + ν

3
((1 + γ ) f (ϕ)− (1 − γ ) f (−ϕ)) ∂ϕ

∂h
+ 1 + ν

3
(w1(ϕ)− w1(−ϕ)) ∂γ

∂h
, (53)

and the gradients of the five invariants q, ϕ, β, γ , and χ given by Eqs. (17)–(21). With the above results we
arrive at

τ = 1

3
f (q)I + ζ̃ h̃ + ζ̆ h̆, (54)

where the tensor h̆ is given by Eq. (22) or (23) and the invariant coefficients ζ̃ and ζ̆ are given by

ζ̃ = χ

1 + ν

(
1 + γ

2

f (ϕ)

ϕ
− 1 − γ

2

f (−ϕ)
ϕ

)
+ 1 − χ

3

√
12 + 3β2 g(β)

ψ
, (55)

ζ̆ = χ

ϕ
(w1(ϕ)− w1(−ϕ))+ 4

γ

ψ
(W1 − w0(β)) . (56)

From the property of the tensor h̆, as shown by Eq. (24), it may be concluded that the last term in the
stress–strain relation (54) comes into play only for the case of three distinct principal stretches.

To conclude this subsection, we indicate that the stress–strain relation (54) with Eqs. (55)–(56) reduces to
the stress–strain relation derived in Part 1 for incompressible materials. Indeed, with i1 = 0 and ν = 0.5 for
the incompressibility case, the three invariant coefficients given by Eqs. (55)–(56) yield ζ0 = 0 and the two
given by Eqs. (88)–(89) in [70], and, furthermore, the invariant q will be given as an indefinite limit, say q0,
namely

i1

1 − 2ν
→ q0,

with i1 → 0 and (1 − 2ν) → 0. As a result, the first part in Eq. (53) will produce an indefinite hydrostatic
stress part p I .

It turns out that the invariant q establishes bridging relations in a double sense. One is the relation between the
uniaxial case and multi-axial case, and the other is the relation between compressibility and incompressibility.

4.4 Results from the uniaxial case alone

It is possible that the multi-axial potential W̄1 derived from the uniaxial test alone, as given by Eq. (46),
may serve as a unified potential in a sense of good approximation. This implies that the potential W̄1 given
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by Eq. (46) may yield the one-dimensional potential w0(β) in the simple shear case. As a result, W̄1 alone
provides a unified potential desired, that is, W = W1. Thus, we have

⎧
⎪⎨

⎪⎩

W = 1−2ν
3 w1(q)+ 1+ν

3 ((1 + γ )w1(ϕ)+ (1 − γ )w1(−ϕ)),

τ = 1
3 f (q)I + 1

1+ν
(

1+γ
2

f (ϕ)
ϕ

− 1−γ
2

f (−ϕ)
ϕ

)
h̃ + 1

ϕ

(∫ ϕ
−ϕ f (x)dx

)
ĥ.

(57)

This multi-axial potential may be attractive, since it is determined solely from the data of uniaxial test. As
will be seen in Sect. 6, even such a simple form of stress–strain relation may achieve accurate matches with
test data.

4.5 Continuous differentiability

Since (I, h̃, h̆) are three mutually orthogonal tensor generators, as indicated at the end of Sect. 3, Eq. (54)
furnishes a complete orthogonal representation for isotropic compressible elastic stress–strain relation. An
orthogonal representation in a broad sense was presented first in Criscione et al. [23] and later in Xiao et al.
[75]. According to the general result proved in Xiao et al. [75], such an orthogonal representation is continuously
differentiable. This fact may be demonstrated by following the procedure for incompressible deformations in
Part 1. Indeed, it may be evident that the stress–strain relation (54) with (55)–(56) is continuously differentiable
for

√
j2 �= 0. The same is true for the case when

√
j2 is going to vanish. In fact, we have the following

expansions:

f (ϕ) = Eϕ + O(ϕ2),

g(β) = √
3Gψ + O(ψ2),

w1(ϕ) = 1

2
Eϕ2 + O

(
ϕ3) ,

w0(β) = 3

2
Gψ2 + O(ψ3),

W1 = 3

4

E

1 + ν
ψ2 + O(ψ3),

for an infinitesimal
√

j2. Here, E and G are Young’s modulus and shear modulus at infinitesimal strain and
related to each other via the Poisson ratio ν, that is,

E = f ′(0), G = g′(0),
E = 2G(1 + ν).

Utilizing these we infer that the two invariant coefficients given by Eqs. (55)–(56) may be expressed as
follows:

ζ̃ = 2G + O
(√

j2
)
,

ζ̆ = O( j2),

and, accordingly,

Jσ = 1

3
f (q)I + 2G h̃ + O( j2),

for an infinitesimal
√

j2. Thus, from this and the fact that both γ and h̆ are finite for nonvanishing j2 �= 0, it
follows that the stress–strain relation (54) with Eqs. (55)–(56) is continuously differentiable whenever

√
j2 is

going to vanish.
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5 Predictions for five benchmark tests

In this section we are going to study the predictions of the unified potential given by Eq. (49) for the five cases
including the all-round compression, uniaxial, biaxial, plane-strain compression, and simple shear tests. The
deformation and stress states for the last four tests have been described in detail in §2.4(a)–(d) in [70]. Results
will be derived one by one using the multi-axial stress–strain relation given by Eq. (53) with Eqs. (54)–(56).
(a) All-round compression

This is the simplest case with the following forms of Hencky strain and Cauchy stress:

h = 1

3
(ln J )I, σ = p I . (58)

Hence, we have

j2 = 0.

From Eqs. (53)–(56) we obtain

Jσ = 1

3
f (q)I . (59)

Hence,

p = 1

3
J−1 f

(
ln J

1 − 2ν

)
. (60)

This result supplies the relation between the volumetric ratio J and the all-around pressure p.
(b) Uniaxial case

The Hencky strain is of the form given by Eq. (2). Since there is a pair of repeated principal stretches, we
have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q = ln λ+2 ln ρ
1−2ν , ϕ = | ln λ−ln ρ|

1+ν ,

γ 2 = 1, χ = 1, ζ̃ = 1
3

1
1+ν

f (ln λ)
ln λ−ln ρ ,

h̆ = O, h̃ = 1
2 (ln λ− ln ρ)(3e ⊗ e − I).

(61)

From these and Eq. (45) as well as Eqs. (53)–(56), we obtain the stress as follows:

Jσ = 1

3
f

(
ln λ+ 2 ln ρ

1 − 2ν

)
I + 1

3
f

(
ln λ− ln ρ

1 + ν

)
(3e ⊗ e − I). (62)

Since the stress is of the form given by Eq. (3), we derive

f

(
ln λ+ 2 ln ρ

1 − 2ν

)
= f

(
ln λ− ln ρ

1 + ν

)
, (63)

τ = Jσ = f

(
ln λ− ln ρ

1 + ν

)
. (64)

With a function f (x), the former should be met for every stretch λ, thus leading to

ln λ+ 2 ln ρ

1 − 2ν
= ln λ− ln ρ

1 + ν
,

and then to
{

ln λ = −ν ln ρ,
τ = Jσ = f (ln λ). (65)

The above results clearly show that all the features of the uniaxial case are exactly derived; in particular,
this is the case for the relation between the axial and the lateral stretches.
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(c) Biaxial case
The Hencky strain of the equi-biaxial loading case is of the same form as in the uniaxial loading case and

also given by Eq. (2). The difference is that the unit vector e is now the normal to the loading plane and that it
is set free in the direction along e. Moreover, now ρ is the stretch in the loading direction, while λ is the stretch
in the free direction normal to the loading plane. As a result, Eqs. (61)–(62) remain true. Now the Cauchy
stress is of the form:

σ = σ̄ (I − e ⊗ e), (66)

with the normal stress σ̄ along two mutually perpendicular directions. From this and Eq. (62) we infer

f

(
ln λ+ 2 ln ρ

1 − 2ν

)
= −2 f

(
ln λ− ln ρ

1 + ν

)
, (67)

τ = J σ̄ = − f

(
ln λ− ln ρ

1 + ν

)
. (68)

Let the function f (·) be invertible and its inverse be f −1(·). From the above two we deduce

ln λ− ln ρ

1 + ν
= f −1(−τ),

ln λ+ 2 ln ρ

1 − 2ν
= f −1(2τ).

These two yield

ln λ = 2

3
(1 + ν) f −1(−τ)+ 1

3
(1 − 2ν) f −1(2τ), (69)

ln ρ = −1

3
(1 + ν) f −1(−τ)+ 1

3
(1 − 2ν) f −1(2τ). (70)

For a case of slight compressibility with ν very close to 0.5, the latter two reduce to
{

ln λ = −2 ln ρ,
σ̄ = − f (ln λ) = − f (−2 ln ρ). (71)

This recovers the universal relation between the uniaxial and the biaxial cases, as indicated in Theorem A
in a previous study [70].
(d) Plane-strain compression/extension

The Hencky strain is of the form

h = (ln ξ)e ⊗ e + (ln η)a ⊗ a

and the Cauchy stress is of the form

σ = xe ⊗ e + yb ⊗ b (72)

Here, the orthonormal unit vectors (e, a, b) are in the loading, free, and constrained directions, respectively;
ξ and η are the stretches in the loading and free directions, respectively; and x and y are the normal stresses
in the loading and the constrained direction, respectively.

For the sake of simplicity, here we confine ourselves to a case of near incompressibility, namely

ξη = 1

nearly holds. Hence, we have the following good approximation:
⎧
⎨

⎩
i1 = 0, j3 = 0, γ = 0, χ = 0, β = ξ − ξ−1, ψ = 2√

3
ln ξ,

h̃ = ln ξ(e ⊗ e − a ⊗ a)
(73)
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for near incompressibility. Utilizing these and Eqs. (53)–(56), we obtain the following reduction:

σ = 1

3
f

(
i1

1 − 2ν

)
I + 1

3

√
12 + 3β2 g(β)

h̃
ψ

(74)

for near incompressibility. Now in the above either i1 = ln(ξη) or (1 − 2ν) nearly but not exactly vanishes.
From this and Eqs. (72) and (73)2 we deduce

⎧
⎨

⎩

1
3 f

(
ln ξ+ln η

1−2ν

)
= 1

2 (ξ + ξ−1)g(ξ − ξ−1),

x = 2y = (ξ + ξ−1)g(ξ − ξ−1).

(75)

The first expression above gives the stretch η in the free (unconstrained) direction in terms of the stretch ξ
in the loading direction, namely

ln η = − ln ξ − (1 − 2ν) f −1
(

1

2
(ξ + ξ−1)g(ξ − ξ−1)

)
, (76)

while the second in Eq. (75) gives the normal stress in the loading direction. Note that the above solution is
accurate to the first order for near incompressibility. For a general case of compressibility, it does not appear
to be possible to derive an explicit solution due to strong coupling between the two deformation quantities and
the stresses.
(e) Simple shear

The Hencky strain is given by Eq. (43). In this case we have
⎧
⎨

⎩

i1 = 0, j3 = 0, γ = 0, χ = 0, β = ω,

ψ = 2√
3

sinh−1
(
ω
2

)
.

(77)

From these and Eq. (43) again we arrive at Eq. (74) with i1 = 0 and hence the first part vanishing. Thus,
we infer that the shear stress component is given by

τ = g(ω). (78)

This is exactly the stress–deformation relation for the simple shear case. For every incompressible elastic
material, there is an exact correlation between the plane-strain compression and the simple shear case, as
indicated in Theorem B in [70].
(f) A summary

In a sense of first-order accuracy for near incompressibility, the results derived above agree with those
derived in [70] for the incompressibility case. According to Theorem C in [70], the unified potential exactly
matches data of four tests in the case of incompressibility. For rubberlike materials, the deformation is nearly
incompressible; the above results may suggest that the unified form of potential derived may accurately match
data for five tests including the all-round compression test.

6 Multi-axial potential with strain limit

From data of uniaxial and simple shear tests, it may be a straightforward matter to obtain a unified multi-axial
elastic potential following the explicit procedures as explained in the preceding sections. As indicated in Sect.
3.1, an interpolating or approximating procedure for single-variable functions may be used to match data
sets of uniaxial and shear tests, separately. Of them, a choice of either a Lagrange’s interpolating polynomial
or a cubic spline may be direct, while that may not be the case for the choice of a rational interpolating or
approximating function. However, it is known that rubber elasticity exhibits strain stiffening effects. A rational
function may be surprisingly powerful and accurate in characterizing limiting behavior with such effects.

Indeed, test data for rubbers in the uniaxial, plane-strain compression, and simple shear cases display the
aforementioned strain stiffening effects, namely the stress tends to grow indefinitely as the strain is approaching
a limit (see, e.g., [5,14,32,33]; see also [8,9,41,47,48,60], among many others). Mathematically, a one-
dimensional stress–strain curve with such extremal property incorporates limit points known as poles. As
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h
hec−h

f

Fig. 1 Uniaxial stress–strain curves with extension and compression limits

is schematically shown in Fig. 1 for a uniaxial stress–strain curve, there are two poles at extension and
compression, separately, referred to as extension limit and compression limit and denoted he and hc. It is well
known that the incorporation of poles is just the typical feature of a rational function. On account of this, it
may be judicious to take into consideration a rational function as an interpolating or approximating function
for a one-dimensional stress–strain relation with the foregoing limiting behavior. Following an idea of treating
boundary layer effects in perturbation theory, as has been suggested in [70], we propose a simple form of
uniaxial stress–strain relation of rational function type with limiting properties as follows:

τ = f (h) = 2Eh(
1 − h

he

) (
1 + h

hc

) − Eh. (79)

In the above expression, the parameters E, he and hc are of direct physical meanings in a phenomenological
sense. In fact, E is Young’s modulus at infinitesimal strain, and he and hc are the magnitudes of the two limits
at extension and compression, as has been indicated before.

With Eq. (79), the one-dimensional potential is given by (cf. Eq. (37))

w1(h) = −1

2
Eh2 − E

2hehc

he + hc

(
he ln

(
1 − h

he

)
+ hc ln

(
1 + h

hc

))
. (80)

Then, a multi-axial potential via the multi-axial bridging/matching procedure is given by Eq. (46). If we
go further to assume that the latter may yield the one-dimensional potential for the simple shear case, then we
infer that a unified potential may be given by Eq. (57)1, and hence, we have

W = 1 − 2ν

3
w1(q)− 1 + ν

3
Eϕ2 + 4

3
(1 + ν)

Ehehc

he + hc

(
γ he ln

(
1 + ϕ

he

)

+ γ hc ln

(
1 − ϕ

hc

)
− 1 + γ

2

(
he ln

(
1 − ϕ2

h2
e

)
+ hc ln

(
1 − ϕ2

h2
c

)))
, (81)

with the Hencky invariants q, ϕ and γ given by Eqs. (10), (11) and (13). Accordingly, a multi-axial stress–strain
relation is of the form (cf. Eq. (57)2)

σ = 1

3
f (q)I + ζ̃ h̃ + ζ̆ h̆, (82)
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with

f (q) = 2Eq(
1 − q

he

) (
1 + q

hc

) − Eq, (83)

ζ̃ = E

1 + ν

⎛

⎝ 1 + γ(
1 − ϕ

he

) (
1 + ϕ

hc

) + 1 − γ(
1 + ϕ

he

) (
1 − ϕ

hc

) − 1

⎞

⎠ , (84)

ζ̆ = −2E
hehc

he + hc

(
he

ϕ
ln

1 − ϕ
he

1 + ϕ
he

+ hc

ϕ
ln

1 + ϕ
hc

1 − ϕ
hc

)
. (85)

Two perhaps noticeable features of the above multi-axial stress–strain relation are explained below. First,
since both the compression and the extension limit, hc and he, are usually very large, Eq. (82) with Eqs. (83)–
(85) leads to the following Hencky model (cf. Anand [1]):

σ = 2Gν

1 − 2ν
I + 2Gh, (86)

at small to moderate deformation, that is, λ ∈ [0.7, 1.3] (cf. Anand [1,2]; here 2G = E/(1 + ν) is the
shear modulus). Next, the strain stiffening effect takes place when the Hencky strain h is approaching a limit
prescribed below:

{−(1 − 2ν)hc ≤ ln J ≤ (1 − 2ν)he,
−(1 + ν)hc ≤ ln λ− ln ρ ≤ (1 + ν)he

(87)

for the cases of two coalescent principal stretches, that is,

λ1 = λ, λ2 = λ3 = ρ,

and

{−(1 − 2ν)hc ≤ ln J ≤ (1 − 2ν)he,
1
2 j2 − 1

3 (1 + ν)2h2
e ≤ 0

(88)

for three distinct principal stretches, that is,

λ1 �= λ2 �= λ3 �= λ1.

In Eq. (88), j2 is the second invariant of the deviatoric Hencky strain and he is the extension limit. Here,
note that the magnitude of the compression limit is taken to be greater than that of the extension limit, that
is, hc > he. As in [70], the limit (88)2 for Hencky strain is also the counterpart of the well-known von Mises
limit for the Cauchy stress in elastoplasticity as shown below:

1

2
J2 − 1

3
r2

0 ≤ 0, (89)

where J2 is the second invariant of the deviatoric Cauchy stress and r0 is the yield limit.
A detailed study by Anand [1,2] shows that the Hencky model (86) accurately matches test data from small

to moderate deformations. Furthermore, with the typical limiting feature of rational function with poles, the
equation (82) also accurately matches test data at large deformations. From these it may be expected that the
model proposed here accurately matches test data from small to large deformations. To see this clearly, we
compare the predictions of the model given by Eq. (82) with the test data from Treloar [66]. Here, uniaxial
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Fig. 2 Model predictions and test data from Treloar [66]: the upper, middle, lower curves, and the associated three types of points
for the test data of biaxial, plane-strain, and uniaxial extension, respectively; x and y for the stretch and nominal stress in the
loading direction, respectively

extension, biaxial extension, and plane-strain extension are taken into account. The predictions of the model
(82) for these three cases are as follows:

P1

E
=

(
2(

1 − ln x
he

) (
1 + ln x

hc

) − 1

)
ln x

x
, (90)

P2

E
= 3

1 + ν

(
2(

1 + 3
1+ν

ln x
he

) (
1 − 3

1+ν
ln x
hc

) − 1

)
ln x

x
, (91)

P0

E
= 4

3

( 2hc
he+hc

1 − 4
3

(
ln x
he

)
2

+
2he

he+hc

1 − 4
3

(
ln x
hc

)
2

− 1

)
ln x

x
. (92)

In the above, x represents the stretch in the loading direction in the cases of uniaxial, biaxial, and plane-
strain extension, separately, and P0, P1 and P2 are the nominal stresses in the loading direction in the three
cases. The second expression above presents the result of the first-order accuracy for slight compressibility.
As in [70], here the extension limit he and the compression limit hc are taken as follows:

he = ln 8.48, hc = ln 37, (93)

and, in addition, the Poisson ratio ν is given below:

ν = 0.499.

With these parameters, the P0/E versus x, P1/E versus x, P2/E versus x curves are plotted in Fig. 2.
Results are actually the same as those in Part 1. Accurate matches with the test data from Treloar [66] are
achieved over the whole range from small to large deformation. In particular, that is the case from small to
moderate deformation. In this respect, it may be noted that the usual models to date achieve good agreement
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Fig. 3 Model prediction and test data from [61]: x for λ− 1 and y for 10,000(J − 1)

with data either merely at small deformation or merely at large deformation and that good agreement at small
to large deformation necessitates further treatment. On the other hand, test data were presented by Penn [61]
in a study of the volumetric deformation in the uniaxial extension. The model prediction with the Poisson ratio
ν as introduced in Sect. 2 (cf. Eq. (6)) is as follows:

J − 1 = λ1−2ν − 1. (94)

This prediction is compared with Penn’s data. The result with ν = 0.499826 is shown in Fig. 3.

7 Discussion

Essential features of compressible elastic deformations may be identified in and extracted from test data of
uniaxial extension and compression. In addition to the usual well-known relation between the axial stretch and
the axial stress, it is realized that the Poisson ratio (function) ν as introduced in Sect. 2 via Hencky strain may
be essential for characterizing the compressibility behavior. With an explicit, straightforward approach as has
been shown in the preceding sections, a unified multi-axial elastic potential may be obtained by incorporating
these material characteristics from the uniaxial test and also from the simple shear test. As has been shown, the
multi-axial bridging/matching procedures play substantial roles. The essence of the new approach proposed
lies in the fact that these procedures based on the Hencky invariants named bridging and matching invariants
may extract and recover information for multi-axial deformation behavior from the information compressed
and condensed in one-dimensional data for uniaxial and shear tests and even for uniaxial test alone. It has been
demonstrated that simple models with accurate correlations with test data for various modes of deformation
may be derived even solely from the case of uniaxial extension and compression.

A compressible model may be free from the need of particular numerical treatment for the incompressibility
constraint. However, an incompressible model is attractive with the far-reaching deformation uncoupling
resulting from the incompressibility condition. In contrast with this, there exists strong coupling between
strain components in a broad case of compressible deformation, that is, the case even in such simple cases as
uniaxial and biaxial extension.
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Remarks on three types of interpolating functions may be found in [70]. Results with polynomial interpo-
lating functions and cubic splines and other classes of interpolating functions will be presented elsewhere.
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