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Abstract An improved version of the charged system search (CSS) algorithm is introduced which is called
magnetic charged system search (MCSS). In the new algorithm, magnetic forces are considered in addition
to electrical forces, using the Biot–Savart law. Each charged particle (CP), as a search agent, exerts magnetic
forces on other CPs based on the variation of its objective function value during its last movement and its
distance between other CPs. This additional force provides useful information for the optimization process
and enhances the performance of the CSS algorithm. The efficiency of the MCSS is examined by application of
this algorithm to well-known mathematical benchmarks and three well-studied engineering design problems.
The results are compared to those of the CSS, and the improvements are highlighted.

1 Introduction

Optimization algorithms can be divided into two groups consisting of mathematical programming and meta-
heuristic methods. Earlier optimization methods or classical optimization methods were all based on the
mathematical programming. Many different mathematical programming methods have been proposed and
developed since past decades. Linear programming, convex programming, integer programming, quadratic
programming, and dynamic programming are some of these approaches that have been utilized for optimiza-
tion problems. These methods usually provide accurate solutions; however, most of these need the gradient
information of the objective function and a suitable initial point. These methods require the problem to be
defined in a continuous space, while many optimization problems, such as engineering problems, are defined
in discrete spaces.

The second generation of the optimization methods are meta-heuristic that are proposed to solve more
complex problems. Every meta-heuristic method consists of a group of search agents that explore the feasible
region based on both randomization and some specified rules. The rules are usually inspired by natural phe-
nomena laws. Genetic algorithms (GA) proposed by Holland [1] and Goldberg [2] are inspired by Darwin’s
theory about biological evolutions. Particle swarm optimization (PSO) proposed by Eberhart and Kennedy [3]
simulates social behavior, and it is inspired by the movement of organisms in a bird flock or fish school. Ant
colony optimization (ACO) formulated by Dorigo [4] imitates foraging behavior of ant colonies. Many other
natural-inspired algorithms such as simulated annealing (SA) proposed by Kirkpatrick et al. [5], Harmony
Search (SA) presented by Geem et al. [6], Gravitational Search Algorithm (GSA) proposed by Rashedi et al.
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Fig. 1 The magnitude of the magnetic field dB at point P due to current I through a length element ds given by Biot–Savart law

[7], Big Bang–Big Crunch algorithm (BB–BC) proposed by Erol and Eksin [8] and improved by Kaveh and
Talathari [9] have been proposed in recent years. Due to their good performance and ease of implementation,
these methods have been widely applied to various problems in different fields of science and engineering.
Structural optimization [10–13] is one of the active branches of the applications of optimization algorithms.
One of the most recent meta-heuristic algorithms is the charged system search (CSS) proposed by Kaveh and
Talathari [14] that uses the Coulomb and Gauss laws from physics and Newtonian laws from mechanics to
guide the charged particles (CPs) to explore the locations of the optimum.

In this paper, an improved CSS algorithm which is called magnetic charged system search (MCSS) is
proposed. The new algorithm utilizes the governing laws for magnetic forces and includes magnetic forces
in addition to electrical forces. The movements of CPs due to the total force (Lorentz force) are determined
using Newtonian mechanical laws. The present paper is organized as follows: in Sect. 2, magnetic laws from
physics are presented. Section 3 reviews the CSS. In Sect. 4, the MCSS algorithm is introduced. In Sect. 5,
the MCSS is applied to different numerical examples to examine the efficiency of the new algorithm, and in
Sect. 6, some concluding remarks are provided.

2 Magnetic laws

2.1 Magnetic fields

There is a relation between electric and magnetic forces, and these forces are called electromagnetic forces.
The region surrounding any stationary or moving charged particle contains electric fields. In addition to the
electric field, the region surrounding any moving charged particle also contains magnetic fields. The existence
of the magnetic field near the moving CPs was Oersted’s discovery in 1819. He has shown that a compass
needle is deflected by a current-carrying conductor. Shortly after this discovery, Biot and Savart proposed a
mathematical expression so-called Biot–Savart law that provides the magnitude of magnetic field at any point
of the space in terms of the electric current that produces the field, Fig. 1. Biot–Savart law is expressed [15]
as:

dB = μ0

4π

I ds × r̂
r2 . (1)

Here, dB is the magnetic field at point P , μ0 is a constant called the permeability of free space, and r is the
distance between ds to P.

Consider a straight wire with radius of R carrying electric current of magnitude I which is uniformly
distributed through the cross-section of the wire, Fig. 2a. By utilizing Biot–Savart law, the magnetic field
produced by a wire at a point like P outside the wire can be determined as:

B = μ0

2π

I

r
when: r ≥ R. (2)

The magnitude of the magnetic field inside the wire can be obtained using Ampère’s law,
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Fig. 2 a A wire carrying electric current I that is uniformly distributed in its cross-section. b A plot of the distribution of the
magnetic field produced by a wire in the space

B =
(

μ0

2π

I

R2

)
× r when: r < R. (3)

With this formulation for the magnetic field, the magnitude of the field inside the wire increases linearly from
r = 0 to r = R(B ∝ r), and outside of the wire, it is inversely proportional to the distance (B ∝ 1/r) and
decreases by increasing the distance. When r = R, Eqs. (2) and (3) have an overlap, and both give identical
magnitude for the magnetic field. A plot of these two equations from Ref. [15] is shown in Fig. 2b.

If there are many wires in a space, in order to calculate the total magnitude of the magnetic field in a speci-
fied point, the equivalent magnetic field should be calculated by considering the principle of superposition and
summing the magnetic fields produced by each wire. Therefore, the total magnetic field at a specified point
P, due to a group of wires, can be obtained as:

BP =
n∑

i=1

Bip, (4)

where BP is the total magnetic field at point P, n is the number of wires in the space, and Bip is the magnetic
field created by the i th wire at point P which can be expressed as:

Bip =
⎧⎨
⎩

μ0
2π

I
r for r ≥ R,(

μ0
2π

I
R2

)
× r for r < R.

(5)

2.2 Magnetic forces

When a charged particle moves in a magnetic field, a magnetic force FB will be imposed on that moving
charged particle. Experiments on CPs moving in a magnetic field result in the following:

• The magnitude of the magnetic force FB exerted on the charged particle is proportional to the charge q and
to the speed v of the particle.

• The magnitude and direction of the magnetic force FB depend on the velocity of the particle and magnitude
and direction of the magnetic field B.

By summarizing these observations, an expression for calculating the magnetic force is obtained [15] as:

FB = qv × B, (6)

where B is the magnetic field exerted on the moving charged particle. Here, the only source of the magnetic
field is produced by the wires. Thus, the magnitude of B can be calculated using Eq. (5).
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3 A review on charged system search algorithm

The CSS algorithm proposed by Kaveh and Talathari [14] is an evolutionary algorithm for optimization prob-
lems. This meta-heuristic optimization algorithm takes its inspiration from the physic laws governing a group
of CPs. These charge particles are sources of the electric fields, and each CP can exert electric force on other
CPs. Using the Newtonian mechanic laws, the movement of each CP due to the electric force can be determined.
The CSS algorithm is summarized in a step-by-step form as follows:

Step 1. Initialization
The initial positions of the CPs are randomly determined using a uniform source, and the initial velocities

of the particles are set to zero. A memory is used to save a number of best results. This memory is called the
charged memory (CM).
Step 2. Determination of electric forces and the corresponding movements

• Force Determination. Each charged particle imposes electric forces on the other CPs according to the
magnitude of its charge. The charge of each CP is:

qi = fit(i) − fitworst

fitbest − fitworst
, (7)

where fit(i) is the objective function value of the i th CP, fitbest and fitworst are the so far best and worst
fitnesses among all of the CPs, respectively.

In addition to electric charge, the magnitude of the electric forces exerted on the CPs is dependent on their
separation distance, that is,

ri j = ||Xi − X j ||
||(Xi + X j )/2 − Xbest|| + ε

, (8)

where Xi and X j are the position of the i th and j th CPs, and ri j is the separation distance of these CPs. Xbest
is the position of the best current CP, and ε is a small positive number to prevent singularity.

The probability of the attraction of the i th CP by the j th CP is expressed as:

pi j =
{

1 ⇔ fit(i)−fitbest
fit( j)−fit(i) > r and, or, fit( j) > fit(i).

0 ⇔ else.
(9)

The electric resultant force FE, j acting on the j th can be calculated by the following equation:

FE, j = q j

∑
i,i �= j

(
qi

a3 ri j · w1 + qi

r2
i j

· w2

)
· p ji · (Xi − X j ),

⎧⎨
⎩

w1 = 1, w2 = 0 ⇔ ri j < R,
w1 = 0, w2 = 1 ⇔ ri j ≥ R,
j = 1, 2, . . . , N .

(10)

• Movements Calculations. According to the determined forces, each CP moves to its new position and
attains velocity as:

X j,new = rand j1 · ka · F j

m j
· �t2 + rand j2 · kv · V j,old · �t + X j,old, (11)

V j,new = X j,new − X j,old
�t

, (12)

where rand j1 and rand j2 are two random numbers that are uniformly distributed in the range (0,1). ka is the
acceleration coefficient, kv is the velocity coefficient, and m j is the mass of particle that is considered equal
to q j . The velocity coefficient controls the influence of the previous velocity of the particles. In other words,
this coefficient is related to the exploration ability of the algorithm. The acceleration coefficient affects the
force acting on each CP, or it influences the exploitation ability of the algorithm. An efficient optimization
algorithm should perform good exploration in early iterations and good exploitation in last iterations. Thus,
the magnitude of the ka and kv is set to 0.5 which are linearly increased and decreased, respectively. Thus, ka
and kv are expressed as:

ka = 0.5(1 + iter/itermax), kv = 0.5(1 − iter/itermax), (13)

where iter is the current iteration number, and itermax is the maximum number of iterations.
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Step 3. Boundaries Constraints Handling
For handling boundary constraints, a harmony search-based approach is used. According to this method,

any variable of each solution (xi, j ) that violates its corresponding boundary can be regenerated from CM as

− w.p. CMCR
• select a new value for a variable from CM,
• w.p. (1–PAR) do nothing,
• w.p. PAR choose a neighboring value,

− w.p. (1–CMCR)
• select a new value randomly,

where “w.p.” is the abbreviation of “with the probability”, CMCR (the Charge Memory Considering Rate)
varying between 0 and 1 sets the rate of selecting a value in the new vector from historic values stored in
CM, and (1–CMCR) sets the rate of randomly choosing one value from a possible range of values. The value
(1–PAR) sets the rate of doing nothing, and PAR sets the rate of choosing a value from neighboring the best
CP. For further details, the reader may refer to Ref. [14].
Step 4. CM Updating

If among all of the new CPs, there are better CP or CPs that have a better objective function value than the
worst ones in the CM, these should be included in the CM, and the worst ones in the CM are excluded from
the CM.
Step 5. Checking the Termination Criteria

Steps 2 and 3 are reiterated until one of the specified terminating criteria is satisfied.

4 Magnetic charged system search algorithm

4.1 Combination of magnetic and electric forces

The inspiration of the standard CSS algorithm is based on a group of CPs that exert electric forces on each
other based on their charges and their separation distances. After computing the electric forces, each particle
moves, and its movement is calculated by using Newtonian mechanics laws. Therefore, we have CPs that move
in the search space. In physics, it has been shown that when a charged particle moves, it produces a magnetic
field. This magnetic field can exert a magnetic force on other CPs. Thus, in addition to the electric forces, we
should have magnetic forces. When a charged particle moves with velocity v in the presence of both electric
field E and magnetic field B, it experiences both electric force qE and magnetic force qv×B. The total force,
known as the Lorentz force [15], exerted on the charged particle is:

∑
F = FB + FE = qv × B + qE = q · (v × B + E), (14)

where F is the Lorentz force. Thus, the new algorithm, MCSS, considers the magnetic force as an additional
force with the purpose of making the new algorithm closer to the nature of the movement of CPs. From the
optimization point of view, this new force records additional information about the movement of the CPs and
it improves the performance of the standard CSS.

4.2 MCSS algorithm

The MCSS algorithm is based on its original version, standard CSS. The difference between these two algo-
rithms is that CSS only considers the electric force, but MCSS includes magnetic forces besides electric forces.
The main structure of the algorithm is the same as the standard CSS, but we have made changes in part of the
algorithm where the forces are computed. By using the aforementioned physical laws about magnetic fields and
forces in Sect. 2, magnetic forces can be determined. Each solution candidate Xi called CP (charged particle)
contains electrical charge. These CPs produce electric fields and exert electric forces on each other. When a
CP moves, it creates a magnetic field in the space, and this magnetic field imposes magnetic forces on other
CPs.

As explained previously, the source of the magnetic fields is the movement of the CPs. For computing these
fields, we have assumed that CPs move in virtual straight wires with radius of R. Thus, the path of movement
of each particle consists of straight wires. These straight wires change their directions by each movement of the
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Fig. 3 A schematic view of the virtual wire (movement path of a CP), qk
i is the charge of i th CP at end of the kth movement

(kth iteration)

CPs, but during the movement, each wire remains straight, Fig. 3. The places that a wire changes its direction
are the position of the CP at the end of its movement. When the CP starts a new movement, the direction of
its movement may differ from its previous one, so the direction of the wire which includes the CP during its
movement also changes. According to magnetic laws presented in Sect. 2, a conducting wire carrying electric
current can create magnetic fields in the space. Now virtual wires contain CPs that move on them. By each
movement of the CPs, their charges are altered, so during the movement the magnitude of the charge is not
constant and changes during the movement. This movement of CPs can be comprehended as an electric current
in the virtual wire. The current of a wire is the rate at which charge flows through one specified cross-section of
the wire. If �q is the amount of charge that passes through this area in a time interval �t , the average current
Iavg will be equal to the charge that passes through the cross-section per unit time:

Iavg = �q

�t
. (15)

Since the time intervals of each movement are set to unity, the average current will be equal to the variation
of the charge. For computing the variation of the charges, we consider the start and the end points of the
movement of CPs. By taking these assumptions into account, Eq. (15) can be written as:

(Iavg)ik = qk
i − qk−1

i , (16)

where (Iavg)ik is the average current in the i th wire where i th CP performs its kth movement (iteration) in it,
and qk−1

i and qk
i are the charges of the i th CP at the start and end of its kth movement, respectively. Equation

(16) shows that by this definition for the electric current, the concept of quantity represents the variation of the
objective function of each CP in each movement. By this definition, the electric current can take both positive
and negative values. A positive one indicates that the movement produced an improvement in the charge of the
CP. In other words, since the charge of a CP is a quantity of its quality or objective function value, a positive
electric current means an improvement and a negative electric current means a deterioration in the quality of
the CP.

Charge of the CPs is defined by Eq. (7). This expression for computing electric charges results in values
between 0 to 1. This is due to normalization of the objective function of each CP. Therefore, the charges of
the worst and best CP are always zero and unity, respectively. Now, consider a situation that the worst CP
moves in the search space; at the end of the movement, it may attain a better objective function value, but it
may still be the worst CP, so its charge will still be zero. This means that there may be some situations that
the objective function of a CP improves but its charge does not change because charge is a relative quantity.
It seems necessary to modify the electric current expression in a way that the concept of electric current is
saved, and the aforementioned problem is solved. In relation with this problem, two alternative expressions
for computing electric current are proposed, the first one is:

(Iavg)ik = qi,k − qi,k−1

qi,k + ε
, (17)

where qi,k and qi,k−1 are the charge of the i th CP at the start of the kth and k − 1th iterations, respectively,
and ε is a small positive value to prevent singularity. This equation gives a normalized value for the variation
of the i th CP. The second proposed relation is expressed as:
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(Iavg)ik = sign(d fi,k) ×
∣∣d fi,k

∣∣− d fmin,k

d fmax,k − d fmin,k
, (18)

d fi,k = fitk(i) − fitk−1(i), (19)

where d fi,k is the variation of the objective function of the i th CP in the kth movement (iteration). fitk(i) and
fitk−1(i) are the values of the objective function of the i th CP at the start of the kth and k − 1th iterations,
respectively. The quantity d fi,k can attain both positive and negative values. If we consider absolute values
of d f for all of the current CPs, d fmax,k and d fmin,k will be the maximum and minimum values among these
absolute values of d f , respectively. Therefore, d fmax,k and d fmin,k are always positive quantities. It should
be noted that in this paper the second expression (Eqs. (18), and (19)) is utilized for the computation of the
electric current.

For computing the magnetic field in the place of each particle, we must compute the distance of that particle
from the virtual wire. This distance is assumed to be the same as Eq. (8). Thus, ri j now means the distance
between i th wire and i th virtual CP to the j th charged particle.

In the expression for computing the magnetic force, Eq. (6), we should consider the velocity of the move-
ment of CPs. In this case, due to the movements of both CPs (CP in the virtual wire and CP in the space), the
relative velocity, vrel, is considered as:

vrel = Xi − X j

�t
, (20)

where Xi and X j are the positions of the i th and j th CPs, �t is the time step that is set to unity. Therefore, the
relative velocity can be rewritten as:

vrel = Xi − X j . (21)

By considering these assumptions, the magnetic force FB, j i exerted on the j th CP due to the magnetic field
produced by the i th virtual wire (i th CP) can be expressed as:

FB, j i = q j ·
(

Ii

R2 ri j · z1 + Ii

ri j
· z2

)
· pm j i · (Xi − X j ),

{
z1 = 1, z2 = 0 ⇔ ri j < R,
z1 = 0, z2 = 1 ⇔ ri j ≥ R,

(22)

where qi is the charge of the i th CP, R is the radius of the virtual wires, Ii is the average electric current in
each wire, and pm j i is the probability of the magnetic influence (attracting or repelling) of the i th wire (CP)
on the j th CP. This term can be computed by the following expression:

pm j i =
{

1 ⇔ fit(i) > fit( j),
0 ⇔ else, (23)

where fit(i) and fit( j) are the objective values of the i th and j th CP, respectively. This probability determines
that only a good CP can affect a bad CP by the magnetic force. This magnetic probability is slightly different
from the electric probability expressed by Eq. (9). The electric probability considers a chance for both good
and bad CPs to attract each other, but the magnetic probability allocated this chance only to good CPs. The
purpose of this definition of magnetic probability is to reduce the parasite magnetic fields and reinforce the
efficiency of the magnetic forces.

Investigating different terms of the magnetic force shows how this force can help the standard CSS algo-
rithm. If Ii , the electric current in virtual i th virtual wire is negative, according to the concept of the electric
current, a negative value means that the i th CP did not experience an improvement in the value of its objective
function. Thus, a negative value will be multiplied by (Xi − X j ), so this produces a repelling force. In this
case, it is an ideal force. On the other hand, if the i th CP experiences an improvement in its movement, it will
attract the j th CP. From the optimization point of view, this kind of force can help the algorithm. It stores and
applies the information of the movement of each CP. This information will be lost in the standard CSS, but
MCSS considers this information and increases the efficiency of the algorithm.

Now by considering the group of the CPs, the resultant magnetic force acting on each CP can be calculated
using the following expression:

FB, j = q j ·
∑

i,i �= j

(
Ii

R2 ri j · z1 + Ii

ri j
· z2

)
· pm j i · (Xi − X j ),

⎧⎨
⎩

z1 = 1, z2 = 0 ⇔ ri j < R,
z1 = 0, z2 = 1 ⇔ ri j ≥ R,
j = 1, 2, . . . , N ,

(24)
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where FB, j is the resultant magnetic force exerted on the j th charged particle.
The quantity R is the radius of the virtual wires, and if a charged particle places outside or inside of a virtual

wire, the magnetic force that exerted on it is computed differently. With this formulation for the magnetic force,
in the early iterations where the agents are far from each other, their distances will be large values, and the
magnetic force in this case will be inversely proportional to the distances. As a result, the magnitude of the
magnetic force is relatively small, and this feature of the algorithm provides a good situation for search ability
of the CPs in the early iterations which is ideal for optimization problems. After a number of iterations, CPs
search the search space and most of them will be gathered in a small space. Now, the distances between CPs
are decreased and a local search starts. In this case, if the magnetic force is computed based on the inverse
relation between distances, the magnitude of the forces will be increased due to decrease in the distances.
These large forces may prevent the convergence of the algorithm in the local search. One of the solutions that
can be proposed is that when the distances are relatively small, the magnetic force should be computed using
the linear formulation of magnetic fields, Eq. (3). This means that the formulation of the magnetic force for
global and local phases should be separated, Eq. (24). A suitable value for R in Eq. (24) can be unity. However,
by more investigating the magnetic force formulation, it could be understood that the aforementioned problem
can be solved automatically. If the value of the R is taken as zero, all of the magnetic fields produced by virtual
wires can be calculated based on Eq. (2) Using Eq. (2) for small distances gives large values for the magnetic
field, but when the values of distances are small, it means that the CPs are collected in a small space and their
movements are small (Local Search). Thus, both Xi − X j and Ii are small values. By considering Eq. (24)
for calculating the magnetic forces, it can be noted that a large value is multiplied by two small values, so the
final value (magnetic force) is a normal value which helps the algorithm. Due to the ease of implementation
and better convergence rate, the second solution is selected in this paper and the magnetic force is revised in
Eq. (25).

The term pm j i , in the expression for calculating the magnetic force, provides competition ability for the
CPs. According to the concept of the magnetic force in this algorithm, when a CP experiences an improvement
in its value of the objective function,it should attract another CP, regardless to its previous and current charge.
However, by considering the term pm j i , CPs with larger charges have more tendency to attract other CPs.
The reason is that by considering this term, the redundant and parasite magnetic fields made by bad CPs are
eliminated and it helps the efficiency of the algorithm.

It should be noted that in implementing the MCSS the part of CSS algorithm related to computing forces
should be changed. Both magnetic and electric forces should be computed and superposed. The Lorentz force
(total force) will be expressed as:

∑
F j = FB, j + FE, j = q j

∑
i,i �= j

(
Ii

ri j
· pm j i +

(
qi

a3 ri j · w1 + qi

r2
i j

· w2

)
· p ji

)
· (Xi − X j ),

⎧⎨
⎩

w1 = 1, w2 = 0 ⇔ ri j < R,
w1 = 0, w2 = 1 ⇔ ri j ≥ R,
j = 1, 2, . . . , N ,

(25)

where F j is the resultant Lorentz force (total force) acting on the j th CP.
Consider the i th CP among all of the CPs; this CP has a charge which is larger than a number of other CPs

charge. Considering the rules of the CSS, the i th CP attracts all other CPs that have smaller charges. After
computing the electric forces, all of the CPs move around the search space. Now, the i th CPs also moved to a
new position. In this movement, the i th particle may experience deterioration in its objective function value.
Due to this decrease, the new charge of the i th particle will be decreased, but its charge may still be larger than
a number of CPs. According to the CSS algorithm, the i th particle still attracts all other CPs that have smaller
charges regardless of the failure of the i th CP in its last movement. From one perspective, this is logical that
a good CP can attract bad CPs. This feature ensures the competition ability of the algorithm. However, from
another point of view, if no attention is paid to the success or failure of the CPs in their last movement, a lot
of useful information in the optimization process will be lost. Thus, in the MCSS algorithm, magnetic forces
are included to prevent the loss of this kind of information which benefits the algorithm. By this concept, the
i th particle which has experienced a failure in its last movement exerts repelling magnetic forces on the other
CPs. In this situation, the direction of the magnetic forces and electrical ones that are acted on CPs by the i th
CP is opposite.

That was a special case that the magnetic and electric forces were against each other. Most of the times,
the magnetic and electric forces are in the same direction and they reinforce the effect of each other. Conse-
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quently, the exploitation ability of the algorithm is mostly reinforced. Because of this increase in exploitation
ability, we can slightly modify kv in Eq. (13) to increase the exploration ability of the algorithm. In fact, the
MCSS algorithm guides the CPs with more information and the efficiency of the algorithm including a fast
convergence is improved, and in comparison with the standard CSS, a better exploitation and exploration are
provided.

4.2.1 Challenges of MCSS and the solutions

Like other meta-heuristic algorithms, both CSS and MCSS algorithms are sensitive to the number of searching
agents (CPs). This sensitivity may affect the algorithm when the number of CPs is decreased. The main reason
is that all of the electrical forces are attractive forces, so CPs may be trapped in part of a search space (Local
optima). Self-adaption, cooperation, and competition are three steps in the algorithm that automatically help
the CPs to escape from local optima, but in some cases, when the number of CPs is relatively small, the
aforementioned concern can be increased. In these situations, due to a lack of information gathered in the
optimization process, attractive forces can make the CPs to achieve a local optimum. For example, if some
of CPs in the first iterations recognize a local optimum, they try to attract other CPs by producing attractive
electrical forces. These attractive forces may prevent other CPs from exploring other spaces of search space.
The existence of magnetic forces decreases this problem of the algorithm because magnetic forces are both
attractive and repelling forces, and they provide a better search ability for the algorithm, but attractive electrical
forces still exist, and they may have some impacts on the algorithm when the number of CPs is small. For
addressing this problem, two modifications for the algorithm can be considered. The first modification will be
in the formulation of forces as

F = pr × FE + FB, (26)

where pr is the probability that an electrical force is a repelling force, and it is defined as

pr =
{

1 ⇔ rand > 0.1 · (1 − iter/itermax),
−1 ⇔ else, (27)

where rand is a random number generated based on a uniform distribution, iter is the current number of itera-
tions, and itermax is the maximum number of iterations. According to Eq. (27), in the initial iterations of the
optimization process, 10 % of attractive electrical forces are randomly changed to repelling forces, and when
the number of iterations rises, this amount is linearly decreased to zero. By applying this parameter to electrical
forces, the exploration ability of the algorithm in the initial steps of optimization will be increased, and this
ability is gradually decreased, and the exploitation ability will be increased. pr is a control parameter for the
algorithm that can help MCSS to perform better with a small number of CPs.

The second modification is about the concept of time in the algorithm. From the optimization point of view,
the iteration term is used for the time, and thus, it is assumed that the time alters discretely. This means that all
alterations are performed when all agents have created their solutions. For example, in MCSS algorithm, after
computation of all of forces, all of the CPs move to their new locations, and then CM updating is fulfilled.
All these conform to a discrete time concept. In this situation, nothing is changed within an iteration. A more
continuous concept of time can be utilized if we have changes within an iteration. According to this concept,
time changes continuously, and after creating just one solution, all updating processes such as charge, current,
and CM updating can be performed. Using this methodology, the new positions of each CP and what it expe-
rienced in its last movement can affect the moving process of the subsequent CPs. This method can save a lot
of useful information for optimization processes. Based on explained steps and rules, MCSS algorithm can be
summarized as a pseudo-code in Fig. 4.

5 Numerical examples

In order to ensure the efficient performance of the MCSS algorithm, some numerical examples are solved, and
the results are compared to those of the standard CSS algorithm. The examples consist of 18 mathematical
functions. The numerical examples are presented in Sect. 5.1. In Sect. 5.2, the results of the MCSS are presented
and compared to those of the CSS and other optimization algorithms in the literature. Finally, in Sect. 5.2.3,
three well-studied engineering design problems are solved by MCSS and the results are compared to those of
the CSS.
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(10)
(24)

(26)
(11)

(7), (12), (18)

Fig. 4 Pseudo-code of the MCSS

5.1 Mathematical benchmark functions

5.1.1 Comparison between MCSS, CSS and a set of genetic algorithms

In this section, some mathematical benchmarks are chosen from Ref. [16] and optimized using the MCSS
algorithm. The description of these mathematical benchmarks is illustrated in Table 1.

5.1.1.1 Numerical results In this section, the numerical results of optimization for the mathematical bench-
marks are presented. In this investigation, some parameters of the algorithm such as CM size (CMS), the
number of CPs, and the maximum number of iterations are modified. For eliminating the effect of such param-
eters in studying the performance of the algorithm, these parameters are considered the same as those of Ref.
[14]. It should be noted that the number of CPs is set to 20, and the maximum number of iterations is considered
as 200 for both CSS and MCSS algorithm. In Table 2, the results of the MCSS are compared to the results
obtained by the CSS from Ref. [14], and GA and some of its variants derived from [16]. For a fair comparison
between MCSS and CSS, the random initial solutions of each runs are the same. The numbers in Table 2
indicate the average number of function evaluations from 50 independent runs. The numbers in parentheses
demonstrate the fraction of the unsuccessful to successful runs. The absence of a parenthesis means that the
algorithm was successful in all of the runs. Each run of the algorithm is successful when that run determines
a local minimum with predefined accuracy, i.e., ε = | fmin − ffinal| = 10−4. The results verify the efficiency
of the MCSS algorithm compared to the CSS and other GAs. The existence of the magnetic forces in the
MCSS provides a better exploration and exploitation for the algorithm. Thus, the convergence is speeded up.
One of the important features of the MCSS algorithm is its ability to converge to the desired optimum with
a very few number of CPs and a small value for the maximum number of iterations. The difference between
the CSS algorithm and MCSS algorithm becomes more obvious when the number of CPs and the number of
iterations are set to small values. Thus, another comparison is performed to show the difference between the
CSS and MCSS algorithm in unsuitable situations, i.e., a small number of CPs and maximum number of per-
mitted iterations. Therefore, the number of CPs is set to 10, and the maximum number of permitted iterations
is considered 100. This means that the computational cost is one-quarter of the previous comparisons. The
results of this comparison are presented in Table 3.
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Table 2 Performance comparison for the benchmark problems

Function GEN GEN-S GEN-S-M GEN-S-M-LS CSS [14] MCSS

AP 1,360 (0.99) 1,360 1,277 1,253 804 316
Bf1 3,992 3,356 1,640 1,615 1,187 464
Bf2 20,234 3,373 1,676 1,636 742 425
BL 19,596 2,412 2,439 1,436 423 361
Branin 1,442 1,418 1,404 1,257 852 332
Camel 1,358 1,358 1,336 1,300 575 342
Cb3 9,771 2,045 1,163 1,118 436 267
CM 2,105 2,105 1,743 1,539 1,563 421
Dejoung 9,900 3,040 1,462 1,281 630 334
Exp2 938 936 817 807 132 146
Exp4 3,237 3,237 2,054 1,496 867 284
Exp8 3,237 3,237 2,054 1,496 1,426 553
GP 1,478 1,478 1,408 1,325 682 358
Griewank 18,838 (0.91) 3,111 (0.91) 1,764 1,652 (0.99) 1,551 976
Hartman3 1,350 1,350 1,332 1,274 860 322
Hartman6 2,562 (0.54) 2,562 (0.54) 2,530 (0.67) 1,865 (0.68) 1,783 738
Rastrigin 1,533 (0.97) 1,523 (0.97) 1,392 1,381 1,402 1,042
Rosenbrock 9,380 3,739 1,675 1,462 1,452 1,214
Total 112,311 (96.7) 41,640 (96.7) 29,166 (98.16) 25,193 (98.16) 17,367 8,895

The numbers in the Table 3 are the optimum found by each algorithm. These are the average of 100 inde-
pendent runs. The accuracy of the solutions in some cases may be unsatisfactory, but it should be noted that
the number of CPs and maximum number of iterations are small. The reason of this problem is discussed in
the last part of Sect. 4. Although MCSS is a promising algorithm when the number of CPs is a normal value, a
considerable decrease in the number of CPs may have some impacts on the performance of the algorithm. As a
solution, R-MCSS which is a modification of MCSS and presented in the last part of Sect. 4 can be used in these
cases. The results of R-MCSS are also presented in Table 3. It is shown that R-MCSS has a relatively better per-
formance when the number of CPs is small. The purpose of presenting Table 3 is just to magnify the difference
between the CSS and MCSS algorithm and verify the better performance of the MCSS in more challenging
situations. For a more detailed presentation, Fig. 5 illustrates the optimization process and convergence.

5.1.1.2 Statistical test Now in the following we want to ensure that the results of MCSS in Table 3 are better
than the CSS algorithm. For this purpose, we apply a multi-problem analysis using statistical tests. We apply
the test on the obtained errors by each algorithm. If we have the normality condition for our sample of results,
a parametric pair t test can be suitable. We first analyze a safe usage of parametric tests. We utilized two
normality tests including Kolmogorov–Smirnov and Shapiro–Wilk test. The p values of the normality tests

Table 3 Numerical comparison between CSS and MCSS algorithms

Function Global minimum CSS MCSS CSS’s error MCSS’s error

AP −0.352386 −0.198721 −0.34974 0.153665 0.002646
Bf1 0.0 28.809183 1.435E−6 28.80918 1.44E−06
Bf2 0.0 8.938997 5.385E−6 8.938997 5.39E−06
BL 0.0 0.106252 2.542E−8 0.106252 2.54E−08
Branin 0.397887 3.960884 0.401754 3.562997 0.003867
Camel −1.0316 −0.866765 −1.031598 0.164835 2E−06
Cb3 0.0 0.125161 2.427E−8 0.125161 2.43E−08
CM −0.4 −0.230142 −0.398751 0.169858 0.001249
Dejoung 0.0 0.166451 4.731E−6 0.166451 4.73E−06
Exp2 −1.0 −0.999366 −0.999984 0.000634 1.6E−05
Exp4 −1.0 −0.990884 −0.999971 0.009116 2.9E−05
Exp8 −1.0 −0.949659 −0.999824 0.050341 0.000176
GP 3.0 15.729613 3.155378 12.72961 0.155378
Griewank 0.0 0.342795 6.815E−8 0.342795 6.82E−08
Hartman3 −3.862782 −3.491627 −3.861415 0.371155 0.001367
Hartman6 −3.322368 −2.054548 −3.320421 1.26782 0.001947
Rastrigin −2.0 −1.875735 −1.998324 0.124265 0.001676
Rosenbrock 0.0 19.476846 0.074523 19.47685 0.074523

Number of CPs = 10, maximum number of iterations = 100
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g Cb3, h CM, i Dejoung, j Exp2, k Exp4, l Exp8, m Goldstein and Price, n Griewank, o Hartman3, p Hartman6, q Rastrigin,
r Rosenbrock



98 A. Kaveh et al.

k l

m n

o p

0 20 40 60 80 100
-1

-0.95

-0.9

-0.85

-0.8

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100
0

20

40

60

80

100

120

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100
0

1

2

3

4

5

6

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100

-3.5

-3

-2.5

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100

-3

-2.5

-2

-1.5

-1

Iteration

M
in

im
um

CSS
MCSS
Global minimum

q r

0 20 40 60 80 100
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

Iteration

M
in

im
um

CSS
MCSS
Global minimum

0 20 40 60 80 100
0

200

400

600

800

1000

Iteration

M
in

im
um

CSS
MCSS
Global minimum

Fig. 5 continued

over the sample results obtained by CSS and MCSS are shown in Table 4. If we consider a significance level
α = 0.05, all of the p values in Table 4 will be less than 0.05, Thus, the sample results do not follow a normal
distribution. The Q–Q plot for sample results is illustrated in Fig. 6, and it can be understood that the normality
condition is not satisfied in both CSS and MCSS algorithms. This result was predictable because the sample
size, i.e., the number of problems is small. Therefore, a parametric test such as pair t test is not appropriate
in this case. Therefore, we use the Wilcoxon test that is a nonparametric test for pairwise comparisons. The
method of this test is described in Ref. [17]. The result of this test can be summarized as:

• The p value obtained by the Wilcoxon test is 0.00. Consequently, the Wilcoxon test considers a difference
between the performance of these two algorithms assuming a significance level α = 0.05. Therefore,
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Table 4 Normality tests and their p values over multiple-problem analysis

Algorithm Kolmogorov–Smirnov Shapiro–Wilk

CSS 0.00 0.00
MCSS 0.00 0.00

Fig. 6 Normal Q–Q plots of the sample results of the CSS and MCSS algorithms

because of better mean value of the MCSS algorithm results, MCSS outperforms its predecessor, CSS
algorithm.

5.1.2 Comparison between MCSS and other state-of-art algorithms

5.1.2.1 Description of test functions and algorithms In the following section, the set of test functions designed
for Special Session on Real Parameter Optimization organized in the 2005 IEEE Congress on Evolutionary
Computation (CEC 2005) are solved by the MCSS algorithm. The detailed description of test functions is
presented by Suganthan et al. [18]. The set of these test functions consists of the following functions:

− 5 Unimodals functions (f1–f5)
• Sphere function displaced.
• Schewefel’s problem 1.2 displaced.
• Elliptical function rotated widely conditioned.
• Schwefel’s problem 1.2 displaced with noise in the fitness.
• Schwefel’s problem 2.6 with global optimum in the frontier.

− 20 Multimodals functions (f6–f7)
• 7 basic functions.

• Rosenbrock function displaced.
• Griewank function displaced and rotated without frontiers.
• Ackley function displaced and rotated with the global optimum in the frontier.
• Rastrigin function displaced.
• Rastrigin function displaced and rotated.
• Weierstrass function displaced and rotated.
• Schewefel’s problem 2.13.

• 2 expanded functions.
• 11 hybrid functions. Each one of these has been defined through compositions of 10 out of 14 previous

functions (different in each case).

The characteristics of this experiment are the same as what has been suggested by Suganthan et al. [18].
Each function is solved by MCSS in 25 independent runs, and the average error of the best CP is recorded.
The number of CPs is set to 25. The dimension of the test functions is set to 10 (D = 10), and the maximum
number of function evaluations is 10,000.
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The termination criterion is either reaching the maximum number of function evaluations or achieving an
error less than 10−8. Table 5 shows the official results of the participated algorithms obtained from Garcia et
al. [19]. The description of each algorithm is given in Ref. [19]. The results of the MCSS algorithm are added
to Table 5. The values of Table 5 indicate the average error rate of each algorithm. This value can be considered
as a means for measuring the performance of each algorithm.

5.1.2.2 Numerical results and statistical test As the results in Table 5 show MCSS has a good performance
and its average error rates are good, however, there are some cases that MCSS performs slightly weaker than
some other algorithms. For a fair comparison, we have to use a statistical test to judge about the performance
of MCSS in relation to other algorithms. We want to find out whether the results of MCSS have a significant
difference in comparison with the other algorithms. This analysis is a multiple-problem analysis; therefore, a
nonparametric test is more suitable in this case. We utilized the Wilcoxon’s test. This test performs pairwise
comparisons between two algorithms. In this test, MCSS is compared to other remaining algorithms.

Table 6 summarizes the results of applying the Wilcoxon test. Table 6 includes the sum of ranking and p
value of each comparison. The method of this test is simply described in Ref. [17]. The significance level α
is considered as 0.05. In each comparison where the corresponding p value is less than 0.05, it means that
two compared algorithms behave differently, and the one with smaller mean value of error rates has a better
performance.

The p value in pairwise comparison is independence from another one. If we draw a conclusion involving
more than one pairwise comparison in Wilcoxon’s analysis, an accumulated error which is merged up by com-
bination of pairwise comparisons will be obtained. In statistics terms, the family wise error rate (FWER) will
be lost. FWER is defined as the probability of making one or more false discoveries among all the hypotheses
when performing multiple pairwise tests (Garcia et al. [19]). The true statistical significance for combining
pairwise comparisons is given by:

p = 1 −
i=k−1∏

i=1

(1 − pHi ), (28)

where k is the number of pairwise comparisons considered, and pHi is the p value of each comparison. For
more information, please refer to Ref. [19].

By evaluating the values of Table 6, the p value of all of the comparisons except MCSS versus G-CMA-ES
is less than the significance level α = 0.05, it cannot be concluded that MCSS is better than all of the algo-
rithms except G-CMA-ES because we have to consider FWER in making a conclusion in multiple pairwise
comparisons. The MCSS really outperforms all of the algorithms except G-CMA-ES considering indepen-
dence pairwise comparisons due to the fact that achieved p values are less than α = 0.05. The true p value
for multiple pairwise comparisons can be computed using Eq. (28):

p = 1 − ((1 − 0.001) · (1 − 0.0) · (1 − 0.0) · (1 − 0.006) · (1 − 0.001) · (1 − 0.0)

· (1 − 0.0) · (1 − 0.001) · (1 − 0.003) · (1 − 0.001)) = 0.0129. (29)

Based on this algorithm, it can be claimed that the MCSS algorithm has a better performance in relation to
all of the algorithms except G-CMA-ES with a p value of 0.01294. As a result, if we consider a significance
level α = 0.0129, the confidence interval for the mentioned claim will be 100(1 − α) = 98.7%.

Table 6 The Wilcoxon test results

MCSS versus R+ R− p value

BLX-GL50 23 208 0.001
BLX-MA 2 274 0.000
CoEVO 11 220 0.000
DE 37 194 0.006
DMS-L-PSO 17 214 0.001
EDA 0 231 0.000
G-CMA-ES 44 127 0.071
K-PCX 0 253 0.000
L-CMA-ES 13 177 0.001
L-SaDE 34 219 0.003
SPC-PNX 23 208 0.001
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Fig. 7 A tension/compression spring

5.2 Engineering examples

Three well-studied engineering design problems that have been solved by various optimization methods in
the literature are used to examine the efficiency of the MCSS algorithm and compare the results with those
obtained by the CSS. All of the engineering examples have nonlinear inequality constraints. The general form
of these examples is

Minimize objective function f (X),

Subjected to : gi (X) ≤ 0,

Xmin ≤ X ≤ .Xmax (30)

For handling constraints, a simple penalty method is utilized to prevent adding the effect of a robust constraint
handling method on the performance of the algorithm. Using the penalty method, the problem can be restated
as

Minimize F(X) = f (X) +
n∑

i=1

(Ri × max(gi (X), 0)2) (31)

where n is the total number of constraints and Ri is the penalty factor that is set to a large positive number.
Boundaries constraints will be handled by using the HS approach described in Sect. 3.

5.2.1 A tension/compression spring design problem

This is a well-known optimization problem which has been used to evaluate the efficiency of different optimi-
zation methods [14]. This problem is defined by Belegundu [20] and Arora [21] which is depicted in Fig. 7.
The objective of this optimization problem is to minimize the weight of a tension/compression spring. This
minimization involves some constraints, i.e., shear stress, frequency, and minimum deflection.

The design variables are the mean coil diameter D(=x1), the wire diameter d(=x2), and the number of
active coils N (=x3). By considering these decision variables, the cost function can be formulated as:

fcos t (X) = (x3 + 2)x2x2
1 , (32)

g1(X) = 1 − x3
2 x3

71, 785 · x4
1

≤ 0,

g2(X) = 4x2
2 − x1x2

12, 566 · (x2x3
1 − x4

1)
+ 1

5, 108 · x2
1

− 1 ≤ 0,

g3(X) = 1 − 140.45x1

x2
2 x3

≤ 0,

g4(X) = x1 + x2

1.5
− 1 ≤ 0.

(33)

The decision variables are limited as:

0.05 ≤ x1 ≤ 2,

0.25 ≤ x2 ≤ 1.3,

2 ≤ x3 ≤ 15.

(34)
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Table 7 Optimum results for the tension/compression spring design

Methods Optimal design variables

x1(d) x2(D) x3(N ) fcost

Belegundu [20] 0.050000 0.315900 14.250000 0.0128334
Arora [21] 0.053396 0.399180 9.1854000 0.0127303
Coello [22] 0.051480 0.351661 11.632201 0.0127048
Coello and Montes [23] 0.051989 0.363965 10.890522 0.0126810
He and Wang [24] 0.051728 0.357644 11.244543 0.0126747
Montes and Coello [25] 0.051643 0.355360 11.397926 0.012698
Kaveh and Talatahari [26] 0.051865 0.361500 11.000000 0.0126432
Kaveh and Talathari (CSS) [14] 0.051744 0.358532 11.165704 0.0126384
Present work 0.051627 0.356290 11.275456 0.0126069

Table 8 Statistical results of different methods for the tension/compression spring

Methods Best Mean Worst Standard deviation

Belegundu [20] 0.0128334 N/A N/A N/A
Arora [21] 0.0127303 N/A N/A N/A
Coello [22] 0.0127048 0.012769 0.012822 3.9390e−5
Coello and Montes [23] 0.0126810 0.0127420 0.012973 5.9000e−5
He and Wang [24] 0.0126747 0.012730 0.012924 5.1985e−5
Montes and Coello [25] 0.012698 0.013461 0.16485 9.6600e−4
Kaveh and Talatahari [26] 0.0126432 0.012720 0.012884 3.4888e−5
Kaveh and Talathari (CSS) [14] 0.0126384 0.012852 0.013626 8.3564e−5
Present work 0.0126069 0.012712 0.012982 4.7831e−5

Fig. 8 A welded beam system

This problem has been solved with various methods by different researchers, Belegundu [20], Arora [21],
Coello [22], Coello and Montes [23], He and Wang [24], Montes and Coello [25], and Kaveh and Talathari
[14,26]. The results of the best solutions found by different methods are presented in Table 7. From Table 7,
it can be understood that the best solution found by MCSS is better than other methods. The focus of this
comparison is on the difference between CSS and MCSS methods. The results show that MCSS can improve
the solution. The statistical simulation results of 30 independent runs for MCSS are illustrated in Table 8 and
compared to other methods.

5.2.2 A welded beam design

One of the practical design problems which has been widely used as a benchmark to test the performance
of different optimization methods is the welded beam design problem as illustrated in Fig. 8. The goal of
this optimization problem is to minimize the constructing cost of a welded beam that is subjected to differ-
ent constraints, such as shear (τ) and bending (σ) stresses, buckling load (Pc), end deflection (δ), and end
side constraint. Design variables are h(=x1), l(=x2), t (=x3), and b(=x4). By considering the set-up, welding
labor, and the materials costs, the cost function can be expressed as:

fcos t (X) = 1.1047x2
1 x2 + 0.04811x3x4 · (14.0 + x2), (35)
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subjected to the following constraints:

g1(X) = τ({x}) − τmax ≤ 0,

g2(X) = σ({x}) − δmax ≤ 0,

g3(X) = x1 − x4 ≤ 0,

g4(X) = 0.10471x2
1 + 0.04811x3x4 · (14.0 + x2) − 5.0 ≤ 0,

g5(X) = 0.125 − x1 ≤ 0,

g6(X) = δ({x}) − δmax ≤ 0,

g7(X) = P − Pc({x}) ≤ 0

(36)

where

τ(X) =
√

(τ ′)2 + 2τ ′ · τ ′′ x2

2R
+ (τ ′′)2,

τ ′ = P√
2x1 · x2

, τ ′′ = M R

J
,

M = P ·
(

L + x2

2

)
, R =

√
x2

2

4
+
(

x1 + x2

2

)2

,

J = 2

{√
2x1x2

[
x2

2

12
+
(

x1 + x3

2

)2
]}

,

σ (X) = 6P L

x4 · x2
3

, δ(X) = 4P L3

Ex2
3 x4

,

Pc(X) = 4.013E
√

x2
3 x6

4
36

L2

(
1 − x3

2L

√
E

4G

)
,

P = 6,000 lb, L = 14 in,

E = 30 × 106psi, G = 12 × 106psi.

(37)

And variable boundaries are:

0.1 ≤ x1 ≤ 2,

0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10,

0.1 ≤ x3 ≤ 2.

(38)

This is a well-studied problem that is solved by different researchers using different approaches. Regsdell
and Phillips [27] solved it using mathematical-based methods. Deb [28], Coello [22], and Coello and Montes
[23] solved it using GA-based algorithms. Also, He and Wang [24] solved it by CPSO, Montes and Coello
[25] by Evolutionary strategies, and Kaveh and Talathari [26] by ACO. This problem is also solved by Kaveh
and Talathari [14] utilizing the CSS algorithm. The results of the best solution found by each method are listed
in Table 9. The best solution found by MCSS is better than other results in literature. The result of the MCSS
is slightly better than that of the CSS, but the speed of the convergence is much higher compared to the CSS.
The results of statistical simulation are presented in Table 10. Similar to the CSS algorithm, MCSS has a small
value for the standard deviation.

5.2.3 A pressure vessel design problem

The objective of this optimization is to minimize the cost of fabricating a pressure vessel which is clapped at
both ends by hemispherical heads as depicted in Fig. 9. The construction cost consists of the cost of materials,
forming, and welding [29]. The design variables are the thickness of the shell Ts(=x1), the thickness of the
head Th(=x2), the inner radius R(=x3), and the length of the cylindrical section of the vessel L(=x4). Ts
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Table 9 Optimum results for the design of a welded beam

Methods Optimal design variables

x1(h) x2(l) x3(t) x4(b) fcost

Regsdell and Phillips [27]
APPROX 0.2444 6.2189 8.2915 0.2444 2.3815
DAVID 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM 0.4575 4.7313 5.0853 0.6600 4.1185
Deb [28] 0.248900 6.173000 8.178900 0.253300 2.433116
Coello [22] 0.248900 3.420500 8.997500 0.210000 1.748309
Coello and Montes [23] 0.205986 3.471328 9.020224 0.206480 1.728226
He and Wang [24] 0.202369 3.544214 9.048210 0.205723 1.728024
Montes and Coello [25] 0.199742 3.612060 9.037500 0.206082 1.737300
Kaveh and Talathari [26] 0.205700 3.471131 9.036683 0.205731 1.724918
Kaveh and Talathari (CSS) [14] 0.205820 3.468109 9.038024 0.205723 1.724866
Present work 0.205730 3.470489 9.036624 0.205730 1.724855

Table 10 Statistical results of different methods for the design of a welded beam

Methods Best Mean Worst Standard deviation

Regsdell and Phillips [27] 2.3815 N/A N/A N/A
Deb [28] 2.433116 N/A N/A N/A
Coello [22] 1.748309 1.771973 1.785835 0.011220
Coello and Montes [23] 1.728226 1.792654 1.993408 0.074713
He and Wang [24] 1.728024 1.748831 1.782143 0.012926
Montes and Coello [25] 1.737300 1.813290 1.994651 0.070500
Kaveh and Talatahari [26] 1.724918 1.729752 1.775961 0.009200
Kaveh and Talathari (CSS) [14] 1.724866 1.739654 1.759479 0.008064
Present work 1.724855 1.735374 1.750127 0.007571

Fig. 9 Schematic of the pressure vessel, and its design variables

and Th are integer multiples of 0.0625 in, the available thickness of the rolled steel plates, but R and L are
continuous variables. The mathematical expression of the cost function is:

fcos t (X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1 + 19.84x2
1 x3. (39)

The constraints are as follows:

g1(X) = −x1 + 0.0193x3 ≤ 0,

g2(X) = −x2 + 0.00954x3 ≤ 0,

g3(X) = −π · x2
3 x4 − 4

3
π · x3

3 + 1, 296, 000 ≤ 0,

g4(X) = x4 − 240 ≤ 0.

(40)
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Table 11 Optimum results for the design of a pressure vessel

Methods Optimal design variables

x1(Ts) x2(Th) x3(R) x4(L) fcost

Sandgren [29] 1.125000 0.625000 47.700000 117.701000 8,129.1036
Kannan and Kramer [30] 1.125000 0.625000 58.291000 43.690000 7,198.0428
Deb and Gene [31] 0.937500 0.500000 48.329000 112.679000 6,410.3811
Coello [22] 0.812500 0.437500 40.323900 200.000000 6,288.7445
Coello and Montes [23] 0.812500 0.437500 42.097398 176.654050 6,059.9463
He and Wang [24] 0.812500 0.437500 42.091266 176.746500 6,061.0777
Montes and Coello [25] 0.812500 0.437500 42.098087 176.640518 6,059.7456
Kaveh and Talatahari [26] 0.812500 0.437500 42.098353 176.637751 6,059.7258
Kaveh and Talathari (CSS) [14] 0.812500 0.437500 42.103624 176.572656 6,059.0888
Present work 0.812500 0.437500 42.104550 176.560967 6,058.9710

Table 12 Statistical results of different methods for the design of a pressure vessel

Methods Best Mean Worst Standard deviation

Sandgren [29] 8,129.1036 N/A N/A N/A
Kannan and Kramer [30] 7,198.0428 N/A N/A N/A
Deb and Gene [31] 6,410.3811 N/A N/A N/A
Coello [22] 6,288.7445 6,293.8432 6,308.1497 7.4133
Coello and Montes [23] 6,059.9463 6,177.2533 6,469.3220 130.9297
He and Wang [24] 6,061.0777 6,147.1332 6,363.8041 86.4545
Montes and Coello [25] 6,059.7456 6,850.0049 7,332.8798 426.0000
Kaveh and Talatahari [26] 6,059.7258 6,081.7812 6,150.1289 67.2418
Kaveh and Talathari (CSS) [14] 6,059.0888 6,067.9062 6,085.4765 10.2564
Present work 6,058.9710 6,063.1798 6,074.7391 9.73494

The search space is defined as:

0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200,

10 ≤ x3 ≤ 200.

(41)

Various types of methods has been used for solving this problem. Some of these approaches are as: a
branch and bound method [29], an augmented Lagrangian multiplier approach [30], genetic adaptive search
[31], a GA-based algorithm [22], a feasibility-based tournament selection scheme [23], a co-evolutionary
particle swarm method [24], an evolution strategy [25], an improved ACO [26], and the CSS algorithm [14].
The results of the best solution found by different methods are presented in Table 11. MCSS algorithm found
a better solution compared to other techniques and the standard CSS. In Table 12, the results of statistical
simulations are listed.

6 Concluding remarks

A new meta-heuristic algorithm called MCSS is developed to improve the performance of the CSS algorithm.
In CSS, search agents that are called CPs attract each other by electrical forces, so the CPs moves in search
space based on Newtonian mechanics laws. According to physics, when a charged particle moves, it produces
a magnetic field, and this magnetic field can exert a magnetic force on other moving CPs. In MCSS, mag-
netic forces are considered in addition to the electrical forces to make the algorithm closer to the nature. The
superposed force, that is, the combination of both electric and magnetic forces moves the CPs. The magnetic
force provides more beneficiary information for the optimization process. It is assumed that each CP moves
on a virtual wire. By each movement, it produces magnetic fields all around the search space, so it exerts an
attractive or repelling force on other CPs. The concept of the magnetic field is based on the movement of CPs.
If a CP experiences an increase in its objective function value, it will absorb other CPs.

According to the formulation of the MCSS, exploitation and exploration abilities of the standard CSS are
improved. One of the most significant features of the MCSS algorithm is that it has a good performance even
if with very small values for the number of CPs and maximum permitted iterations in comparison with the
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standard CSS. The difference between CSS and MCSS becomes more obvious when these values are set to
small values. This feature can decrease the computational cost of the optimization.

Application of the MCSS on mathematical benchmarks and engineering problems illustrates the efficiency
of the new proposed algorithm. Especially, the results of comparison between MCSS and CSS show that MCSS
improves the search ability and convergence speed of the CSS algorithm.
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