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Abstract An attempt to more accurately describe the boundary conditions of the standardized Brazilian disc
test is presented. Specifically addressed is the problem of quantitatively relating the radial pressure with the
tangential (frictional) stresses generated at the disc–jaw interface according to a physically acceptable law. A
novel approach is proposed based on the notion that friction is directly related to the mismatch between the
tangential components of displacement of the disc and jaw along their common interface due to the different
deformability of the two materials. The surface displacements in both jaw and disc are determined using the
complex potentials method, and the difference between their tangential components along the common con-
tact arc is calculated. This difference in combination with the radial contact pressure tends to generate relative
lateral displacements between the disc and jaw that are counterbalanced by frictional forces. The distribution
of friction stresses along the contact rim obtained from the present approach fulfils all physical and intuitive
imposed conditions. In addition, it is strongly skewed, attaining its maximum value at two-thirds distance
from the centre of the contact arc, in good agreement with the earlier results based on a completely different
approach.

1 Introduction

The compression of circular discs between either flat or curved metallic jaws (usually referred to as the Brazilian
disc test) was proposed simultaneously but independently by Carneiro [1] and Akazawa [2] as a convenient
substitute for the direct tension test for concrete specimens. Today, the test is widely used for a much broader
class of materials.

Despite its widespread use, some doubts about its validity are still expressed. The most critical ones are
perhaps those related to the influence of the tangential (frictional) stresses developed within the disc–jaw con-
tact area, and (closely connected with these frictional stresses) the premature fractures sometimes appearing
in the immediate vicinity of the disc–platen interface.

In [3], Fairhurst attempted a quantification of the influence of these stresses and concluded that “. . . care
must be taken to minimize tangential stresses along the loaded rim, since these may significantly modify the
stresses induced in the disc, making any analysis based on radial loading . . . invalid”. Along similar lines,
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Colback [4] criticized the use of soft plastics as inserts (load distributors) between the disc and jaw since they
“. . . are liable to extrude under load and thereby induce tangential tensile stresses . . .”. A few years later,
Hooper [5] considered the failure mechanisms activated during diametral compression of glass cylinders and
emphasized that “. . . The mode of fracture . . . can be explained at least qualitatively in terms of the tensile
stresses generated in the contact region”.

The first attempt to determine analytically the influence of interfacial frictional stresses on the stress field
developed in the Brazilian disc is perhaps by Addinall and Hackett [6]. Almost four decades later, Lavrov and
Vervoort [7] proposed an analytical solution for a general distribution of tangential traction along the disc–jaw
contact rim and obtained the Cartesian components of the stress field in the form of infinite series. Based on
the results of their solution, Lavrov and Vervoort concluded that “. . . the influence of the friction (shear) force
applied over two opposite arcs, on the stress distribution over the major part of the main diameter in Brazilian
tests can be neglected in most cases, at least if the magnitude of the tangential stress is <50% of the radial
load”. In addition, it was pointed out that “. . .when the magnitude of the tangential stress is of the order of
0.5 of the radial stress, significant changes in the stress field in the vicinity of the boundary are observed . . .”
and also that under certain conditions “. . . friction can provide even more ambiguity in the interpretation of
the test results than it is usually believed”.

It could be argued at this point that tangential stresses equal to 50 % of the respective radial stresses are
unlikely to appear in practical applications and that even if this were to be the case, the alteration of the
overall stress field is confined to a very small area around the disc–jaw interface. Unfortunately, even this
strongly localized alteration could have a crucial influence on the validity of results obtained from Brazilian
disc tests. Indeed, using the boundary element method, Lanaro et al. [8] reached the conclusion that “The
boundary conditions . . . drastically affect the strength of the simulated Brazilian test results. Negative and
positive friction seems to have the same effect on the strength whereas the model with no boundary friction
exhibited a much higher strength . . .”. Similar conclusions were drawn by Hudson et al. [9] who stressed that
“. . . cracks initiated directly below the loading points in the Brazilian test for both flat steel platen loading and
10oradiused end-cap loading for marble and granite specimens. Since failure did not originate at the centre of
the disc in the assumed region of maximum tensile stress, the tensile strength value indicated by the Brazilian
test is erroneous”.

It therefore becomes clear that before using the results for tensile strength as they are obtained from stan-
dardized Brazilian tests, it is imperative to correctly assess the influence of the tangential stresses. The main
limitation of existing studies is that the distribution of frictional stresses adopted is more or less arbitrary, for
example, either sinusoidal [6,7] or uniform with a discontinuity at the axis of symmetry [10]. In addition,
there is no attempt to correlate quantitatively the frictional stresses with the externally applied radial pressure.
Perhaps, the reason for this is that a direct connection based on Coulomb’s law (dry friction) is inappropri-
ate and leads to results unacceptable from the physical point of view. Indeed, a mechanistic application of
Coulomb’s law leads to maximization of friction forces at the centre of the contact arc where it is clear by
intuition that, due to symmetry, friction must be zeroed.

The basis of the present work is that friction must somehow be related not only to the nature of the mate-
rials and the externally applied radial pressure, but also to the mismatch of the tangential displacements of
adjacent points on the disc and the jaw that come into contact. Accordingly, the Brazilian disc problem is
revisited herein as a simplified contact problem, the solution of which yields the displacement mismatch that
in turn is used to obtain closed-form expressions for the frictional stresses developed at the disc–jaw interface.
The resulting distribution of frictional stresses is in good qualitative agreement with those obtained earlier,
both theoretically and experimentally [5,11,12], as will be discussed in the following sections. Finally, a brief
parametric analysis is undertaken to reveal some interesting points concerning the crucial factors influencing
the distribution of frictional stresses.

2 Physical considerations and theoretical assumptions

2.1 The problem

Consider the basic device proposed by the International Society for Rock Mechanics (ISRM) for the standard-
ized Brazilian disc test [13], schematically shown in Fig. 1a. The device consists of two stiff metallic jaws,
the interior surface of each having the form of a circular cylinder of radius R2 equal to 1.5R1, where R1 is
the radius of the disc-shaped test specimen. Clearly, before any load is exerted on the upper surface of the
upper jaw (and ignoring the self-weight of the jaws), the contact between the disc and the jaw is realized along
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(a)

(b)

Fig. 1 Standardized Brazilian disc test. a Schematic representation of ISRM-suggested device. b Definition of symbols used in
analysis

a mathematical line (i.e. the common generatrix of the cylindrical surfaces of the disc and the jaw). As the
external load Pdev increases, it is assumed that contact is realized on a cylindrical surface, the projection of
which on the x Oy plane is a finite circular arc (symmetric with respect to the central point O) of length 2�
which increases with increasing load, and which is usually considered to be very “small” relative to the disc
size.

This configuration corresponds to a contact problem of two elastic bodies, where both materials are assumed
to be homogeneous, isotropic and linearly elastic. For symmetry reasons only the contact between the disc and
the upper jaw is considered herein, and initially such contact is assumed to be frictionless. The solution to the
familiar Hertz contact problem is based on Muskhelishvili’s complex potentials method [14] in classical plane
elasticity. The specific configuration represents a mixed fundamental problem, given that conditions for the
displacements as well as for the resultant force are imposed at the contact surface, while outside this region the
stresses are zero. The solution gives the length of the contact arc and also the radial contact stresses developed
between the disc and the jaws [15]. The main aim of the present analysis is to determine the displacement field
developed in both the disc and the jaw.

2.2 Displacement field for the disc and the jaw

The complex potentials of this contact problem were recently derived in closed form by Markides and
Kourkoulis [15] following Muskhelishvili’s [14] general formulation. The solution was obtained assuming
that the contact length 2� is very small compared to the dimensions of both the disc and the jaw, which in turn
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are considered as occupying the lower and upper half complex planes, respectively (Fig. 1b). The origin of the
Cartesian reference system is taken at the centre of the contact arc. The arbitrary point z = reiθ of the plane
is denoted by τ on the real axis. The potential functions are the following:

�1(z) = 1

6R1K

(√
�2 − z2 + iz

)
, �2(z) = −�1(z), (1)

where

K = κ1 + 1

4μ1
+ κ2 + 1

4μ2
. (2)

In the above equations the subscripts 1 and 2 relate to the disc and the jaw, respectively. In addition, κ j , μj,
j = 1, 2, are Muskhelishvili’s constants and the shear moduli, respectively, for the disc and jaw materials.

According to this solution [15], the contact length is given as

2� = 2

√
6R1 K Po

π
(3)

with Po = Pdev/w (Fig. 1b), where w is the disc thickness. Integrating Eqs. (1) gives

ϕ1(z)
ϕ2(z)

}
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12R1K

(
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√

�2 − z2 + �2Arc tan
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)
+
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C1
C2

(4)

where C1, C2 are in the general case complex constants related to rigid body displacements. As a next step,
Eq. (4) is substituted in Muskhelishvili’s [14] well-known expression for the displacements, namely

2μ1,2(u1,2 + iv1,2) = κ1,2ϕ1,2(z) + ϕ1,2(z) − (z − z)ϕ
′
1,2(z). (5)

Then letting z tend to τ ∈ [−�, +�] from the lower (−) and upper (+) half planes, respectively, and further
assuming that the rigid body displacements are zero (so that the point z = 0 remains fixed), the horizontal
(tangential) u j and vertical (radial) v j , j = 1, 2, components of the displacement field for any point on the
disc ( j = 1) and the jaw ( j = 2) along their common contact arc are obtained in closed form as:

u−
1 (τ ) = − κ1 − 1

24R1μ1K

(
τ
√

�2 − τ 2 + �2Arc sin
τ

�

)
, v−

1 (τ ) = κ1 + 1

24R1μ1K
τ 2, (6)

u+
2 (τ ) = − κ2 − 1

24R1μ2 K

(
τ
√

�2 − τ 2 + �2Arc sin
τ

�

)
, v+

2 (τ ) = − κ2 + 1

24R1μ2 K
τ 2, (7)

while noting that these results are also obtained from elementary considerations of the local stress field.
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Fig. 2 Schematic representation of displacement mismatch in standardized Brazilian disc test (not to scale)

In the above equations, u−
1 (τ ) and u+

2 (τ ), that is, the horizontal (tangential) displacements at points τ of
the disc and jaw, respectively, are both negative on τ > 0. Thus, any two points τ of the disc and the jaw in the
contact region, initially facing each other, tend always to move inwards with respect to the Cartesian reference
origin. Concerning v−

1 (τ ) and v+
2 (τ ), namely the vertical (radial) displacement components of the disc and

the jaw, respectively, it is seen from Eqs. (6) and (7) that the point τ on the disc moves upwards (positive)
while the opposite point τ on the jaw moves downwards, in order for the two facing points to come in contact
(assuming that rigid body displacements are zero).

3 Frictional stresses along the disc–jaw contact rim

3.1 Displacement mismatch between the disc and the jaw

It is clear from Eqs. (6) and (7) that when the jaws are stiffer than the specimen, as usually happens in practice,
it holds that |u−

1 (τ )| > |u+
2 (τ )|, that is, in the contact region, the local contraction of the disc is greater than

that of the jaw. Hence, any two points τ ∈ [−�, +�] of the disc and the jaw initially (before deformation)
facing each other tend to shift laterally during loading to points τ− and τ+, respectively; in other words, they
tend to slide relative to each other. It follows that where the disc and the jaws are made from materials of
different deformability, a displacement mismatch inevitably occurs leading to a relative motion tendency. This
inward displacement is maximized at the points τ = ±� and vanishes at τ = 0. A schematic representation of
this mechanism is shown in Fig. 2 (not to scale for clarity).

Under frictionless conditions, the horizontal displacement mismatch U (τ ) of any two initially adjacent
points τ on the disc and the jaw in the contact region is readily obtained from Eqs. (6) and (7) as

U (τ ) = ∣∣u−
1 (τ )

∣∣ − ∣∣u+
2 (τ )

∣∣ = 1

24R1K

(
κ1 − 1

μ1
− κ2 − 1

μ2

) ∣∣∣τ
√

�2 − τ 2 + �2Arc sin
τ

�

∣∣∣ . (8)

Obviously, U (τ ) is a real positive number, vanishing at τ = 0 and attaining its maximum value at τ = ±�.
This maximum value is

U (τ )max = U (�) = ∣∣u−
1 (�)

∣∣ − ∣∣u+
2 (�)

∣∣ = 1

24R1K

(
κ1 − 1

μ1
− κ2 − 1

μ2

)
�2 π

2
. (9)

To obtain a quantitative view of the displacement mismatch, consider a disc of radius R1 = 0.05 m made
from Dionysos marble (E1 = 80 GPa, ν1 = 0.25, μ1 = 32 GPa) and jaws made from steel (E2 = 210 GPa,
ν2 = 0.30, μ2 = 80.8 GPa). Then assuming plane strain conditions (κ = 3 − 4ν), the elastic constants are
κ1 = 2, κ2 = 1.8, and the elastic parameter from Eq. (2) is K = 0.032 × 10−8 GPa−1. Hence, for an external
load equal to 12 kN (a force generating a tensile stress at the disc centre close to the average fracture stress of
Dionysos marble [16]), the length of the semi-contact arc from Eq. (3) is � = 1.92 mm, and the variation of
U (τ ) from Eq. (8) is plotted in Fig. 3 (secondary y axis).
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Fig. 3 Variation of radial pressure P(τ ) (primary y axis) and displacement mismatch U (τ ) (secondary y axis) along semi-contact
arc for Dionysos marble disc compressed between curved steel jaws (Pdev = 12 kN)

3.2 Distribution of frictional stresses along the contact rim

3.2.1 Complete stick conditions

Depending on the actual interface conditions, the above displacement mismatch will result in either free relative
motion of the disc with respect to the jaw (where the disc and jaw are perfectly smooth) or to the development
of tangential (friction) forces along the disc–jaw interface (where the coefficient of friction between disc and
jaw is finite). Given that the first case is unlikely to appear in practical applications, attention is focused on the
second case.

Although the relation between frictional forces and the displacement mismatch is initially unknown, it
could be assumed (at least as a first step) that the radial pressure P(τ ) (developed at the disc–jaw interface
due to the compression of the jaw on the disc) and the displacement mismatch U (τ ) are directly proportional
to the tangential stresses T (τ ) according to a simple linear relationship. Thus, at an arbitrary point τ > 0 on
the contact region, the law here proposed for the frictional stresses is expressed as

T (τ ) = f · U (τ ) · P(τ ), (10)

where f is a real positive constant (units m−1) depending on the nature of the materials in contact. The proposed
method for its experimental determination is discussed later.

The variation of P(τ ) takes the classical semi-elliptical form

P(τ ) = 1

3R1K

√
�2 − τ 2 (11)

and is shown schematically in Fig. 4. For the case of a disc made from Dionysos marble, jaws made from steel,
and geometrical and loading conditions identical to those of Sect. 3.1, the variation of P(τ ) along the contact
arc is plotted in Fig. 3 (primary y axis) together with the corresponding distribution of U (τ ).

Combining Eq. (10) with Eqs. (8) and (11) gives the frictional contact stresses according to the present
approach as

T (τ ) = f
1

72R2
1 K 2

(
κ1 − 1

μ1
− κ2 − 1

μ2

) [
τ(�2 − τ 2) + �2

√
�2 − τ 2Arc sin

τ

�

]
. (12)

The distribution of frictional stresses along one-half of the contact length is plotted in Fig. 5, again for the
case of a Dionysos marble disc and steel jaws, with Pdev = 12 kN and various values of the constant f . Also
plotted is the distribution of radial pressure developed along the disc–jaw interface, given by Eq. (11).

It is interesting to observe from Fig. 5 that the distribution of T (τ ) over the contact half-width is neither
similar to that for the radial pressure nor symmetric with respect to any axis. Moreover, it is not represented
by a cosine- or sine-law, as is sometimes assumed in the literature [6,7]. The skewed distribution is zero at
the central (loading) axis and at the contact edge, and its maximum value occurs at two-thirds of the contact
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Fig. 4 Mathematical modelling of contact region. The elliptic distribution of normal pressure Pτ and the notion of frictional
stress T τ are also shown.

Fig. 5 Radial and tangential contact stresses along semi-contact arc for case of Dionysos marble disc and steel jaws (Pdev = 12 kN)
for various values of the constant f

length from the centre. Similar skewed distributions of tangential stress obtained by other forms of analysis
were reported by Conway and Engel [11] and Hooper [5], while Ghobrial [12] studied the contact stresses
developed in rolls during flat rolling using photoelasticity.

3.2.2 Partial slip conditions

In the above discussion it was assumed that the coefficient of friction is of a magnitude prohibiting completely
the relative displacement between facing points on the disc and jaw along the contact rim. It could be argued
of course that under specific conditions the frictional resistance cannot prevent sliding, at least along part of
the contact rim. This mechanism is assumed to be governed by the Amontons–Coulomb law of dry friction
according to which the limiting friction stress Tmax A−C, that can be sustained by two bodies in contact is given
by the following equation:

T (τ )max A−C = n P(τ ) = n

3R1K

√
�2 − τ 2 (13)

in the present case, where n is the coefficient of static friction. The direct relationship between the normalized
values of T (τ )maxA−C and P(τ ) along the contact rim is plotted schematically in Fig. 6. It is emphasized that
T(τ )max A−C represents the limiting (maximum) value of the tangential stress that can be developed along the
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Fig. 6 Normalized variations of radial pressure and frictional stress along semi-contact arc and their relation with Amontons–
Coulomb limiting value of static friction

interface of two bodies in contact, and not the actual friction stress T (τ ) that is developed at any moment for
an arbitrary value of the force tending to cause relative motion. The latter is given by Eq. (12) as long as

T (τ ) < T (τ )max A−C (14)

and is represented in Fig. 6 by the T (τ )1 curve.
If the condition expressed by Eq. (14) is not satisfied, then inevitably slip will occur along part of the

contact length, in fact along the continuous part of the T (τ )2 curve in Fig. 6. Along this part of the contact
length, the friction stress is equal to T (τ )maxA−C, while in the remaining part (the dotted portion of the T (τ )2
curve), it is still given by Eq. (12). Hence, in the presence of partial slip, the interfacial (frictional) contact
stresses are given by:

T (τ ) =
⎧⎨
⎩

f 1
72R2

1 K 2

(
κ1−1
μ1

− κ2−1
μ2

) [
τ(�2 − τ 2) + �2

√
�2 − τ 2Arc sin τ

�

]
, 0 ≤ τ < τcrit

n
3R1 K

√
�2 − τ 2, τcrit ≤ τ ≤ τmax

(15)

where τcrit denotes the intersection of the T (τ ) = n P(τ ) and the T (τ ) = f U (τ )P(τ ) curves (Fig. 6).
It is the continuity of the interfacial stresses at the point τ = τcrit on the contact rim that could permit

determination of the constant f in Eq. (10). Indeed, at the border of the two regions on the contact rim in cases
where the condition of Eq. (14) is not satisfied, it holds that T (τcrit)max A−C = T (τcrit), which is equivalent to
the expression

f = n

U (τcrit)
(16)

In other words if τcrit is determined (either experimentally or numerically), then f can be obtained from
Eq. (16) since both n and U (τcrit) are known.

4 Parametric analysis for complete stick conditions

In this section a short parametric analysis is carried out to establish the dependence of the frictional stresses and
related quantities (contact length, maximum displacement mismatch and maximum radial pressure) on some
critical parameters, including the relative deformability of the disc and jaw materials, the level of the externally
applied load and the geometry. These results could prove helpful both for engineers using the Brazilian test
for practical purposes and for researchers dealing with various other aspects of the problem.

In all calculations, the jaws are assumed to be made from steel. Concerning the disc, a broad class of
materials is considered ranging from steel to shellstone (a rather soft porous stone used by ancient Greeks
for the erection of the Zeus Temple at Olympia) whose modulus of elasticity varies from 1 to 3 GPa [17],



Frictional stresses at the disc–jaw interface 263

Table 1 Materials considered in the parametric analysis [19]

Material E (GPa) νactual νaverage(*)

Magnesium alloys 41–45 0.35
Aluminium alloys 70–79 0.33
Brass 96–110 0.34 0.34
Bronze 96–120 0.34
Copper and alloys 110–120 0.33–0.36
Titanium alloys 100–120 0.33
Cast iron A 83–170 0.20–0.30
Monel 170 0.32
Steel A 190–210 0.27–0.30 0.28
Steel B 200 0.28
Steel C 210 0.30
Nickel 210 0.31
Shellstone 2–3 0.25
Sandstone 50 0.20–0.30 0.25
Granite A 40–100 0.20–0.30
Concrete 17–31 0.10–0.20 0.19
Glass 48–83 0.17–0.23

* Values used in parametric analysis

thereby covering almost the whole range of materials that could be tested using the ISRM device. For practical
reasons, emphasis is given to the very brittle Dionysos marble (extensively used in the restoration project of the
Acropolis of Athens monuments) and to the relatively more ductile Poly-methyl-meth-acrylate (commercially
known as PMMA) which is an easily shaped material and therefore suitable for thorough experimental studies.
Concerning the numerical values of the constant f , advantage was taken of the results of a recent numerical
study of the problem [18], according to which, in cases where the condition of Eq. (14) is not satisfied, the part
of the contact length along which stick conditions prevail is equal to about 25 % of the contact half-length.

4.1 Influence of the relative deformability

The relative deformability of the disc and jaw materials is perhaps the most important parameter since it dictates
both the extent of the contact length and the magnitude of the displacement mismatch. For practical reasons,
and given that Poisson’s ratio also influences the results, the materials here considered are grouped into four
classes, as indicated in Table 1 [19], with an average value of Poisson’s ratio assigned to each group.

In Fig. 7a, the extent of the semi-contact arc is plotted versus the relative deformability of the disc and
jaw materials, expressed in terms of the ratio of their moduli of elasticity, for example, the Edisc/Ejaw ratio.
A common external load equal to 12 kN is again assumed to be exerted for all materials. Such an assump-
tion is acceptable since the solution is based on the linear elasticity assumption and therefore no attention
is paid to the fracture stress of the materials. The embedded figure corresponds to materials with a very low
modulus of elasticity (e.g. shellstone). The behaviour of all four material classes is described by more or less
the same curve despite the differences in their Poisson’s ratio, and the contact arc ranges from about 1.5◦ for
Edisc/Ejaw → 1 (very stiff specimens) to about 12◦ for Edisc/Ejaw ≈ 0.01 (very soft porous stones like the
shellstone). However, since the analysis described in Ref. [15] is based on the small contact arc assumption,
the results for Edisc/Ejaw → 0 must be considered with some caution regarding their accuracy.

Results showing the dependence of the maximum relative horizontal displacement on the relative deforma-
bility are plotted in Fig. 7b, again for all four classes of material. It is now seen that the role of Poisson’s ratio
is much more evident. If Edisc/Ejaw = 0.25, for example, the relative displacement when ν = 0.25 is more
than five times greater than that for materials with ν = 0.19 and the same relative deformability. For the two
classes of particular interest to the engineering community (i.e. those for ν = 0.19 and ν = 0.25, encompass-
ing concrete and most natural building stone), the displacement mismatch varies from about 1 μm to 5 μm.
For values of the Edisc/Ejaw ratio approaching unity, the relative displacement disappears, and there are no
friction forces even for nonsmooth surfaces. For shellstone, which is not included in Fig. 7b, the displacement
mismatch is about 16 μm.

Finally, the dependence of both the maximum radial pressure and maximum frictional stress (i.e.
Pmax = P(0) and Tmax = T (2�/3)) on the Edisc/Ejaw ratio is plotted in Fig. 8, again for the four classes
of material. It is seen that both quantities are rather insensitive to the value of Poisson’s ratio. It is emphasized
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Fig. 7 Influence of relative deformability of disc and jaw materials for four different classes of Poisson’s ratio. a Extent of the
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0

150

300

450

600

0.00 0.25 0.50 0.75 1.00

Relative deformability Edisc/Ejaw

Tmax

Pmax

P
m

ax
 a

nd
 T

m
ax

 [
M

Pa
] 

ν

ν

ν

ν

Fig. 8 Dependence of maximum radial pressure Pmax = P(0) and maximum frictional stress Tmax = T (2�/3) on relative
deformability of disc and jaw materials for four different classes of Poisson’s ratio

once again that despite their similarity, the curves for Pmax and Tmax do not represent quantities corresponding
to the same τ : indeed, while Pmax appears at τ = 0, Tmax appears constantly at τ = 2�/3. It is also noted that
as the ratio Edisc/Ejaw tends to unity, the maximum values of both Pmax and Tmax attain extremely high values
(even compared to the failure stress of the respective materials) due to the corresponding reduction in contact
length.

4.2 Influence of the load level

The level of the externally applied load is expected to strongly influence all the crucial quantities related to
the frictional stresses developed at the disc–jaw interface. What is perhaps not expected is that in some cases
this dependence is not linear. As mentioned previously, only two cases are considered for the disc material,
namely Dionysos marble (E1 = 80 GPa, ν1 = 0.25) and PMMA (E1 = 3.2 GPa, ν1 = 0.36). The variation



Frictional stresses at the disc–jaw interface 265

0

5

10

15

External Load [kN] 

Marble

PMMA

0

50

100

150

200

0 10 20 30 0 10 20 30

External Load [kN]

Marble

PMMA

Se
m

i-
co

nt
ac

t a
rc

 [
de

gr
ee

s]
 

di
sp

la
ce

m
en

t [
μm

] 
M

ax
im

um
 r

el
at

iv
e 

ho
ri

zo
nt

al
 

(a) (b)

Fig. 9 Influence of externally applied load for discs of Dionysos marble and PMMA. a Variation of semi-contact arc. b Maximum
relative horizontal displacement
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Fig. 10 Dependence of the maximum radial pressure Pmax = P(0) and maximum frictional stress Tmax = T (2�/3) on externally
applied load for discs of Dionysos marble and PMMA

of the semi-contact arc for these materials versus the load applied by the loading frame on the jaw is plotted in
Fig. 9a. For marble, it is seen that the contact semi-arc for a load (Pdev = 12 kN) approaching the failure load
is about 2o. In contrast, for PMMA, and for a load (Pdev = 30 kN) approaching that causing yield [20], the
semi-contact arc is about 15◦. Higher loads are not considered since the present analysis is valid only for linear
elastic materials. The results for PMMA discs were recently verified experimentally using the digital image
correlation technique [21]. For marble, the corresponding test results are very difficult to obtain because the
contact arc is so small, even for loads approaching the failure load.

Concerning the dependence of the maximum value of displacement mismatch on the external load, it is
seen from Fig. 9b that the differences between marble and PMMA are huge. For PMMA, the maximum value
is about 175 μm (for Pdev = 30 kN), while for marble, the maximum value (for Pdev = 12 kN) is about 3.5 μm
(i.e. almost 50 times lower).

The maximum values of radial pressure and frictional stress versus the applied load are plotted in Fig. 10
and are much higher for marble than for PMMA. If Pdev = 12 kN, for example, the maximum radial pressure
P(0) for marble approaches 400 MPa, while for PMMA it is about 80 MPa. Similarly, the maximum frictional
stress T (2�/3) for marble exceeds 200 MPa, while that for PMMA is around 50 MPa. Clearly, the stress field
in the immediate vicinity of the contact area is much more intense in the case of marble and might possibly
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lead to premature failure, thereby undermining the validity of the test. On the other hand, the stress field for
PMMA is weaker, and it appears that failure in this region is far less likely.

4.3 Role of geometry

In this section the possible influence of the size of the loading device, as represented by the radius of cur-
vature of the jaw (and therefore by the disc radius, since Rjaw = 1.5Rdisc, according to the ISRM-suggested
device [13]), on the results of the Brazilian test is assessed. Thus, the semi-contact arc and semi-contact length
are plotted in Fig. 11 versus the disc radius for a constant value of the external load (10 kN). It is noted that for
both materials considered in this section (marble and PMMA), the contact arc varies according to a strongly
non-linear law with respect to the disc radius, although this arc tends to stabilize for discs of radius greater
than around 200 mm.

The dependence of the maximum radial pressure and of the maximum frictional stress on the disc radius,
plotted in Fig. 12 for Pdev = 10 kN, is again strongly nonlinear in the 20 mm < Rdisc < 200 mm interval. For
both marble and PMMA, these maximum values tend to stabilize for disc radii greater than 200 mm.
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5 Discussion and conclusions

A novel approach for determining the boundary conditions at the disc–jaw interface in the Brazilian disc test is
presented, overcoming some weaknesses in existing approaches. Advantage was taken of recent studies which
permitted the determination of both the length of the contact arc and the real distribution of radial pressure
developed due to the compression of the jaw against the disc, contrary to current practice which assigns arbi-
trary values to both quantities (i.e. the contact arc is considered “very small” of the order of “some degrees”,
while the pressure variation is assumed to be uniform).

Emphasis is given to the interfacial friction stresses developed in cases where the contact surfaces are not
perfectly smooth. According to the present approach, the underlying phenomenon responsible for generating
friction stresses is the different deformability of the disc and jaw materials, which in turn is responsible for
the differential lateral displacement of points on the disc and jaw initially facing each other. Therefore, if
the coefficient of friction is nonzero, tangential (frictional) stresses are developed, the magnitude of which is
bounded by the upper limit set by the Amontons–Coulomb law of dry friction. Hence, part of the interface is
characterized by perfect sticking, and elsewhere by frictional slip.

In this context, a two-branch function is introduced for the frictional stress in the contact region. The first
branch is valid as long as the force tending to cause the relative displacement of points facing each other in the
contact region does not exceed the potential threshold value set by the Amontons–Coulomb law. The second
branch is simply the classic Amontons–Coulomb’s law for dry friction, wherein the force tending to cause
relative displacement exceeds the critical threshold.

The main issue to be answered now is the accurate experimental determination of the coefficient f , which
correlates the displacement mismatch and the radial pressure with the force tending to cause relative displace-
ment at the interface. In addition, an analysis of the factors which govern the magnitude of this coefficient
must be undertaken.

According to the results of the present analysis, the distributions of frictional stress along the semi-contact
rim are strongly skewed without any symmetry. They are zeroed both at the axis of symmetry and at the ends
of the contact arc and attain their maximum value at a distance equal to two-thirds of the semi-contact arc.
Earlier studies clearly support at least qualitatively the results of the present study. In addition, it is shown that
the relative deformability of the two materials (that of the disc and jaw) as represented by the ratio Edisc/Ejaw
is the most crucial factor, since it governs the magnitude of the displacement mismatch.

Concerning the dependence of the maximum value of the friction stress on all three quantities entering into
the analysis (relative deformability, externally applied load and radius of specimen), it is demonstrated that it
is of a non-linear nature.

Finally, it is indicated that the relative size of the contact arc varies between extremely broad limits for
different disc materials, and therefore, assigning to it arbitrary values may lead to erroneous results. The same
is true for the peak value of the radial pressure, since for stiff disc materials it attains very high values which can
lead to local stress concentrations that are not predicted by the uniform pressure distribution usually adopted
in theoretical analyses.
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