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Abstract This paper addresses the analysis of active constrained layer damping (ACLD) of geometri-
cally nonlinear transient vibrations of laminated thin composite cylindrical panels using piezoelectric-fiber-
reinforced composite (PFRC) materials. The constraining layer of the ACLD treatment is considered to be
made of the PFRC materials. The Golla–Hughes–McTavish (GHM) method has been implemented to model
the constrained viscoelastic layer of the ACLD treatment in time domain. The Von Kármán type-nonlinear
strain-displacement relations and a simple first-order shear deformation theory are used for deriving this elec-
tromechanical coupled problem. A three-dimensional finite element (FE) model of smart composite panels
integrated with the patches of such ACLD treatment has been developed to demonstrate the performance of
these patches on enhancing the damping characteristics of thin symmetric and antisymmetric laminated cylin-
drical panels in controlling the geometrically nonlinear transient vibrations. The numerical results indicate
that the ACLD patches significantly improve the damping characteristics of both symmetric and antisym-
metric panels for suppressing the geometrically nonlinear transient vibrations of the panels. The effect of the
shallowness angle of the panels on the control authority of the patches has also been investigated.

1 Introduction

The use of piezoelectric material as distributed actuators and/or sensors for developing high-performing light-
weight flexible structures possessing self-controlling and self-sensing capabilities is prevalent and has attracted
the attention of several researchers from the past several years [1–18]. These lightweight flexible structures
when coupled with the layer/patches of piezoelectric materials acting as distributed sensors and/or actuators are
customarily known as “smart structures.” Because of the low magnitudes of the piezoelectric coefficients of the
existing monolithic piezoelectric materials, a large control voltage is required to achieve significant control of
smart structures. In an endeavor to improve the performance of the existing monolithic piezoelectric materials,
Baz [19] developed the active constrained layer damping (ACLD) treatment. The unwanted vibrations of the
substrate structure can be damped out by adding ACLD treatment to it. It is established that significant amount
of vibration energy is dissipated by the viscoelastic layer undergoing transverse shear deformations. As the
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constraining layer of the activated ACLD treatment increases the passive transverse shear deformation of the
viscoelastic constrained layer, the ACLD treatment improves the overall damping characteristics of the flexible
structures over its passive counterpart. Since the control effort necessary to increase the shear deformation of
the viscoelastic layer is compatible with the low control authority of monolithic piezoelectric materials, the
piezoelectric materials perform much better to attenuate the vibration of smart structures when they are used as
active constraining layer of the ACLD treatment than when they are used alone as distributed actuators. ACLD
treatment provides the attributes of both passive and active damping occurring simultaneously and has been
extensively used for efficient and reliable active control of flexible structures [19–25]. The analysis of ACLD
of laminated thin composite panels using vertically/obliquely reinforced 1–3 piezocomposite materials as the
material of the constraining layer of the ACLD treatment is carried out [26]. Further, Ray and his co-worker
[27] developed a new class of smart composite material, piezofiber-reinforced composite material (PFRC)
where in piezofibers are aligned horizontally, and they demonstrated the improvement in active control of
smart structures by exploiting the in-plane actuation of the distributed actuator. Also, they demonstrated the
use of the piezoelectric-fiber-reinforced composites (PFRC) as the constraining layer in the ACLD treatment
for the purpose of active control of vibrations of flexible structures [28]. Later, the use of ACLD treatment
for controlling the geometrically nonlinear vibrations of flexible structures has been studied. The analysis of
ACLD of geometrically nonlinear transient vibrations of thin composite plates using horizontally reinforced
piezofiber composite material is carried out [29]. Panda and Ray [30] carried out the same for active damping
of nonlinear vibrations of functionally graded plates. Subsequently, Ray and his co-worker studied the perfor-
mance of the vertically reinforced 1–3 PZC as the material of the constraining layer of the ACLD treatment for
active damping of geometrically nonlinear vibrations of composite structures [31–33]. The study on geometri-
cally nonlinear analysis of piezolaminated shallow shells is available in the literature [33–35]. More recently,
investigation of performance of the vertically/obliquely reinforced PZC as the material of the constraining
layer of the ACLD treatment for active damping of nonlinear vibrations of shallow shells has been carried
out [33]. So far, no work is available till today concerning the ACLD of geometrically nonlinear vibrations of
laminated composite shallow shells using horizontally reinforced piezofiber composite material such that the
in-plane actuation can be utilized for active damping.

This paper addresses the geometrically nonlinear vibration control of smart laminated composite panels
using the patches of ACLD treatment. The constraining layer of the ACLD treatment is made of horizontally
reinforced PFRC material. A three-dimensional finite element (FE) model has been developed to investigate
the performance of this composite for developing distributed actuators of smart laminated composite panels.
The viscoelastic shear layer is modeled using Golla–Hughes–McTavish (GHM) method, which is a time-
domain approach. Both symmetric and antisymmetric laminated substrates are considered for presenting the
numerical results. The effect of shallowness angle on the nonlinear transient response analysis also has been
addressed using the proposed finite element model.

2 Finite element model

Figure 1 illustrates the laminated cylindrical composite panel made of N orthotropic layers. The length, cir-
cumferential width, thickness, average radius and shallowness angle of the panel are denoted by a, s, h, R and
φ, respectively. The top surface of the panel is integrated with the two rectangular patches of ACLD treatment.
The constraining layer of the ACLD treatment is made of the PFRC material in which the fibers are unidi-
rectionally aligned and parallel to the plane of the panel, and its constructional feature is also schematically
demonstrated in Fig. 1. The thickness of the PFRC layer is hp and that of the viscoelastically constrained layer
of the ACLD treatment is hv. The mid-plane of the substrate panel is considered as the reference plane. The
origin of the curvilinear laminate coordinate system (x, y, z) is located at one corner of the reference plane
such that the lines x = 0, a and y = 0, s represent the boundaries of the panels. Also, the thickness coordinate
(z) of the top and bottom surfaces of any layer is denoted by hk + 1 and hk, respectively, with k denoting
the layer number of the layer. The fiber orientation angle in any layer of the substrate panel with respect to
the laminate coordinate system is denoted by θ, whereas that in the active constraining layer of the PFRC
material is denoted by ψ. First-order shear deformation theories (FSDT) are used to describe the kinematics of
deformation of the overall panel integrated with the patches of ACLD treatment. Figure 2 describes a schematic
representation of the kinematics of deformation based on these theories. As shown in this figure, uo and vo are
the generalized translational displacements of a reference point (x, y) on the mid-plane (z = 0) of the substrate
composite panel along x-, y-axes, respectively; θx, φx and γx are the generalized rotations of the normal to the
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Fig. 1 Schematic representation of laminated composite panel integrated with the patches of ACLD treatment

x

PFRC Layer

γ
θ

φ
x

x

x

u 0

hh/2 h

z

N+2

Viscoelastic Layer

Panel Body

w0

Undeformed Tranverse Section

Deformed Tranverse Section

h

y

φ

z

θ

y

y

γ

N+2

Viscoelastic Layer

Panel Body

w0

Undeformed Tranverse Section

Deformed Tranverse Section

y

PFRC Layer

v
0

h
h/2

Fig. 2 Schematic diagram of the kinematics of the laminated panel/ACLD system
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middle planes of the substrate, viscoelastic layer and the PFRC layer, respectively, about the y-axis while the
generalized rotations of these normals about the x-axis are denoted, respectively, by θy, φy and γy. According
to the kinematics of deformation shown in Fig. 2, the displacements u, v and w at any point lying in any layer
of the overall panel along x-, y- and z-directions, respectively, can be written as

{d} = {dt} + [Z]{dr}, (1)

where

{d} = [ u v w]T , {dt} = [ uo vo w]T , {dr} = [θx θy φx φy γx γy]T ,

[Z] =
⎡
⎣

λ1(z) 0 λ2(z) 0 λ3(z) 0
0 λ1(z) 0 λ2(z) 0 λ3(z)
0 0 0 0 0 0

⎤
⎦ , λ1(z) = z − 〈z − h/2〉,

λ2(z) = 〈z − h/2〉 − 〈z − hN+2〉 and λ3(z) = 〈z − hN+2〉. (2)

In Eq. (2), the brackets 〈 〉 are used to write the appropriate singularity functions, and thus, Eq. (1) represents
the FSDT that are applicable, respectively, for the substrate panel, the viscoelastic layer and the PFRC layer
while maintaining the continuity conditions. To implement the selective integration rule for avoiding the shear
locking in thin structures, the state of strains at any point in the overall panel is represented by the two vectors
of in-plane strains {∈b} and transverse shear strains{∈s}, respectively, and are given by

{∈b} = [∈x ∈y ∈xy ]T and {∈s} = [∈xz ∈yz ]T, (3)

where ∈x and ∈y are the normal strains along the x- and y-directions, respectively; ∈xy is the in-plane shear
strain; and ∈xz and ∈yz are the transverse shear strains. Using the Von Kármán-type nonlinear strain-displace-
ment relations for circular cylindrical panels, the displacement field given by Eqs. (1) and (2), the state of strains
at any point in the overall panel can be written in terms of the generalized translational {dt} and rotational
displacements {dr} as follows:

{∈b} = [Ltb]{dt} + [Z1][Lrb]{dr} + [Ltnb]{dt} and {∈s} = [Lts]{dt} + [Z2]{dr}, (4)

in which the matrices [Z1] and [Z2] and the different operator matrices are defined as

[Z1] = [ {λ1(z)}I {λ2(z)}I {λ3(z)}I ],

[Z2] =
[

λ4(z) 0 λ5(z) 0 λ6(z) 0
0 λ4(z) − 1

R λ1(z) 0 λ5(z) − 1
R λ2(z) 0 λ6(z) − 1

R λ3(z)

]
,

λ4(z) = 1 − 〈z − h/2〉o, λ5(z) = 〈z − h/2〉o − 〈z − hN+2〉o, λ6(z) = 〈z − hN+2〉o,

[Ltb] = [ L1 L2] , [Ltnb] = 1

2
[B1][B2], L1 =

⎡
⎢⎣

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎥⎦ , L2 = [

0 1
R 0

]T
,

[Lrb] =
⎡
⎣

L1 Õ Õ
Õ L1 Õ
Õ Õ L1

⎤
⎦ and [Lts] =

[
0 0 ∂

∂x
0 − 1

R
∂
∂y

]
,

where

[B1] =
⎡
⎢⎣

∂wo
∂x 0
0 ∂wo

∂y
∂wo
∂y

∂wo
∂x

⎤
⎥⎦ and [B2] =

[
0 0 ∂

∂x
0 0 ∂

∂y

]
, (5)
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in which I and Õ appearing in the matrices [Z1] and [Lrb] are a (3 × 3) identity matrix and a (3 × 2) null
matrix, respectively. Corresponding to the description of the state of strains given by Eq. (3), the state of
in-plane stresses and the state of transverse shear stresses at any point in the overall panel can be expressed as

{σ b} = [σ x σ y σ xy ]T and {σ s} = [σ xz σ yz ]T, (6)

in which σ x and σ y are the normal stresses along the x- and y-directions, respectively; σ xy is the in-plane
shear stress while σ xz and σ yz are the transverse shear stresses.

The constitutive relations for the orthotropic layers of the host panel are given by

{σ k
b} = [C̄k

b]{∈k
b} and {σ k

s } = [C̄k
s ]{∈k

s }, k = 1, 2, 3, . . . N. (7)

The constraining PFRC layer will be subjected to the applied electric field (Ez) acting across its thickness
(i.e., along the z-direction) only. Thus, the constitutive relations for the material of the PFRC layer can be
expressed as

{σ k
b} = [C̄k

b]{∈k
b} − {ēb}{Ez}, {σ k

s } = [C̄k
s ]{∈k

s } and

Dz = [ēk
b]T{∈k

b} + ε̄33Ez, k = N + 2, (8)

in which Dz is the electric field in the z-direction, and ε̄33 is the transformed dielectric constant. The transformed
elastic coefficient matrices [C̄k

b], [C̄k
s ] and the transformed piezoelectric coefficient matrix {ēb} appearing in

Eqs. (7) and (8), referred to the laminate coordinate system (x, y, z), are given by

[C̄k
b] =

⎡
⎢⎢⎣

C̄k
11 C̄k

12 C̄k
16

C̄k
12 C̄k

22 C̄k
26

C̄k
16 C̄k

26 C̄k
66

⎤
⎥⎥⎦ , [C̄k

s ] =
⎡
⎣

C̄k
55 C̄k

45

C̄k
45 C̄k

44

⎤
⎦ and {ēb} =

⎧⎨
⎩

ē31
ē32
ē36

⎫⎬
⎭ . (9)

The material of the viscoelastic layer is assumed to be linearly viscoelastic and isotropic. The present study
is concerned with the analysis of the laminated cylindrical composite panel undergoing ACLD in the time
domain. Hence, the viscoelastic material is modeled by the Golla–Hughes–McTavish (GHM) method. The
constitutive equation for the viscoelastic material is represented in the following Stieltjes integral form [36]:

{σ s}v =
t∫

0

G(t − τ )
∂{∈s}v

∂τ
dτ , (10)

where G(t) is the relaxation function of the viscoelastic material.
The total potential energy Tp and the kinetic energy Tk of the laminated plate coupled with the patches of

the ACLD treatment can be written as [20]

Tp = 1

2

⎡
⎣

N+2∑
k=1

∫

�

({∈k
b}T{σ k

b} + {∈k
s }T{σ k

s })d� −
∫

�

EzDzd�

⎤
⎦ −

∫

A

{d}T{f}dA and (11)

Tk = 1

2

⎡
⎣

N+2∑
k=1

∫

�

ρk(u̇2 + v̇2 + ẇ2)d�

⎤
⎦ , (12)

where {f} is the externally applied surface traction vector acting over a surface area A, and � represents the
volume of the concerned domain. ρk is the mass density of the kth layer.

The overall panel has been discretized by eight noded isoparametric quadrilateral elements. Thus, follow-
ing Eq. (2), the generalized displacement vectors for the ith (i = 1, 2, 3, . . . , 8) node of the element can be
expressed as

{dti} = [ uoi voi wi ]T and {dri} = [ θxi θyi φxi φyi γxi γyi ]T. (13)

Thus, the generalized displacement vectors at any point within the element can be written as

{dt} = [Nt]{de
t } and {dr} = [Nr]{de

r}, (14)



6 J. Shivakumar et al.

wherein the nodal generalized translational displacement vector {de
t }, the nodal generalized rotational

displacement vector {de
r} and the shape function matrices [Nt] and [Nr] are given by

{de
t } = [{dt1}T {dt2}T . . . {dt8}T]T, [Nt] = [Nt1 Nt2 . . . Nt8],

{de
r} = [{dr1}T {dr2}T . . . {dr8}T]T, [Nr] = [Nr1 Nr2 . . . Nr8],

Nti = niI and Nri = niI2, (15)

where I2 is a (6 × 6) identity matrix and ni is the shape function of natural coordinates associated with the
ith node of the element. Using the relations given by Eq. (14) in Eq. (4), the generalized strain vectors at any
point within the element can be expressed as follows:

{∈b} = [Btb]{de
t } + [Z1][Brb]{de

r} + [Btnb]{de
t } and {∈s} = [Bts]{de

t } + [Z2][Brs]{de
r}. (16)

In Eq. (16), the nodal generalized strain-displacement matrices ([Btb], [Brb], [Btnb], [Bts] and [Brs]) are given
by

[Btb] = [Ltb][Nt], [Brb] = [Lrb][Nr], [Btnb] = [Ltnb][Nt],
[Bts] = [Lts][Nt] and [Brs] = [Nr]. (17)

Substituting Eqs. (7) and (8) into Eq. (13) and then using Eq. (16), the total potential energy Te
p of a typical

element augmented with the ACLD treatment can be expressed as:

Te
p = 1

2
[{de

t }T[Ke
tt]{de

t } + {de
t }T[Ke

tr]{de
r} + {de

r}T[Ke
rt]{de

t } + {de
r}T[Ke

rr]{de
r}

+ {de
t }T[Ke

tsv]
t∫

0

G(t − τ )
∂

∂τ
{de

t }dτ + {de
t }T[Ke

trsv]
t∫

0

G(t − τ )
∂

∂τ
{de

r}dτ

+ {de
r}T[Ke

trsv]T

t∫

0

G(t − τ )
∂

∂τ
{de

t } + {de
r}T[Ke

rrsv]
t∫

0

G(t − τ )
∂

∂τ
{de

r}dτ

− 2{de
t }T[Fe

tpn]V − 2{de
t }T[Fe

tp]V − 2{de
r}T[Fe

rp]V − {Ē}T[ε̄N+2]{Ē}V2 − 2{de
t }T{Fe}], (18)

in which Ē = −1/hp and V is the potential difference across the thickness of the PFRC layer. The
elemental stiffness matrices ([Ke

tt], [Ke
tr], [Ke

rt], [Ke
rr], [Ke

tsv], [Ke
trsv], [Ke

trsv]T and [Ke
rrsv]), the elemental

electro-elastic coupling matrices ([Fe
tpn], [Fe

tp], and [Fe
rp]) and the elemental load vector [Fe] appearing in

Eq. (18) are defined as follows:

[Ke
tt] = [Ke

tb] + [Ke
ts] + [Ke

tnb], [Ke
tr] = [Ke

trb] + [Ke
trs] + [Ke

trbn],
[Ke

rt] = [Ke
trb]T + [Ke

trs]T + 1

2
[Ke

trbn]T, [Ke
rr] = [Ke

rrb] + [Ke
rrs],

[Ke
tb] =

be∫

0

ae∫

0

[Btb]T[Dtb][Btb]dxdy, [Ke
ts] =

be∫

0

ae∫

0

[Bts]T[Dts][Bts]dxdy,

[Ke
tnb] =

be∫

0

ae∫

0

(1

2
[Btb]T[Dtb][B1][B2] + [B2]T[B1]T[Dtb][Btb] + 1

2
[B2]T[B1]T[Dtb][B1][B2]

)
dxdy,

[Ke
trb] =

ae∫

0

be∫

0

[Btb]T[Dtrb][Brb]dxdy, [Ke
trs] =

ae∫

0

be∫

0

[Brs]T[Dtrs][Bts]dxdy,

[Ke
trbn] =

ae∫

0

be∫

0

[B2]T[B1]T[Dtrb][Brb]dxdy, [Ke
rrb] =

ae∫

0

be∫

0

[Brb]T[Drrb][Brb]dxdy,
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[Ke
rrs] =

ae∫

0

be∫

0

[Brs]T[Drrs][Brs]dxdy, [Ke
tsv] = hv

be∫

0

ae∫

0

[Bts]T[Bts]dxdy,

[Ke
trsv] = hv

be∫

0

ae∫

0

[Bts]T[Z2][Brs]dxdy, [Ke
rrsv] = hv

be∫

0

ae∫

0

[Brs]T[Z2]T[Z2][Brs]dxdy,

[Fe
tpn] =

be∫

0

ae∫

0

[B2]T[B1]T{Ftb}pdxdy, [Fe
tp] =

be∫

0

ae∫

0

([Btb]T{Ftb}pdxdy,

[Fe
rp] =

be∫

0

ae∫

0

([Brb]T{Frb}pdxdy and [Fe] =
be∫

0

ae∫

0

[Nt]T{f}dxdy,

where ae and be are the length and width of the element under consideration, and the various rigidity matrices
originated in the above elemental matrices are:

[Dtb] =
N∑

k=1

hk+1∫

hk

[C̄k
b]dz +

hN+3∫

hN+2

[C̄N+2
b ]dz, [Dtrb] =

N∑
k=1

hk+1∫

hk

[C̄k
b][Z1]dz +

hN+3∫

hN+2

[C̄N+2
b ][Z1]dz,

[Drrb] =
N∑

k=1

hk+1∫

hk

[Z1]T[C̄k
b][Z1]dz +

hN+3∫

hN+2

[Z1]T[C̄N+2
b ][Z1]dz,

[Dts] =
N∑

k=1

hk+1∫

hk

[C̄k
s ]dz +

hN+3∫

hN+2

[C̄N+2
s ]dz, [Dtrs] =

N∑
k=1

hk+1∫

hk

[C̄k
s ][Z2]dz +

hN+3∫

hN+2

[C̄N+2
s ][Z2]dz,

[Drrs] =
N∑

k=1

hk+1∫

hk

[Z2]T[C̄k
s ][Z2]dz +

hN+3∫

hN+2

[Z2]T[C̄N+2
b ][Z2]dz,

{Ftb}p =
hN+3∫

hN+2

[ēN+2
b ]{Ē}dz, {Frb}p =

hN+3∫

hN+2

[Z1]T[ēN+2
b ]{Ē}dz.

Substituting Eq. (14) into Eq. (12), the expression for the kinetic energy Te
k of the element can be obtained as

Te
k = 1

2
{ḋe

t }T[Me]{de
t }, (19)

in which [Me] =
be∫
0

ae∫
0

m̄{Nt}T[Nt]dxdy and m̄ =
N∑

k=1
ρk(hk+1 − hk) + ρN+1hv + ρN+2hp.

The rotary inertia of the overall plate has been neglected to estimate the total kinetic energy of the ele-
ment because the substrate plates considered here are very thin. Now, applying Hamilton’s principle [20], the
following governing equations of motion of an element are obtained:

[Me]{d̈e
t } + [Ke

tt]{de
t } + [Ke

tr]{de
r} + [Ke

tsv]
t∫

0

G(t − τ )
∂

∂τ
{de

t }dτ

+ [Ke
trsv]

t∫

0

G(t − τ )
∂

∂τ
{de

r}∂τ = {Fe} + ([Fe
tpn] + [Fe

tp])V, (20)
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[Ke
rt]{de

t } + [Ke
rr]{de

r} + [Ke
trsv]T

t∫

0

G(t − τ )
∂

∂τ
{de

t }dτ

+ [Ke
rrsv]

t∫

0

G(t − τ )
∂

∂τ
{de

r}dτ = {Fe
rp}V. (21)

It should be noted here that for an element without integration with the ACLD patch, the matrices [Fe
tpn], [Fe

tp]
and [Fe

rp] turn out to be the null matrices.
The elemental governing equations are assembled into the global space to obtain the global equations of

equilibrium as follows:

[M]{Ẍt} + [Ktt]{Xt} + [Ktr]{Xr} + [Ktsv]
t∫

0

G(t − τ )
∂

∂τ
{Xt}∂τ

+ [Ktrsv]
t∫

0

G(t − τ )
∂

∂τ
{Xr}dτ = {F} + ({Ftpn} + {Ftp})V, (22)

[Krt]{Xt} + [Krr]{Xr} + [Ktrsv]T

t∫

0

G(t − τ )
∂

∂τ
{Xt}dτ

+ [Krrsv]
t∫

0

G(t − τ )
∂

∂τ
{Xr}dτ = {Frp}V, (23)

where [M] is the global mass matrix; [Ktt], [Ktr], [Krt], [Krr], [Ktsv], [Ktrsv] and [Krrsv] are the global stiff-
ness matrices; [Ftpn], [Ftp] and [Frp] are the global electro-elastic coupling matrices; {Xt} and {Xr} are the
global nodal generalized displacement vectors; {F} is the global nodal mechanical force vector; and V is the
voltage applied to each patch.

In the Laplace domain, the function sG̃(s) is referred to as the material modulus function with G̃(s) being
the Laplace transform of the material relaxation function G(t) of the viscoelastic material. According to the
Golla–Hughes–McTavish (GHM) method for modeling the viscoelastic material in time domain, the material
modulus function can be represented by a series of mini-oscillator terms as follows [37]:

sG̃(s) = G∞
[

1 +
n∑

k=1

αk
s2 + 2ξ̂kω̂ks

s2 + 2ξ̂ ω̂ks + ω̂
2
k

]
, (24)

where G∞ corresponds to the equilibrium value of the modulus, that is, the final value of the relaxation G(t).
Each mini-oscillator term is a second-order rational function involving three positive constants αk, ω̂k and ξ̂k.
These constants govern the shape of the modulus function in the complex s domain. Now considering a GHM
material modulus function with one mini-oscillator term [37], that is,

sG̃(s) = G∞
[

1 + α
s2 + 2ξ̂ ω̂s

s2 + 2ξ̂ ω̂s + ω̂
2

]
, (25)

the auxiliary dissipation coordinates {Zt}, {Zr} are introduced as follows:

{Z̃t(s)} = ω̂
2

s2 + 2ξ̂ ω̂s + ω̂
2 {X̃t} and {Z̃r(s)} = ω̂

2

s2 + 2ξ̂ ω̂s + ω̂
2 {X̃r}, (26)

where {Z̃(s)} and {Z̃r(s)} are the Laplace transforms of {Zt} and {Zr}, respectively.
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Taking the inverse Laplace transform of Eq. (26), the time-domain representation of the auxiliary dissipation
coordinates can be written as

{Z̈t} + 2ξ̂ ω̂{Żt} + ω̂
2{Zt} − ω̂

2{Xt} = 0, (27)

{Z̈r} + 2ξ̂ ω̂{Żr} + ω̂
2{Zr} − ω̂

2{Xr} = 0. (28)

Making use of Eqs. (25) and (26) in the Laplace transform of Eqs. (22) and (23) and subsequently taking the
inverse Laplace transform of the resulting equations, the following global equations of motion are obtained:

[M]{Ẍt} + [K̄tt]{Xt} + [K̄tr]{Xr} − [Ktsv]G∞α{Z}
− [Ktrsv]G∞α{Zr} = {F} + ({Ftp} + {Ftpn})V, (29)

[K̄rt]{Xt} + [K̄rr]{Xr} − [Ktrsv]TG∞α{Z} − [Krrsv]G∞α{Zr} = {F̃rp}V, (30)

in which

[K̄tt] = [Ktt] + [Ktsv]G∞(1 + α), [K̄tr] = [Ktr] + [Ktrsv]G∞(1 + α),

[K̄rr] = [Krr] + [Krrsv]G∞(1 + α), [K̄rt] = [Krt] + [Ktrsv]TG∞(1 + α).

Now, the global rotational degrees of freedom can be condensed from Eqs. (28)–(30) to obtain the following
global open-loop equations of motion in terms of the global translational degrees of freedom {Xt}and the
dissipation coordinates {Zt}, {Zr} as follows:

[M]{Ẍt} + [Kx]{Xt} + [Kz]{Zt} + [Kzr]{Zr} = {F} + {Fp}V, (31)

{Z̈r} + 2ξ̂ ω̂{Żr} + ω̂
2[K1]{Xt} − ω̂

2[K2]{Z} + ω̂
2[K3]{Zr} = {Fpz}V (32)

where

[Kx] = [K̄tt] − [K̄tr][K̄rr]−1[K̄rt], [Kz] = [K̄tr][K̄rr]−1[Ktrsv]TG∞α − [Ktsv]G∞α,

[Kzr] = [K̄tr][K̄rr]−1[Krrsv]G∞α − [Ktrsv]G∞α, {FP} = {Ftp} + {Ftpn} + [K̄tr][K̄rr]−1{Frp},
[K1] = [K̄rr]−1[Krt], [K2] = [K̄rr]−1[Ktrsv]TG∞α, [K3] = Izr − [K̄rr]−1[Krrsv]G∞α,

{Fpz} = ω̂
2[Krr]−1{Frp}.

Now, the global equations of motion given by Eqs. (27), (31) and (32) can be combined to form a single
set of equations governing the coupled electro-elastic open-loop behavior of the laminated composite plate
integrated with the patches of ACLD treatment as follows:

[M∗]{Ẍ} + [C∗]{Ẋ} + [K∗]{X} = {F∗} + {F∗
p}V, (33)

in which

[M∗] =
⎡
⎣

[M] 0 0
0 Iz 0
0 0 Izr

⎤
⎦ , [K∗] =

⎡
⎣

[Kx] [Kz] [Kzr]
−ω̂

2Iz ω̂
2Iz 0

ω̂
2[K1] −ω̂

2[K2] ω̂
2[K3]

⎤
⎦ , [C∗] =

⎡
⎣

0 0 0
0 2ξ̂ ω̂ 0
0 0 2ξ̂ ω̂

⎤
⎦ ,

{F∗} =
⎧⎨
⎩

{F̃}
0
0

⎫⎬
⎭ , {F∗

p} =
⎧⎨
⎩

{Fp}
0
{Fpz}

⎫⎬
⎭ and {X} =

⎧⎨
⎩

{Xt}
{Zt}
{Zr}

⎫⎬
⎭ ,

where Iz and Izr are identity matrices of appropriate sizes associated with the dissipation coordinates {Zt} and
{Zr}, respectively.
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3 Closed-loop model

In order to apply the control voltage for activating the patches of the ACLD treatment, a simple velocity
feedback control law has been employed. According to this law, the control voltage for each patch can be
expressed in terms of the derivatives of the global nodal degrees of freedom as follows:

Vj = −Kj
dẇ = −Kj

d[Uj]{Ẋ}, (34)

in which Kj
d is the control gain for the jth patch and [Uj] is a unit vector defining the location of sensing

the velocity signal that will be fed back to this patch. Finally, substituting Eq. (34) into Eq. (33), the equa-
tions of motion governing the closed-loop dynamics of the substrate plates activated by the patches of ACLD
treatments can be obtained as follows:

[M∗]{Ẍ} + [C∗
d]{Ẋ} + [K∗]{X} = {F∗}, (35)

where [C∗
d] = [C∗] + ∑m

j=1 Kj
d{F∗

p}[Uj] is an active damping matrix.

4 Numerical results

In this section, the numerical results are evaluated using the finite element model derived in the previous sec-
tion for assessing the performance of the ACLD patches on controlling the geometrically nonlinear vibrations
of laminated composite shallow shells. Symmetric/antisymmetric cross-ply and antisymmetric angle-ply thin
circular cylindrical panels having the square plan form (a × a) and integrated with two rectangular patches
of ACLD treatment (Fig. 1) are considered for evaluating the numerical results. The results are presented
for various shallowness angles (φ) of the thin cylindrical panel. The material properties considered for the
orthotropic layers of the substrate panel are considered as follows:

EL = 172.9 GPa, EL/ET = 25, GLT = 0.5ET, GTT = 0.2ET,

νLT = νTT = 0.25,ρ = 1, 600 kg/m3, (36)

in which the symbols have their usual meaning. The piezoelectric fibers and the matrix of the PFRC patches
are made of PZT5H and epoxy, respectively. The effective elastic and piezoelectric coefficients of the PFRC
with 40 % fiber volume fraction are obtained by using the micro-mechanics model derived by Mallik and Ray
[27] and are given by

C11 = 32.6 GPa, C12 = 4.3 GPa, C22 = 7.2 GPa, C44 = 1.05 GPa, C55 = C66 = 1.29 GPa,
ρp = 3640 kg/m3, e31 = −6.76 C/m2, e32 = −0.076 C/m2. (37)

The thicknesses of the PFRC patch, the viscoelastic patch and the laminated panel are considered as 250
µm, 50.8 µm and 3 mm, respectively. Also, unless otherwise mentioned, the values of the axial length (a),
the shallowness angle (φ) of the panel and piezoelectric fiber orientation angle (ψ) in the PFRC patches are
considered as 0.5 m, 20◦ and 0◦, respectively. Also, the thicknesses of the orthotropic layers of the substrate
panel are equal. The mechanical load p acting upward is assumed to be uniformly distributed. Considering
a single-term GHM expression, the values of α, ω̂ and ξ̂ are taken as 8.3228 × 103 and 20, respectively
[38]. The shear modulus (G∞) and the density of the viscoelastic material (ρv) are taken as 3.9987 × 105Pa
and 1,104 kg/m3, respectively. The simply supported boundary conditions at the edges of the overall panels
considered for evaluating the numerical results are given by

v0 = w = θy = φy = γy = 0 at x = 0, a and u0 = w = θx = φx = γx = 0 at y = 0, s.

Following the approach by Lim et al. [38], first the validity of the present GHM method for modeling
the ACLD treatment is checked. For this, a symmetric cross-ply (0◦/90◦/0◦) cylindrical composite panel
integrated with the ACLD patches as shown in Fig. 1 is considered. The linear frequency responses for the
transverse displacement of the panel are evaluated when the viscoelastic material is modeled by the GHM
method and the conventional complex modulus approach, separately. A time-harmonic load of −1 N is con-
sidered to excite the first few modes of the substrate. Figure 3 illustrates the frequency functions computed by
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Fig. 3 Comparison of GHM result with complex stiffness solution for a simply supported antisymmetric (0◦/90◦/0◦) substrate
Panel (φ = 20◦), subjected to point load (−1 N) at (a/4, b/4, h/2)

Fig. 4 Comparison of nonlinear dynamic response of simply supported (SS2) antisymmetric angle-ply (45◦/ − 45◦) plate with
identical smart composite plate with negligible thickness of ACLD patches

both the GHM method and the conventional complex modulus approach for this simply supported symmet-
ric cross-ply substrate panel of square plan form. It may be clearly observed from Fig. 3 that the frequency
response curves obtained by the two approaches are almost indistinguishable. Thus the present method of
modeling the viscoelastic material by the GHM method accurately predicts the damping characteristics of
the overall panel. In order to verify the numerical integration scheme for computing the nonlinear response
in time domain, the thickness of the patches of the ACLD treatment is considered to be negligibly small
and the transient response for the center deflection of the plate computed by the present model is compared
with the existing results [39] for an identical composite plate without integrated with the ACLD patches. It
can be observed from Fig. 4 that the results obtained by the present scheme closely agree with the existing
results.

The open-loop and closed-loop behavior of the substrate panels are studied by the time responses for the
transverse deflection at the center of the panel (a/2, a/2, h/2) on the top of the substrates. A uniformly dis-
tributed transverse pulse load is applied to set the overall panel into motion. The nondimensional mechanical
load (Q = pa4/(ETh4)) is applied such that the overall panel undergoes nonlinear deformations. The control
voltage applied to ACLD patch is negatively proportional to the velocity at a point (a/2, a/2, h/2). The
control gain is chosen arbitrarily such that the nonlinear vibrations are under control. Figure 5 illustrates the
nonlinear transient responses for a simply supported symmetric cross-ply (0◦/90◦/0◦) substrate panel with
shallowness angle φ = 20◦. Displayed in this figure are the responses when the patches are passive (gain = 0)
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Fig. 5 Nonlinear dynamic responses of a simply supported symmetric cross-ply (0◦/90◦/0◦) panel undergoing ACLD
(Q = 750, φ = 20◦)

Fig. 6 Control voltages required for the ACLD of nonlinear transient vibrations of a simply supported symmetric (0◦/90◦/0◦)
panel (Q = 750, φ = 20◦)

and active (gain �= 0). It is evident from the figure that the active ACLD patches have a significant effect on
the control of nonlinear transient vibrations and improve the damping characteristics of the overall panel over
the passive damping. The control voltage corresponding to the gain used is quite nominal as shown in Fig. 6.
Since the control voltage is proportional to the velocity at the center of the plate, the illustration of control
voltage in Fig. 6 indicates that the panel velocity at any point of the overall panel also decays with time. The
transient response for a simply supported antisymmetric cross-ply (0◦/90◦/0◦/90◦) substrate panel having
shallowness angle φ = 20◦ is illustrated in Fig. 7. It can be shown that, in this case also, the ACLD patches
effectively control the nonlinear vibrations of the panel, enhancing the damping characteristics of the panel
with low control voltage.

Next, the effect of the variation in shallowness angle on the nonlinear transient responses is studied. Figure 8
illustrates the controlled nonlinear dynamic transient responses of a simply supported laminated cylindrical
composite panel for various values of shallowness angle of the panel. Since the overall stiffness of the panel
increases with the increase in shallowness angle of the panel, the settling time for the controlled responses of
the panel with higher shallowness angle is less than that of the panel with smaller shallowness angle. Similar
results are also obtained for symmetric cross-ply and antisymmetric angle-ply panels and for the sake of brevity
are not presented here.
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Fig. 7 Nonlinear dynamic responses of a simply supported antisymmetric cross-ply (0◦/90◦/0◦/90◦) panel undergoing ACLD
(Q = 750, φ = 20◦)

Fig. 8 Comparison of controlled nonlinear dynamic responses of simply supported antisymmetric cross-ply (0◦/90◦/0◦/90◦)
panel undergoing ACLD for different φ, shallowness angle (Q = 400, Kd = 75)

5 Conclusions

In this paper, a three-dimensional finite element analysis has been carried out to investigate the performance of
the patches of ACLD treatment for controlling geometrically nonlinear vibrations of thin cylindrical laminated
composite panels. The constraining layer of the ACLD patches is considered to be made of the PFRC material.
The kinematics of deformation of the overall plate is assumed to be based on the first-order shear deformation
theory (FSDT), and the Von Kármán type strain-displacement relations are used for modeling geometric non-
linearity. The mechanics of the viscoelastic material layer is modeled using the GHM approach, which is a
time-domain formulation. A simple velocity feedback control loop is used to introduce active damping. Both
symmetric and antisymmetric substrates are considered for evaluation of the numerical results. The numerical
results demonstrate the use of ACLD patches in achieving the active damping to suppress the geometrically
nonlinear transient vibrations of the panel effectively. The effect of the shallowness angle on the nonlinear
transient response analysis also has been studied. Performance of the activated ACLD patches increases with
the increase in the value of the shallowness angle for controlling the geometrically nonlinear vibrations of
laminated composite panels.
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