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Abstract A higher-order structure for three-phase composites containing randomly located yet unidirectionally
aligned circular fibers is proposed to predict effective transverse elastic moduli based on the probabilistic spatial
distribution of circular fibers, the pairwise fiber interactions, and the ensemble-area homogenization method.
Specifically, the two inhomogeneity phases feature distinct elastic properties and sizes. In the special event,
two-phase composites with same elastic properties and sizes of fibers are studied. Two non-equivalent formu-
lations are considered in detail to derive effective transverse elastic moduli of two-phase composites leading
to new higher-order bounds. Furthermore, the effective transverse elastic moduli for an incompressible matrix
containing randomly located and identical circular rigid fibers and voids are derived. It is demonstrated that
significant improvements in the singular problems and accuracy are achieved by the proposed methodology.
Numerical examples and comparisons among our theoretical predictions, available experimental data, and
other analytical predictions are rendered to illustrate the potential of the present method.

1 Introduction

Composite materials consist of two or more phases combined together on a macroscopic scale to form specific
new materials with certain desirable material properties and enhanced engineering performance. The “inclu-
sions” in composites can be of various forms such as fibers, whiskers, and particulates. The other primary phase
in composites is named the “matrix.” The matrix materials usually serve as the binder materials not only to
support and protect the inclusions but also to transfer stresses between perfectly bonded and partially debond-
ed/broken inclusions under three-dimensional complex loading. Composite materials can significantly improve
such properties of a material as strength, stiffness, corrosion resistance, wear resistance, attractiveness, weight,
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fatigue life, temperature-dependent behavior, thermal insulation, thermal conductivity, acoustical insulation,
etc.

Many theoretical methods have been developed in the literature to predict the effective elastic moduli of ran-
dom heterogeneous multiphase fiber/particle reinforced composites. It can be divided into four major schools;
that is, the variational method, the effective medium method, the direct micromechanical approach, and the
finite element method. The variational method employs variational principles to obtain mathematical lower
and upper bounds for effective elastic properties of composites within the linear elasticity theory. We refer to
Hashin and Shtrikman [1,2], Hill [3,4], Hashin and Rosen [5], Hashin [6], Walpole [7–9], and Hashin [10].
Their method renders generally better bounds than the Voigt and Reuss bounds. The “improved” higher-order
mathematical bounds (which depend on the statistical microstructural information of random heterogeneous
composites) were also investigated by Silnutnzer [11], Milton [12], Milton and Phan-Thien [13], Torquato
and Lado [14], etc. For example, Silnutzer [11] derived improved bounds on effective in-plane shear and bulk
moduli. The Silnutzer bounds are referred to as the third-order (three-point) bounds. The effective medium
method includes the self-consistent model, the differential scheme, the generalized self-consistent model, and
the Mori-Tanaka model. We refer to Hill [15,16], Christensen and Lo [17], Mori and Tanaka [18], Benveniste
[19], and Weng [20]. However, the effective medium methods as a group depend only on geometries of particles
(inclusions) and volume fractions; they do not consider the spatial locations or probabilistic distributions of
particles (inclusions). The effective medium methods are inherently independent of the spatial or statistical
particles distribution, thus best suited for low particle concentrations or some limited special configurations.
Special attention is given to the direct micromechanical approach. This approach, a closed-form solution,
aims at direct micromechanical determination of effective properties of composites with randomly located and
interacting inclusions by employing some approximations or with certain special geometric configurations for
inclusions dispersed in matrix materials. Eshelby [21] considered an ellipsoidal inclusion embedded in infinite
matrix and proposed the celebrated “Eshelby’s equivalence principle”. Mura [22] mainly considered rigorous
“local” micromechanics, and there was no homogenization process involved. Honein [23] proposed a general
framework to solve the problem of two circular inclusions in in-plane elastostatics, subjected to arbitrary
loading by utilizing Kolosov-Muskhelishvili complex potentials. Furthermore, Nemat-Nasser and Hori [24]
devoted and contributed to this approach. Nevertheless, only “local” field solutions can be obtained based
upon the above approach. Based upon the work done by Eshelby [21], a micromechanical higher-order (in φ)
ensemble-volume average formulation was proposed by Ju and Chen [25,26] to obtain the effective moduli
of elastic multi-phase composites containing randomly dispersed ellipsoidal and spherical inhomogeneities,
respectively. Both “local” and “overall” field solutions are obtained. The pairwise inclusion interactions were
considered in their formulation. Therefore, the ensemble-volume averaged micromechanical field equations
are formulated by the homogenization process from their approach. Along this line, Ju and Zhang [27], Ju and
Yanase [28,29], and Lin and Ju [30] used a micromechanics approach to obtain effective elastic moduli of
composites with randomly located aligned circular fibers or randomly dispersed spherical particles featuring
same/ distinct elastic properties and same sizes. Due to the advent of high-speed computing machinery, the
numerical solutions based on finite element methods are provided by the “unit cell model” where some peri-
odic arrays of fibers are generally assumed. We refer to Adams and Crane [31], Nimmer et al. [32], Doghri
and Friebel [33]. Emanating from the general framework of Ju and Chen [25,26], Ju and co-workers further
investigated the micromechanics and effective elastoplastic behaviors of two-phase metal matrix composites
[34–39], the exact formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion [40], and
micromechanical damage models for effective elastoplastic behaviors of ductile matrix composites accommo-
dating evolutionary particle debonding/cracking and interfacial fiber debonding with/without thermal residual
stress effects [41–56].

The primary objective of the present paper is to extend the framework of Ju and Zhang [27] and con-
struct a higher-order framework to predict the effective transverse elastic moduli of two-phase fiber-reinforced
composites based on the probabilistic spatial distribution of cylindrical fibers, pairwise fiber interactions, and
the ensemble-area averaging procedure. All fibers are considered non-intersecting, randomly located, and
embedded firmly in the matrix with perfect interfaces.

The remainder of the paper is organized as follows. In Sect. 2, we present approximate analytical solutions
for the direct interactions between two different, randomly located elastic cylindrical fibers embedded in the
matrix material. The two inclusion phases feature distinct elastic properties and sizes for the three-phase com-
posites. Subsequently, the ensemble-area averaged eigenstrains are obtained through the probabilistic pairwise
fiber interaction mechanism in Sect. 3. In addition, two non-equivalent formulations associated with uniform
radial distribution function (URDF) and general radial distribution function (GRDF) are considered in detail
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Fig. 1 A schematic plot of a composite reinforced by unidirectionally aligned yet randomly located cylindrical fibers

Fig. 2 The schematic diagram for the two-fiber interaction problem

to derive the ensemble-area averaged eigenstrains. In the special event, the effective elastic moduli of two-
phase composites containing randomly located cylindrical fibers featuring same elastic properties and sizes
are analytically derived in Sect. 4. Comparisons between our micromechanical predictions and other analytical
predictions as well as experimental data are rendered in Sect. 5. As special case, a two-phase composite con-
taining randomly located cylindrical rigid fibers and microvoids embedded in an elastic or in an incompressible
matrix is also considered. We finally draw conclusions in Sect. 6.

2 Approximate local solutions of two interacting fibers

Let us consider a three-phase composite consisting of an isotropic elastic matrix (phase 0) with the plane-
strain bulk modulus k0 and the plane-strain shear modulus μ0, randomly located unidirectionally aligned
elastic circular fibers (phase 1) with radius a1, the plane-strain bulk modulus k1 and the plane-strain shear
modulus μ1, as well as randomly located unidirectionally aligned elastic circular fibers (phase 2) with radius
a2, the plane-strain bulk modulus k2 and the plane-strain shear modulus μ2 (cf. Figs. 1, 2). Since the plane-
strain is assumed, the fiber interaction exists only in the same cutting plane as shown in Fig. 2. In addition, the
plane-strain linearly elastic isotropic stiffness tensors for three distinct phases are expressed as

(
Cη

)
i jkl = ληδi jδkl + μη

(
δikδ jl + δilδ jk

)
, η = 0, 1, 2, (1)

where λη and μη are the Lamé constants of the phase-η material.
Following the eigenstrain concept introduced by Eshelby [21], the perturbed strain field ε′ (x) induced by

fibers can be related to the specified eigenstrain ε∗ (x) by replacing the fibers with the matrix material. The
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key equation can be rephrased as follows:

Cη : [ε0 + ε′ (x)
] = C0 : [ε0 + ε′ (x) − ε∗ (x)

]
, η = 1, 2, (2)

where ε0 is the uniform strain field induced by the far-field loads for a homogeneous matrix material only.
Throughout the paper, the colon symbol “:” denotes the tensor contraction between a fourth-rank tensor and
a second-rank tensor, while the dot symbol “•” represents the tensor multiplication between two fourth-rank
tensors.

According to Eshelby [21], the perturbed strain induced by the distributed eigenstrain ε∗(x) in a represen-
tative area element (RAE) A reads

ε′ (x) =
∫

A

G
(
x − x′) :ε∗ (x′) dx′, (3)

where x, x′ ∈ A and the component of the fourth-rank two-dimensional Green’s function tensor G are given
by (i, j, k, l = 1, 2; cf. Mura [22]):

Gi jkl = 1

4π (1 − ν0) r ′2 Fi jkl (−8, 2ν0, 2, 2 − 4ν0, −1 + 2ν0, 1 − 2ν0), (4)

where r′ ≡ x−x′ and r ′ = ∥∥r′∥∥. The components of the fourth-rank tensor F—which depends on its arguments
(B1, B2, B3, B4, B5, B6)—are defined by (m = 1 − 6):

Fi jkl (Bm) ≡ B1n′
i n

′
j n

′
kn′

l + B2

(
δikn′

j n
′
l + δiln

′
j n

′
k + δ jkn′

i n
′
l + δ jln

′
i n

′
k

)
+ B3δi j n

′
kn′

l

+B4δkln
′
i n

′
j + B5δi jδkl + B6

(
δikδ jl + δilδ jk

)
(5)

with the normal vector n′ ≡ r′/r ′. All physical quantities refer to the Cartesian coordinates, and the summa-
tion convention applies. Moreover, δi j denotes the Kronecker delta and ν0 is the Poisson’s ratio of the matrix
material. From Eqs. (2) and (3), we arrive at

− Ai : ε∗ (x) = ε0 +
∫

A

G
(
x − x′) :ε∗ (x′) dx′, x ∈ A, (6)

Ai = [Ci − C0]−1 • C0. (7)

Within the present two-circular fibers interaction context, the integral equation (6) can be recast as

−Ai : ε∗
(i) (x) = ε0 + ∫

�i

G
(
x − x′) : ε∗

(i)

(
x′) dx′ + ∫

� j

G
(
x − x′) : ε∗

( j)

(
x′) dx′,

i �= j, i, j = 1, 2,
(8)

where x ∈ �i , and ε∗
(i)(x

′) is the eigenstrain at x′ in the i th circular fiber within the domain �i .

As discussed earlier in Ju and Chen [25], the first-order solution for the eigenstrain denoted by ε∗0
(i) for the

i-th phase can be obtained by neglecting the last term in the right-hand side of Eq. (8), which represents the
interaction effects due to the other circular fiber. The first-order formulation leads to

− Ai : ε∗0
(i) = ε0 + S : ε∗0

(i), (9)

where the Eshelby tensor S is defined as

S =
∫

�i

G
(
x − x′) dx′, x, x′ ∈ �i . (10)

The components of the fourth-rank interior-point Eshelby tensor S for a cylindrical fiber are given by Mura
[22], Ju and Sun [38], Sun and Ju [39], and Ju and Zhang [27]. It depends on the Poisson’s ratio of the matrix
(ν0) and the shape of the fiber cross-sectional domain �i . In particular, for a two-dimensional circular domain,
the components of S are (see Mura [22] for more details):

Si jkl = 1

8 (1 − v0)

[
(4v0 − 1) δi jδkl + (3 − 4v0)

(
δikδ jl + δilδ jk

)]
, i, j, k, l = 1, 2. (11)
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By subtracting the first-order solution in Eq. (9) from Eq. (8), the effects of inter-fiber interaction can be
derived by solving the following integral equation:

− Ai : d∗
(i) (x) =

∫

� j

G
(
x − x′) dx′ : ε∗0

( j) +
∫

�i

G
(
x − x′) :d∗

(i)

(
x′) dx′

+
∫

� j

G
(
x − x′) :d∗

( j)

(
x′) dx′, for x ∈ �i , i �= j and i, j = 1, 2, (12)

where

d∗
(i) (x) = ε∗

(i) (x) − ε∗0
(i). (13)

To obtain the higher-order interaction correction for ε∗
(i) (x), one may expand the fourth-rank tensor

G
(
x − x′) in the domain � j with respect to its center point x j ; that is,

G
(
x − x′) = G

(
x − x j

)− (
x′ − x j

) : [∇x ⊗ G
(
x − x j

)]

+1

2

[(
x′ − x j

)⊗ (
x′ − x j

)] : [∇x ⊗ ∇x ⊗ G
(
x − x j

)]+ · · · (14)

where the relation

∇x′ ⊗ G
(
x − x′) = −∇x ⊗ G

(
x − x′) (15)

has been employed. From Eqs. (12) and (14), we arrive at

− Ai : d∗
(i)(x) =

∫

� j

G
(
x − x′) dx′ :ε∗0

( j) +
∫

�i

G
(
x − x′) :d∗

(i)(x
′)dx′

+ � j G
(
x − x j

) : d̄∗
( j)(x j ) − � j a j

{∇x ⊗ G
(
x − x j

)} : P̄∗
( j)

+ 1

2
� j a

2
j

{∇x ⊗ ∇x ⊗ G
(
x − x j

)} : Q̄∗
( j) + · · · (16)

for x ∈ �i and i �= j (i, j = 1, 2). Here �i = πa2
i and � j = πa2

j denote the cross-sectional area of a fiber
in phase i and j , respectively; ai and a j define the fiber radius in phase i and j , respectively. Furthermore, the
average fields involved in Eq. (16) are defined as follows:

d̄∗
( j) = 1

� j

∫

� j

d∗
( j)

(
x′) dx′; P̄∗

( j) = 1

� j a j

∫

� j

(
x′ − x j

)⊗ d∗
( j)

(
x′) dx′, (17)

Q̄∗
( j) = 1

� j a2
j

∫

� j

(
x′ − x j

)⊗ (
x′ − x j

)⊗ d∗
( j)

(
x′) dx′. (18)

The third-rank tensor P̄∗
( j) and the fourth-rank tensor Q̄∗

( j) correspond to the dipole and quadrupole of d̄∗
( j)

in the domain � j , respectively. Due to the circular symmetry of fibers, the leading order of P̄∗
( j) can be shown

to be of the order O
(
ρ3

j

)
, rather than O

(
ρ2

j

)
, by substituting Eq. (16) into Eq. (17). Here, ρ j = a j/r and r

is the spacing between the centers of two interacting fibers. By performing the area average of Eq. (16) for
the domain �i and neglecting those terms of higher-order moments in Eq. (16), the approximate equations
for d̄∗

( j) for the local two-fiber interaction problem can be obtained. Letting i = 1, j = 2, Eqs. (19)–(22) are
derived. In addition, letting i = 2, j = 1, Eqs. (23)–(26) are obtained.

− A1 : �1d̄∗
(1) = �12Ḡ21 : ε∗0

(2) + �1S : d̄∗
(1) + �2Ḡ11 : d̄∗

(2) + O
(
ρ6) , (19)
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where

d̄∗
(1) = 1

�1

∫

�1

d∗
(1)

(
x′) dx′; S =

∫

�1

G(x − x′) dx′ (x ∈ �1; x′ ∈ �1), (20)

Ḡ21 = 1

�12

∫

�1

∫

�2

G(x − x′)dx′dx = 1

8 (1 − ν0)

[

ρ1ρ2H1 +
(

ρ3
1ρ2 + ρ1ρ

3
2

2

)

H2

]

, (21)

Ḡ11 =
∫

�1

G(x − x2) dx = 1

8 (1 − ν0)

(

ρ2
1 H1 + ρ4

1

2
H2

)

, with x ∈ �1, x2 ∈ �2. (22)

In addition, we have

−A2 : �2 d̄∗
(2) = �21 Ḡ12 : ε∗0

(1) + �2 S : d̄∗
(2) + �1 Ḡ22 : d̄∗

(1) + O
(
ρ6) (23)

in which

d̄∗
(2) = 1

�2

∫

�2

d∗
(2)

(
x′) dx′ ; S =

∫

�2

G(x − x′)dx′ (x ∈ �2; x′ ∈ �2), (24)

Ḡ12 = 1

�21

∫

�2

∫

�1

G(x − x′) dx′dx = 1

8 (1 − ν0)

[

ρ1ρ2H1 +
(

ρ3
1ρ2 + ρ1ρ

3
2

2

)

H2

]

, (25)

Ḡ22 =
∫

�2

G(x − x1) dx = 1

8 (1 − ν0)

(

ρ2
2 H1 + ρ4

2

2
H2

)

, with x ∈ �2, x1 ∈ �1 (26)

and the components of H1 and H2are rendered by

H1
i jkl (x1 − x2) ≡ 2Fi jkl (−8, 2ν0, 2, 2 − 4ν0, −1 + 2ν0, 1 − 2ν0) ,

H2
i jkl (x1 − x2) ≡ 2Fi jkl (24, −4,−4,−4, 1, 1) .

(27)

Moreover, we define ρ1 = a1/r, ρ2 = a2/r, �12 = πa1a2 and �21 = �12 = πa1 a2.
It is interesting to note that Ḡ11 in Eq. (22) and Ḡ22 in Eq. (26) are different from the Eshelby tensor S

in Eq. (20) and in Eq. (24). One may refer to Ḡ11 and Ḡ22 as the “exterior-point Eshelby tensors” since the
integrals in Eqs. (22) and (26) involve an exterior-point outside the integration domain. It should be noted that
the leading order induced by truncating the higher-order moments in Eqs. (19) and (23) is of the order O

(
ρ6
)
,

since both P̄∗
( j) and � j a j

{∇x ⊗ G
(
x − x j

)}
are of the order O

(
ρ3
)
. Moreover, Eqs. (19) and (23) can be

recast as

�1 (A1 + S) : d̄∗
(1) + �2 Ḡ11 : d̄∗

(2) = −�12 Ḡ21 : ε∗0
(2),

�1 Ḡ22 : d̄∗
(1) + �2 (A2 + S) : d̄∗

(2) = −�12 Ḡ12 : ε∗0
(1).

(28)

Therefore, the solutions of Eq. (28) are

d̄∗
(1) = �12

�1

[(
Ḡ11)−1 • (A1 + S) − Ḡ22• (A2 + S)−1

]−1

•
[
(A2 + S)−1 • Ḡ12 : ε∗0

(1) − (
Ḡ11)−1 • Ḡ21 : ε∗0

(2)

]
, (29)

d̄∗
(2) = �12

�2

[
Ḡ11• (A1 + S)−1 − (

Ḡ22)−1 • (A2 + S)
]−1

•
[(

Ḡ22)−1 • Ḡ12 : ε∗0
(1) − Ḡ21• (A1 + S)−1 : ε∗0

(2)

]
, (30)
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where the leading orders of Ḡ22 (A2 + S)−1 and
(
Ḡ11

)−1
(A1 + S) are of the order of O

(
ρ2
)

and O
(
ρ−2

)

in Eq. (29), respectively. We note that Ḡ22 (A2 + S)−1 is truncated since its leading order is greater than the

leading order of
(
Ḡ11

)−1
(A1 + S). We also have ρ1 ≤ 1/2, ρ2 ≤ 1/2, and ρ1 + ρ2 ≤ 1:

d∗
(1) = �12

�1

[
(A1 + S)−1 • Ḡ11 • (A2 + S)−1 • Ḡ12 : ε∗0

(1) − (A1 + S)−1 • Ḡ21 : ε∗0
(2)

]
. (31)

Similarly, Eq. (30) can be rephrased as

d̄∗
(2) = �12

�2

[
(A2 + S)−1 • Ḡ22 • (A1 + S)−1 • Ḡ21 : ε∗0

(2) − (A2 + S)−1 • Ḡ12 : ε∗0
(1)

]
. (32)

3 Ensemble-area averaged eigenstrains

To obtain the probabilistic ensemble averaged solution of d̄∗
(1) within the context of approximate pairwise

local fiber interaction, one has to integrate Eq. (31) over all possible positions (x2) of the phase-2 fiber and
positions (x1) of the phase-1 fiber for a given location of the phase-1 fiber (x1). Similarly, to find d̄∗

(2), one has
to integrate Eq. (32) over all possible positions (x1) of the phase-1 fiber and positions (x2) of the phase-2 fiber
for a given location of the phase-2 fiber(x2). The ensemble average process takes the form

〈
d̄∗

(i)

〉
(xi ) =

∫

A−�i

d̄∗
(i)

(
xi − x j

)
P
(

x j
∣
∣ xi
)

dx j , i �= j, (33)

i = 1, j = 2 :
〈
d̄∗

(1)

〉
(x1) =

∫

A−�1

d̄∗
(1) (x1 − x2) P (x2| x1) dx2, (34)

i = 2, j = 1 :
〈
d̄∗

(2)

〉
(x2) =

∫

A−�2

d̄∗
(2) (x2 − x1) P (x1| x2) dx1. (35)

The two-point conditional probability function P
(

x j
∣
∣ xi
)

is determined by the microstructure of a com-
posite, which in turn depends on the fiber volume fractions and underlying manufacturing processes. For
illustration, the two-point conditional probability density function is taken in the following form:

P
(

x j
∣∣ xi
) =

⎧
⎪⎨

⎪⎩

(Ni +N j)
A g

(


r
)

, if


r ≥ 1 , where



r ≡ r/(a1 + a2) , r > (a1 + a2) ,

0, otherwise,

(36)

where i, j = 1, 2, i �= j; Ni and Ni/A are the numbers of fibers and the 2-D number density of fibers in phase i
in a composite, respectively; N j and N j/A are the numbers of fibers and 2-D number density of fibers in phase
j (distinct material property and size of phase i) in a composite, respectively; r is the spacing between centers

of two fibers. Further, g
(



r
)

denotes the 2-D transversely isotropic “radial distribution function” (Hansen and

McDonald [57]; Torquato and Lado [14]).

By substituting Eq. (31) into (34), the explicit expression for
〈
d̄∗

(1)

〉
(x1) can be depicted as

〈
d̄∗

(1)

〉
(x1) =

∫

A−�1

d̄∗
(1) (x1 − x2) P (x2| x1) dx2

=
∫

A−�1

�12

�1

[
(A1 + S)−1 Ḡ11 (A2 + S)−1 Ḡ12 : ε∗0

(1) − (A1 + S)−1 Ḡ21 : ε∗0
(2)

]
P (x2| x1) dx2
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= �12

�1

∞∫

a1+a2

2π∫

0

[
(A1 + S)−1 Ḡ11 (A2 + S)−1 Ḡ12 : ε∗0

(1)

]
P (x2| x1) dx2

+�12

�1

∞∫

2a1

2π∫

0

[
(A1 + S)−1 Ḡ11 (A2 + S)−1 Ḡ12 : ε∗0

(1)

]
P (x1| x1) dx1. (37)

Here, we can prove that
∫

A−�1

�12

�1

[
(A1 + S)−1 Ḡ21 : ε∗0

(2)

]
P (x2| x1) dx2 = 0, (38)

where
∫ 2π

0 H1 (n) dθ = 0; ∫ 2π

0 H2 (n) dθ = 0 as shown in Ju and Zhang [27]; A is the infinitely large 2-D
transversely isotropic probabilistic (not physical) integration domain; �1is probabilistic “exclusion zone” for
x2. In addition, the following identities can be easily derived:

2π∫

0

ni n j dθ = πδi j ;
2π∫

0

ni n j nknldθ = π

4

(
δi jδkl + δikδ jl + δilδ jk

)
. (39)

Similarly, by substituting Eq. (32) into Eq. (35), the explicit expression for
〈
d̄∗

(2)

〉
(x2) can be expressed as

〈
d̄∗

(2)

〉
(x2) =

∫

A−�2

d̄∗
(2) (x2 − x1) P (x1| x2) dx1

=
∫

A−�2

�12

�2

[
(A2 + S)−1 Ḡ22 (A1 + S)−1 Ḡ21 : ε∗0

(2) − (A2 + S)−1 Ḡ12 : ε∗0
(1)

]
P (x1| x2) dx1

= �12

�2

∞∫

a1+a2

2π∫

0

[
(A2 + S)−1 Ḡ22 (A1 + S)−1 Ḡ21 : ε∗0

(2)

]
P (x1| x2) dx1

+�12

�2

∞∫

2a2

2π∫

0

[
(A2 + S)−1 Ḡ22 (A1 + S)−1 Ḡ21 : ε∗0

(2)

]
P (x2| x2) dx2. (40)

Here, we can also prove that
∫

A−�2

�12

�2

[
(A2 + S)−1 Ḡ12 : ε∗0

(1)

]
P (x1| x2) dx1 = 0. (41)

In what follows, two different radial distribution functions will be considered; that is, (1) the uniform radial

distribution function g
(



r
)

= 1 and (2) the general radial distribution function g
(



r
)

�= 1 in Eq. (36). Under

each radial distribution function, we present two non-equivalent formulations to predict the effective trans-
verse elastic moduli of two-phase composites; that is, “Formulation II” and “Formulation I.” The following
notations are adopted: the superscript “U”, “G”, “II”, and “I” stand for the uniform radial distribution function,
the general radial distribution function, Formulation II and Formulation I, respectively.

3.1 Radial distribution function (URDF): g
(



r
)

= 1

This event corresponds to the simplest approximation for g
(



r
)

since it tends to underestimate the probability

of the surrounding fibers at high fiber volume fraction during the ensemble-area averaging process. There-
fore, this case may be regarded as the “lower bound” for microstructure and is more suitable for low fiber
concentrations.
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Formulation II: By carrying out lengthy algebra and utilizing identities Eqs. (17), (36) and (39), the

approximate ensemble-area averaged eigenstrain tensor
〈
ε̄∗

(1)

〉
can be derived as follows

〈
ε̄∗

(1)

〉UII = �
∼

UII

(1)
: ε∗0

(1). (42)

Here, the components of the isotropic tensor �
∼

UII

(1)
are:

�
∼

UII

(1)
= γ UII

11 δi jδkl + γ UII
21

(
δikδ jl + δilδ jk

)
, (43)

γ UII
11 = φ(2)

4
UUII

21 + φ(1)

4
UUII

11 ; γ UII
21 = 1

2
+ φ(2)

4
VUII

21 + φ(1)

4
VUII

11 , (44)

UUII
21 = f U

11 + 6

β1β2

[
λ2 + 2λ4

(1 + λ)4 − λ4 + λ6

(1 + λ)6

]
; UUII

11 = tU
11 + 15

16β2
1

, (45)

VUII
21 = f U

21 − 6

β1β2

[
λ2 + 2λ4

(1 + λ)4 − λ4 + λ6

(1 + λ)6

]
; VUII

11 = tU
21 − 15

16β2
1

, (46)

λ = a1

a2
; β1 = 4 (1 − ν0)

μ0

μ1 − μ0
+ (3 − 4ν0) ,

β2 = 4 (1 − ν0)
μ0

μ2 − μ0
+ (3 − 4ν0) ,

(47)

where φ(2) and φ(1) are the fiber volume fractions of phase 2 and phase 1, respectively. Similarly, the approx-

imate ensemble-area averaged eigenstrain tensor
〈
ε̄∗

(2)

〉
is

〈
ε̄∗

(2)

〉UII = �
∼

UII

(2)
: ε∗0

(2). (48)

Here, the components of the isotropic tensor �
∼

UII

(2)
read:

�
∼

UII

(2)
= γ UII

12 δi jδkl + γ UII
22

(
δikδ jl + δilδ jk

)
, (49)

γ UII
12 = φ(1)

4
UUII

12 + φ(2)

4
UUII

22 ; γ UII
22 = 1

2
+ φ(1)

4
VUII

12 + φ(2)

4
VUII

22 , (50)

UUII
12 = f U

12 + 6

β1β2

[
η2 + 2η4

(1 + η)4 − η4 + η6

(1 + η)6

]
; UUII

22 = tU
12 + 15

16β2
2

, (51)

VUII
12 = f U

22 − 6

β1β2

[
η2 + 2η4

(1 + η)4 − η4 + η6

(1 + η)6

]
; VUII

22 = tU
22 − 15

16β2
2

, (52)

η = a2

a1
= 1

λ
; β1 = 4 (1 − ν0)

μ0

μ1 − μ0
+ (3 − 4ν0) ,

β2 = 4 (1 − ν0)
μ0

μ2 − μ0
+ (3 − 4ν0) .

(53)

Formulation I: By neglecting the higher-order components O
(
ρ4

1/2
)

associated with H2 in Eq. (22),

O
(
ρ4

2/2
)

associated with H2 in Eq. (26), and O

(
ρ3

1ρ2+ρ1ρ
3
2

2

)
associated with H2 in Eq. (25) and following

similar procedures as in “Formulation II”, the approximate ensemble-area averaged eigenstrain tensor
〈
ε̄∗

(1)

〉

becomes
〈
ε̄∗

(1)

〉UI = �
∼

UI

(1)
: ε∗0

(1). (54)
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Here, the components of the isotropic tensor �
∼

UI

(1)
are:

�
∼

UI

(1)
= γ UI

11 δi jδkl + γ UI
21

(
δikδ jl + δilδ jk

)
, (55)

γ UI
11 = φ(2)

4
UUI

21 + φ(1)

4
UUI

11 ; γ UI
21 = 1

2
+ φ(2)

4
VUI

21 + φ(1)

4
VUI

11 , (56)

UUI
21 = f U

11; UUI
11 = tU

11; VUI
21 = f U

21; VUI
11 = tU

21, (57)

f U
11 = −4λ2

(1 + λ)2

{α1 [2α2 + (3 − 2ν0) β2] + β1 [4ν0α2 + (2ν0 + 1) β2]}
β1β2 (α1 + β1) (α2 + β2)

,

tU
11 = 1

β2
1

[
−2 + (1 − 2ν0) β1

α1 + β1

]
; f U

21 = 4λ2

(1 + λ)2

(2α2 + 3β2 − 2ν0β2)

β1β2 (α2 + β2)
,

(58)

tU
21 = 1

β2
1

[
2 + (1 − 2ν0) β1

α1 + β1

]
; α1 = 4 (1 − ν0)

[
k0

k1 − k0
− μ0

μ1 − μ0

]
+ (4ν0 − 1) ,

α2 = 4 (1 − ν0)

[
k0

k2 − k0
− μ0

μ2 − μ0

]
+ (4ν0 − 1) .

(59)

Similarly, the approximate ensemble-area averaged eigenstrain tensor
〈
ε̄∗

(2)

〉
is

〈
ε̄∗

(2)

〉UI = �
∼

UI

(2)
: ε∗0

(2). (60)

Here, the components of the isotropic tensor �
∼

UI

(2)
are:

�
∼

UI

(2)
= γ UI

12 δi jδkl + γ UI
22

(
δikδ jl + δilδ jk

)
, (61)

γ UI
12 = φ(1)

4
UUI

12 + φ(2)

4
UUI

22 ; γ UI
22 = 1

2
+ φ(1)

4
VUI

12 + φ(2)

4
VUI

22 , (62)

UUI
12 = f U

12; UUI
22 = tU

12; VUI
12 = f U

22; VUI
22 = tU

22, (63)

f U
12 = −4η2

(1 + η)2

{α2 [2α1 + (3 − 2ν0) β1] + β2 [4ν0α1 + (2ν0 + 1) β1]}
β1β2 (α1 + β1) (α2 + β2)

,

tU
12 = 1

β2
2

[
−2 + (1 − 2ν0) β2

α2 + β2

]
; f U

22 = 4η2

(1 + η)2

(2α1 + 3β1 − 2ν0β1)

β1β2 (α1 + β1)
,

(64)

tU
22 = 1

β2
2

[
2 + (1 − 2ν0) β2

α2 + β2

]
; α1 = 4 (1 − ν0)

[
k0

k1 − k0
− μ0

μ1 − μ0

]
+ (4ν0 − 1) ,

α2 = 4 (1 − ν0)

[
k0

k2 − k0
− μ0

μ2 − μ0

]
+ (4ν0 − 1) .

(65)

3.2 General radial distribution function (GRDF): g
(



r
)

�= 1

This event corresponds to the complex approximation for g
(



r
)

since it tends to overestimate the probability

of the surrounding fibers at low fiber volume fraction during the ensemble-area averaging process. Therefore,
this case may be regarded as the “upper bound” for microstructure and is more suitable for high fiber concen-
trations. For example, at higher volume fractions, it is sometimes assumed that the two-point conditionally



New higher-order bounds on effective transverse elastic moduli 2447

probability function obeys the so-called thermodynamic “equilibrium radial distribution function” (ERDF),
also known as accurately in the Percus–Yevick approximation (Hansen and McDonald [57]; Torquato and
Lado [14]), as follows:

g
(



r
)

= H
(



r − 1

) [
1 + A

(


r
)

φ
]
; 


r ≡ r/ (a1 + a2) , (66)

A
(



r
)

= 4

π

⎡

⎣π − 2 sin−1

(


r

2

)

− 

r

(

1 −


r

2

4

)1/2⎤

⎦ H
(

2 − 

r
)

,

H(x) =
{

0, if x ≤ 0,
1, if x > 0.

(67)

Formulation II: We write
〈
ε̄∗

(1)

〉GII = �
∼

GII

(1)
: ε∗0

(1), (68)

�
∼

GII

(1)
= γ GII

11 δi jδkl + γ GII
21

(
δikδ jl + δilδ jk

)
, (69)

γ GII
11 = φ(2)

4
UGII

21 + φ(1)

4
UGII

11 ; γ GII
21 = 1

2
+ φ(2)

4
VGII

21 + φ(1)

4
VGII

11 , (70)

UGII
21 = f G

11 +
(

1

β1β2

) [
24
(
2λ4 + λ2)Y32 (g) − 36

(
λ6 + λ4)Y52 (g)

]
,

UGII
11 = tG

11 +
(

1

β2
1

)

[72Y31 (g) − 72Y51 (g)] ,

(71)

VGII
21 = f G

21 +
(

1

β1β2

) [−24
(
2λ4 + λ2)Y32 (g) + 36

(
λ6 + λ4)Y52 (g)

]
,

VGII
11 = tG

21 +
(

1

β2
1

)

[−72Y31 (g) + 72Y51 (g)] ,

(72)

Y32 (g) =
1

1+λ∫

0

ρ3
2 g (ρ2)dρ2; Y52 (g) =

1
1+λ∫

0

ρ5
2 g (ρ2) dρ2,

Y31 (g) =
1
2∫

0

ρ3
1 g (ρ1) dρ1; Y51 (g) =

1
2∫

0

ρ5
1 g (ρ1)dρ1,

(73)

Similarly, we have
〈
ε̄∗

(2)

〉GII = �
∼

GII

(2)
: ε∗0

(2), (74)

�
∼

GII

(2)
= γ GII

12 δi jδkl + γ GII
22

(
δikδ jl + δilδ jk

)
, (75)

γ GII
12 = φ(1)

4
UGII

12 + φ(2)

4
UGII

22 ; γ GII
22 = 1

2
+ φ(1)

4
VGII

12 + φ(2)

4
VGII

22 , (76)

UGII
12 = f G

12 +
(

1

β1β2

) [
24
(
2η4 + η2) P31 (g) − 36

(
η6 + η4)P51 (g)

]
,

UGII
22 = tG

12 +
(

1

β2
2

)

[72P32 (g) − 72P52 (g)] ,

(77)
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VGII
12 = f G

22 +
(

1

β1β2

)
[−24

(
2η4 + η2)P31 (g) + 36

(
η6 + η4)P51 (g)

]
,

VGII
22 = tG

22 +
(

1

β2
2

)

[−72P32 (g) + 72P52 (g)] ,

(78)

P31 (g) =
1

1+η∫

0

ρ3
1 g (ρ1) dρ1; P51 (g) =

1
1+η∫

0

ρ5
1 g (ρ1) dρ1,

(79)

P32 (g) =
1
2∫

0

ρ3
2 g (ρ2) dρ2; P52 (g) =

1
2∫

0

ρ5
2 g (ρ2) dρ2.

Formulation I: We write
〈
ε̄∗

(1)

〉GI = �
∼

GI

(1)
: ε∗0

(1), (80)

�
∼

GI

(1)
= γ GI

11 δi jδkl + γ GI
21

(
δikδ jl + δilδ jk

)
, (81)

γ GI
11 = φ(2)

4
UGI

21 + φ(1)

4
UGI

11 ; γ GI
21 = 1

2
+ φ(2)

4
VGI

21 + φ(1)

4
VGI

11 , (82)

UGI
21 = f G

11; UGI
11 = tG

11; VGI
21 = f G

21; VGI
11 = tG

21, (83)

f G
11 = ω11

β1β2
Y12 (g) 4λ2; tG

11 = 4S11

β2
1

Y11 (g) ,

f G
21 = ω12

β1β2
Y12 (g) 4λ2; tG

21 = 4S12

β2
1

Y11 (g) , (84)

ω11 = −2 {α1 [2α2 + (3 − 2ν0) β2] + β1 [4ν0α2 + (2ν0 + 1) β2]}
(α1 + β1) (α2 + β2)

,

ω12 = 2 [2α2 + (3 − 2ν0) β2]

α2 + β2
; S11 = 2

[
−2 + (1 − 2ν0) β1

α1 + β1

]
; S12 = 2

[
2 + (1 − 2ν0) β1

α1 + β1

]
,

(85)

Y11 (g) =
1
2∫

0

ρ1g (ρ1) dρ1; Y12 (g) =
1

1+λ∫

0

ρ2g (ρ2) dρ2. (86)

Similarly, we obtain
〈
ε̄∗

(2)

〉GI = �
∼

GI

(2)
: ε∗0

(2), (87)

�
∼

GI

(2)
= γ GI

12 δi jδkl + γ GI
22

(
δikδ jl + δilδ jk

)
, (88)

γ GI
12 = φ(1)

4
UGI

12 + φ(2)

4
UGI

22 ; γ GI
22 = 1

2
+ φ(1)

4
VGI

12 + φ(2)

4
VGI

22 , (89)

UGI
12 = f G

12; UGI
22 = tG

12; VGI
12 = f G

22; VGI
22 = tG

22, (90)

f G
12 = e11

β1β2
P11 (g) 4η2; tG

12 = 4g11

β2
2

P12 (g) ,

f G
22 = e12

β1β2
P11 (g) 4η2; tG

22 = 4g12

β2
2

P12 (g) ,

(91)
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e11 = −2 {α2 [2α1 + (3 − 2ν0) β1] + β2 [4ν0α1 + (2ν0 + 1) β1]}
(α1 + β1) (α2 + β2)

,

e12 = 2 [2α1 + (3 − 2ν0) β1]

α1 + β1
; g11 = 2

[
−2 + (1 − 2ν0) β2

α2 + β2

]
,

g12 = 2

[
2 + (1 − 2ν0) β2

α2 + β2

]
,

(92)

P11 (g) =
1

1+η∫

0

ρ1g (ρ1) dρ1; P12 (g) =
1
2∫

0

ρ2g (ρ2) dρ2. (93)

4 Effective transverse elastic moduli of two-phase composites containing unidirectionally
aligned circular fibers

In this section, we derive effective transverse elastic moduli of composites containing many randomly dis-
persed unidirectionally aligned fibers with same properties and sizes in two-phase composites. We shall utilize

the probabilistic ensemble-area averaged pairwise local interaction solution for
〈
ε̄∗

(i)

〉
and other ensemble-area

averaged field equations. In what follows, angular brackets for the ensemble-area operators will be dropped for
compactness. According to Ju and Chen [25] and Zhao et al. [58], the following relations governing the ensem-
ble-area averaged stress σ̄ , the averaged strain ε̄, the uniform remote strain ε0 and the averaged eigenstrain
ε̄∗

(i)take the form:

σ̄ = C0 :
(

ε̄ −
2∑

i=1

φ(i)ε̄∗
(i)

)

, (94)

ε̄ = ε0 +
2∑

i=1

φ(i)S : ε̄∗
(i), (95)

σ̄ = C̄ : ε̄ =
[

C0 •
(

I − φ(1)�
∼

II

(1)
U
∼

II−1

(1)
− φ(2)�

∼

II

(2)
U
∼

II−1

(2)

)]
: ε̄

= [
λ̄δi jδkl + μ̄T

(
δikδ jl + δilδ jk

)]
: ε̄kl; i, j, k, l = 1, 2, (96)

where the following relations are employed to derive C̄:

ε̄ = U
∼

II

(1)
: ε∗0

(1) =
[
−A1 − S + φ(1)S•�

∼

II

(1)
+ φ(2)S•�

∼

II

(2)
(A2 + S)−1 (A1 + S)

]
: ε∗0

(1), (97)

ε̄ = U
∼

II

(2)
: ε∗0

(2) =
[
−A2 − S + φ(1)S•�

∼

II

(1)
(A2 + S) (A1 + S)−1 + φ(2)S•�

∼

II

(2)

]
: ε∗0

(2). (98)

Since all the fourth-rank tensors on the right-hand side of Eq. (96) are isotropic in two dimensions, the
effective stiffness tensor C̄ for these three-phase composites is also isotropic in 2-D (or, equivalently trans-
versely isotropic in three dimensions). For the two-phase composites, simply let the two inhomogeneity phases
have the same elastic properties and sizes within the proposed framework for three-phase composites. It is
noted that based on Eqs. (54)–(65) and Eqs. (80)–(93) in our Formulation I for the two-phase composites, we
can prove that γ1 = γ I

11 = γ I
12 and γ2 = γ I

21 = γ I
22. Therefore, we can recover Eqs. (38)–(39) and (48)–(49)

in Ju and Zhang [27].
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4.1 Uniform radial distribution function (URDF)

Accordingly, the effective plane-strain bulk modulus k̄T and the shear modulus μ̄T of two-phase composites
can be explicitly evaluated as:

k̄UII
T = k0

{

1 + 8φ (1 − ν0)
[(

γ UII
1 + γ UII

2

)]

(α + β) − [
4φ
(
γ UII

1 + γ UII
2

)]

}

; μ̄UII
T = μ0

{

1 + 8φ (1 − ν0) γ UII
2

β − 2 (3 − 4ν0) φγ UII
2

}

, (99)

α = 4 (1 − ν0)

[
k0

k1 − k0
− μ0

μ1 − μ0

]
+ (4ν0 − 1) ; β = 4 (1 − ν0)

μ0

μ1 − μ0
+ (3 − 4ν0) . (100)

It is noted that the definition of the effective plane-strain bulk modulus is k̄T ≡ λ̄+ μ̄T , where λ̄ and μ̄T are the
effective Lamé constants. The proposed micromechanical plane-strain framework cannot predict the effective
axial (out-of-plane) Young’s modulus Ē A and effective Poisson’s ratio ν̄A. On the other hand, bounds on
effective axial Ē A and ν̄A are available from Hashin [10]:

Ē A = E0φ
(0) + E1φ + 4φφ(0) (ν1 − ν0)

2

φ
k0

+ φ(0)

k1
+ 1

μ0

, (101)

ν̄A = ν0φ
(0) + ν1φ + φφ(0) (ν1 − ν0) (1/k0 − 1/k1)

φ
k0

+ φ(0)

k1
+ 1

μ0

, (102)

where φ(0) ≡ 1 −φ. According to the calculations of Kondo and Saito [59] and Ju and Zhang [27], Eqs. (101)
and (102) render highly accurate predictions because the lower and upper bound of Hashin [10] are extremely
close to each other. Even a simple mixture rule (the first two terms on the right-hand side of Eqs. (101) and
(102)) provides fairly good estimates for effective axial Ē A and ν̄A. Therefore, the out-of-plane fiber interaction
effects are insignificant as far as Ē A and ν̄A are concerned. Consequently, the effective transverse Young’s
modulus ĒT and Poisson’s ratio ν̄T can be predicted by combining our Eqs. (99)–(100) for k̄T and μ̄T and
Eqs. (101)–(102) for Ē A and ν̄A:

ĒUII
T = 4k̄UII

T μ̄UII
T

k̄UII
T + ϕUIIμ̄UII

T

; ν̄UII
T = k̄UII

T − ϕμ̄UII
T

k̄UII
T + ϕUIIμ̄UII

T

; ϕUII = 1 + 4ν̄2
Ak̄UII

T

Ē A
. (103)

The above expressions were given by Hashin and Rosen [5]; see Eqs. (17)–(18) therein. We can simply replace
superscript “II” by “I” in Formulation II to obtain Formulation I. Our Formulation I equations are entirely
identical to Eqs. (48)–(49) and Eqs. (58)–(59) in Ju and Zhang [27] with Y(g) = 1/8 therein.

4.2 General radial distribution function (GRDF)

In this event, we arrive at

k̄GII
T = k0

{

1 + 8φ (1 − ν0)
[(

γ GII
1 + γ GII

2

)]

(α + β) − [
4φ
(
γ GII

1 + γ GII
2

)]

}

, (104)

μ̄GII
T = μ0

{

1 + 8φ (1 − ν0) γ GII
2

β − 2 (3 − 4ν0) φγ GII
2

}

, (105)

ĒGII
T = 4k̄GII

T μ̄GII
T

k̄GII
T + ϕGIIμ̄GII

T

; ν̄GII
T = k̄GII

T − ϕμ̄GII
T

k̄GII
T + ϕGIIμ̄GII

T

; ϕGII = 1 + 4ν̄2
Ak̄GII

T

Ē A
, (106)

Y32 (g) = Y31 (g) = P31 (g) = P32 (g) = 1

64
+ 0.0158φ,

(107)
Y52 (g) = Y51 (g) = P51 (g) = P52 (g) = 1

384
+ 0.00307φ.
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Fig. 3 An elastic matrix with elastic cylindrical fibers: the effective plane-strain bulk modulus (k̄T /k0) versus the fiber volume
fraction φ: a URDF, b GRDF/ERDF; the effective transverse shear modulus (μ̄T /μ0) versus the fiber volume fraction φ: c URDF,
d GRDF/ERDF

To obtain Formulation I, we can simply replace the superscript “II” by “I” in Formulation II. Again, our
Formulation I equations are entirely identical to Eqs. (48)–(49) and Eqs. (58)–(59) in Ju and Zhang [27] with
Y(g) = 1

8 + 0.0865φ therein. In addition, we have

Y12 (g) = Y11 (g) = P11 (g) = P12 (g) = 1

8
+ 0.0865φ ≡ Y(g). (108)

5 Some comparisons and numerical simulations

In the illustrations, the following notations will be employed: “HU”, “HL”, “SU”, “SL”, “FI”, “FII”, “FIU”,
“FIG”, “FIIU”, and “FIIG” stand for Hashin’s upper bound, Hashin’s lower bound, Silnutzer’s upper bound,
Silnutzer’s lower bound, Formulation I, Formulation II, Formulation I based on the URDF, Formulation I
based on the GRDF/ERDF, Formulation II based on the URDF, and Formulation II based on the GRDF/ERDF,
respectively.
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Fig. 4 An elastic matrix with elastic cylindrical fibers: the effective transverse Young’s modulus (ĒT /E0) versus the fiber volume
fraction φ: a URDF, b GRDF/ERDF; the effective transverse Poisson’s ratio (ν̄T /ν0) versus the fiber volume fraction φ: c URDF,
d GRDF/ERDF

5.1 Elastic matrix with elastic cylindrical fibers

Following Kondo and Saito [59], we consider the following constituent elastic phase properties for the glass
fiber-reinforced epoxy matrix composites:E1 = 114.35 GPa, ν1 = 0.22 (glass fiber) and E0 = 5.39 GPa, ν0 =
0.35 (epoxy resin). The effective plane-strain bulk modulus (k̄T /k0) versus the fiber volume fraction based on
the URDF and the GRDF/ERDF are rendered in Fig. 3a, b, respectively. The prediction based on FI is very
close to that based on FII. The prediction based on the GRDF/ERDF provides a higher value in Fig. 3b than
that based on the URDF in Fig. 3a. The effective transverse shear modulus (μ̄T /μ0) versus the fiber volume
fractions based on the URDF and the GRDF/ERDF are displayed in Fig. 3c, d, respectively. The prediction
based on FI is higher than that based on FII. Thus, the FI forms the higher-order upper bound and FII forms
the higher-order lower bound. It is noted that the FI based on the GRDF/ERDF violates the SU at a fiber
volume fraction of 60 %. In addition, the prediction based on the GRDF/ERDF provides a higher value in
Fig. 3d than that based on the URDF in Fig. 3c. The effective transverse Young’s modulus (ĒT /E0) versus
the fiber volume fraction based on the URDF and the GRDF/ERDF is exhibited in Fig. 4a, b, respectively.
The prediction based on FI (identical to Ju and Zhang [27]) is higher than that based on FII. Therefore, the
FI forms the higher-order upper bound and FII forms the higher-order lower bound. It is observed that the FI
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Fig. 5 An elastic matrix with cylindrical voids: the effective plane-strain bulk modulus (k̄T /k0) versus the void volume frac-
tion φ: a URDF, b GRDF/ERDF; the effective transverse shear modulus (μ̄T /μ0) versus the void volume fraction φ: c URDF,
d GRDF/ERDF

based on the GRDF/ERDF violates the SU at a fiber volume fraction of 64 %. In addition, the prediction based
on the GRDF/ERDF provides a higher value in Fig. 4b than that based on the URDF in Fig. 4a. Furthermore,
the prediction based on the GRDF/ERDF matches well with the experimental data by Uemura et al. [60] at
higher fiber volume fractions (above fiber volume fractions of 40 %). The effective transverse Poisson’s ratio
(ν̄T /ν0) versus the fiber volume fraction based on the URDF and the GRDF/ERDF is rendered in Fig. 4c, d,
respectively. The prediction based on FII is higher than that based on FI in this case. Therefore, the FII forms
the higher-order upper bound and FI forms the higher-order lower bound. We note that the FI based on the
URDF and the GRDF/ERDF violates the SL at fiber volume fractions of 60 and 54 %, respectively.

5.2 Elastic matrix with cylindrical voids

We now consider the following constituent elastic phase properties for the cylindrical voids in the epoxy
matrix composites: k1 → 0 GPa, μ1 → 0 (voids) and E0 = 5.39 GPa, ν0 = 0.35 (epoxy resin). The effective
plane-strain bulk modulus (k̄T /k0) versus the void volume fraction based on the URDF and the GRDF/ERDF
are displayed in Fig. 5a, b, respectively. The prediction based on FI (identical to Ju and Zhang [27]) is very
close to that based on FII. As expected, the effective plane-strain bulk modulus decreases as the void volume
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fraction increases. The prediction based on the GRDF/ERDF decreases faster in Fig. 5b than that based on the
URDF in Fig. 5a. The effective transverse shear modulus (μ̄T /μ0) versus the void volume fraction based on
the URDF and the GRDF/ERDF are exhibited in Fig. 5c, d, respectively. The prediction based on FII is higher
than that based on FI (identical to Ju and Zhang [27]). Thus, the FII forms the higher-order upper bound and
FI forms the higher-order lower bound. Bounds are reversed when compared with those in Fig. 3c, d since the
inclusions now are replaced by voids. As expected, the effective transverse shear modulus decreases as the
void volume fraction increases. The prediction based on the GRDF/ERDF decreases faster in Fig. 5d than that
based on the URDF in Fig. 5c.

5.3 Incompressible matrix with cylindrical rigid fibers

As indicated by Christensen [61], the manufacturing operations for fiber composite materials often involve
the flow behavior of the composite system as viscous fluid suspensions. The matrix phase is usually treated
as incompressible in its fluid sate, and the aligned fibers are treated as rigid (in comparison with the matrix).
Therefore, the (rheological) effective transverse shear viscosity η̄T of these composite melts can be represented
by the proposed Eqs. (100) and (105), where the solutions for formulation I can be simply obtained by replacing
the superscript “II” by “I”.
(1) Formulation II with the URDF (featuring the singularity point at φ = 0.722):

η̄UII
T = μ0

(
−1 − 64

φ (17φ + 32) − 32

)
. (109)

(2) Formulation II with the GRDF/ERDF (featuring the singularity point at φ = 0.68):

η̄GII
T = μ0 {[(−0.2337φ − 0.5313) φ − 1] φ − 1}

[(0.2337φ + 0.5313) φ + 1] φ − 1
. (110)

(3) Formulation I:

η̄I
T = μ0

(
1 + 2φ

1 + 8Y(g) φ

1 − φ − 8Y(g) φ2

)
. (111)

We can prove that, by setting 1 − φ − 8Y(g) φ2 = 0, for the special cases of the uniform radial distri-
bution function (URDF: Y(g) = 1

8 ) and the general/equilibrium radial distribution function (GRDF/ERDF:
Y(g) = 1

8 + 0.0865φ), the singularity points in Eq. (111) occur at φ = 0.618 and φ = 0.562, respectively.
We note that Eq. (111) is identical to Eq. (63) in Ju and Zhang [27]. It is observed that our FII enhances
the singularity points from φ = 0.618 to φ = 0.722 and from φ = 0.562 to φ = 0.680 for the URDF and
the GRDF/ERDF, respectively. We now consider the following constituent elastic phase properties for the
cylindrical rigid fibers in the incompressible epoxy matrix composites: k1 → ∞ GPa, μ1 → ∞ (rigid fibers)
and E0 = 5.39 GPa, ν0 = 0.5 (incompressible epoxy resin). Figure 6 compares the theoretical predictions
from Hashin [6,10] lower bound, Silnutzer’s [11] three-point lower bound (with the equilibrium RDF), and
the proposed FI and FII (with the URDF and the GRDF/ERDF). We observe that significant differences exist
between our predictions and the other two bounds for φ greater than 30 %. No HU and SU are available in this
case since those bounds will approach infinity.

5.4 Incompressible matrix with cylindrical voids

In this case, we arrive at the following:
(1) Formulation II with the URDF:

k̄UII
T = μ0

[
2

2φ + φ2 − 1

]
; μ̄UII

T = μ0

[
64

32 + 32φ + 25φ2 − 1

]
. (112)

(2) Formulation II with the GRDF/ERDF:
There is no closed-form solution for k̄T available based on our formulation since φ = φ(1) + φ(2) cannot

be obtained. However, numerical solutions can be obtained if numerical values of φ(1) and φ(2) are specified.
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Fig. 6 An incompressible matrix with cylindrical rigid fibers: the effective relative transverse shear viscosity (η̄T /η0) versus the
rigid fiber volume fraction φ

Fig. 7 The incompressible matrix with cylindrical voids: a the effective plane-strain bulk modulus (k̄T /μ0) versus the void
volume fraction φ; b the effective transverse shear modulus (μ̄T /μ0) versus the void volume fraction φ

(3) Formulation I with the URDF (Y(g) = 1
8 ):

k̄UI
T = μ0

[
1

4φ2Y(g) + φ
− 1

]
; μ̄UI

T = μ0

[
1 − 2φ (1 + 10Y(g) φ)

1 + φ + 10Y(g) φ2

]
. (113)

(4) Formulation I with the GRDF/ERDF (Y(g) = 1
8 + 0.0865φ):

k̄GI
T = μ0

[
1

4φ2Y(g) + φ
− 1

]
; μ̄GI

T = μ0

[
1 − 2φ (1 + 10Y(g) φ)

1 + φ + 10Y(g) φ2

]
. (114)

We now consider the following constituent elastic phase properties for the cylindrical voids in the incom-
pressible epoxy matrix composites: k1 → 0 GPa, μ1 → 0 (voids) and E0 = 5.39 GPa, ν0 = 0.5 (incom-
pressible epoxy resin). The effective plane-strain bulk modulus (k̄T /k0) versus the void volume fraction are
exhibited in Fig. 7a. The prediction based on FI is very close to that based on FII. No closed-form solution for
FIIG is available. As expected, the effective plane-strain bulk modulus decreases as the void volume fraction
increases. Both the HU and HL approach infinity in this case. It is also noted that SL does not work well in this
case, either. However, our proposed formulations can capture the trend very well. The effective transverse shear
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modulus (μ̄T /μ0) versus the void volume fraction are rendered in Fig. 7b. Moreover, the effective transverse
shear modulus decreases as the void volume fraction increases. The SU and SL are equal to 1 in this case. Both
the HU and HL approach infinity. Nevertheless, our proposed formulations still capture the trend quite well.

6 Conclusions

Based on the governing micromechanical field equations and the approximate (higher-order) pairwise fiber
interaction solutions, new higher-order micromechanical formulations have been presented in this work to pre-
dict effective transverse elastic moduli of two-phase fiber-reinforced composites containing randomly located
and interacting aligned circular fibers with same elastic properties and sizes. The effects of random distribution
of circular fibers are accounted for through the probabilistic ensemble averaging process. The ensemble-area
averaged eigenstrains in fibers are approximately yet accurately evaluated through the pairwise fiber interac-
tions. Hence, a compact analytical formula is derived. As a result, two non-equivalent formulations of effective
transverse elastic moduli have been derived, leading to the new higher-order bounds. The present paper rep-
resents a significant improvement over the previous work of Ju and Zhang [27] (and other researchers) which
is based on the identical circular fibers in the matrix. Moreover, the present higher-order predictions (in ρ)
are compared with those of Ju and Zhang [27], Hashin’s second-order bounds [6,10], Silnutzer’s third-order
bounds [11], and selected experimental data. These comparisons and simulations encompass wide ranges of
fiber-reinforced elastic composites including randomly located circular elastic fibers, rigid fibers, and voids.
No Monte Carlo simulations or finite element calculations are needed here.

Experimental validations are key parameters in the calibration of proposed models. Further experimental
validations and comparisons will be performed once the associated experiment data become available. In the
forthcoming papers, we will demonstrate the numerical simulations with three-phase composites containing
randomly located and interacting aligned circular fibers with distinct elastic properties and sizes.
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