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Abstract In traditional reliability analysis, the uncertain parameters are generally treated by some ideal
probability distributions with infinite tails, which, however, seems inconsistent with the practical situations
as nearly all the uncertain parameters in engineering structures will get their values within a limited interval.
To eliminate such an inconsistence and thereby improve the precision of the reliability analysis, the truncated
probability distributions are then employed to quantify the uncertainty in this paper, and a corresponding
reliability analysis method is developed. Two cases of positional relations are summarized for the uncertainty
domain and the failure surface according to whether their intersection set is non-empty or empty. The prob-
ability and non-probability convex model methods are employed to deal with these two cases, respectively,
and based on it, a hybrid reliability model is then constructed for truncated distribution problems. An efficient
approach is also provided to distinguish these two positional relations and thereby determine which one of
the probability and non-probability methods should be used when computing a real hybrid reliability. Five
numerical examples are investigated to demonstrate the effectiveness of the present method.

1 Introduction

Traditional reliability analysis techniques are in general based on probability and statistical theory, in which
the uncertain parameters are treated as random distributions and the failure probability of the structure needs
to be evaluated. Presently, the probability model has become a principal means of conducting the reliabil-
ity analysis for structures under uncertainty and been successfully applied to varieties of industrial depart-
ments. Many practical methods in this field have been well established, which include the first-order reliability
method (FORM) [1–3], second-order reliability method (SORM) [4–6], system reliability analysis [7,8], Monte
Carlo-based simulation method [9,10], reliability-based optimization design [11–17]. In the above-mentioned
methods, the involved parameters are generally quantified by some kinds of ideal probability distributions,
such as normal, lognormal, exponential, Weibull, etc. Most of these distributions have two infinite tails (such
as normal distribution) or only one infinite tail (such as exponential distribution). However, in practical engi-
neering problems, nearly all the random parameters will take their values within a bounded range. An example
is that the dimensions of a product actually belong to some intervals formed by the nominal values and the
manufacturing tolerances like 10 ± 0.01 mm. We can refer to such a probability distribution as truncated
distribution. If the truncating points are far from the means of the uncertain parameters, consequences caused
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by the truncation are often insignificant. However, as the parameters’ intervals become tighter, the influences
brought by the truncation can no longer be ignored [18]. In such cases, using the ideal probability distributions
to deal with the uncertain parameters will inevitably result in a relatively large error of the reliability analysis.
To improve the reliability analysis precision, it seems more reasonable and also promising to use the truncated
distributions to deal with the uncertain parameters existing in the structure.

Perhaps because using the ideal probability distributions can make the reliability analysis very convenient,
and furthermore such a treatment may be sufficiently precise for some practical applications, presently there
has been remarkably little discussion about the reliability analysis for truncated distributions in the literature.
Sun and He deduced the doubly truncated probability density functions (PDFs) for several commonly used
random distributions and furthermore gave an analytic form to compute the reliability for linear limit-state
functions [19]. He and Wang [20] adopted a singly truncated distribution to describe the resistance force and
formulated a method to calculate the structural reliability index. Xu and Chen [21] proposed a kind of Monte
Carlo simulation method for structural reliability analysis with truncated distributions. Melchers et al. [22]
proposed a modified FORM algorithm to deal with the structural reliability problem with discontinuous and
truncated PDFs. Based on the construction of a statistical model using truncated distributions, Sweet and
Tu [18] presented a new approach to evaluate the tolerances of the fit between a bore and a shaft. In the
above-mentioned works, the traditional reliability methods for ideal probability distributions were just taken
to evaluate the reliability for truncated distribution problems nearly without any changes. However, it should
be noted that actually these two kinds of reliability problems are quite different. For a truncated distribution
problem, the uncertainty domain forms a multidimensional box with limited bounds, which will lead to two
different cases of positional relations between the uncertainty domain and the failure surface. In the first case,
the uncertainty domain has a non-empty intersection set with the failure surface, and the traditional methods
developed for ideal distributions can still work well. In the second one, the uncertainty domain is completely
separated from the failure surface, and if the traditional reliability methods are used to deal with the failure
surfaces falling into this case, we will obtain an exactly same reliability equal to 1.0 or 0.0. In other words,
the traditional methods will lose effectiveness as they can no longer distinguish which one is most reliable
among these failure surfaces. What is more, it will in general lead to a numerical difficulty of convergence to
use the traditional methods to deal with a truncated distribution problem, especially when the second case of
positional relation emerges [22].

Mathematically, the bound uncertainty will be involved in a truncated probability distribution problem,
which is just the origin resulting in the above difficulties. Actually, the bound uncertainty can be treated through
a new kind of uncertainty analysis technique called convex model. In the convex model, the uncertain param-
eters are treated as a multidimensional ellipsoid or interval variables. It was firstly proposed and explored by
Ben-Haim and Elishakoff [23] since entering the 1990s and further developed by many other researchers in the
past two decades [24–29]. A parameter perturbation method was proposed to compute the dynamic response
bounds for structures with interval uncertain parameters [24]. A robust design method was developed for
structures by using convex model to deal with the uncertainty [25]. By using a satisfaction degree of interval to
deal with the uncertain constraints, a convex-model-based optimization method was developed for structures
[26]. A new method was presented to obtain the confidence structural responses of truss structures under ellip-
soid static load uncertainty [27]. An optimization method was developed via a convex model superposition
technique, in which one layer of optimization process was successfully eliminated and a high computational
efficiency was achieved [28]. The optimal design of structural systems was investigated for structures subjected
to uncertainties in the load magnitudes and in the resistance of the members [29].

Concentrating on the above problems, this paper aims to develop a new reliability analysis method for
structures with truncated probability distributions by introducing the convex model method. The remainder
of this paper is organized as follows. First, the truncated distribution and corresponding reliability problem
are given in Sect. 2. Second, a new hybrid reliability model is proposed to deal with the truncated distribution
problems in Sect. 3. Third, five numerical examples are investigated to demonstrate the effectiveness of the
present method in Sect. 4. Finally, the conclusion is summarized in Sect. 5.

2 Reliability analysis by using truncated probability distributions

2.1 Truncated probability distribution

As shown in Fig. 1, for an ideal probability distribution with a PDF fX (x), its doubly truncated PDF f̄ X (x)
can be defined by [30]:
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Fig. 1 A doubly truncated PDF

f̄ X (x) =
{

m · fX (x), x L ≤ x ≤ x R

0, otherwise
(1)

where x L and x R denote the lower and upper truncating bounds, respectively. The coefficient m can be com-
puted by

m = 1∫ x R

−∞ fX (x)dx − ∫ x L

−∞ fX (x)dx
= 1

FX (x R) − FX (x L)
(2)

where FX stands for the cumulative distribution function (CDF). Thus, the CDF of the truncated distribution
can be defined by

F̄X (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < x L ,

FX (x)−FX (x L )

FX (x R)−FX (x L )
, x L ≤ x < x R,

1, x R ≤ x .

(3)

For a truncated distribution, the determination of the truncating points is a very important issue. Theo-
retically, these points should be specified through precise experimental measurements. However, in practical
applications, many of them can be easily obtained through some theoretical analysis methods or just our engi-
neering experience. For example, the interval of a dimension parameter can be determined through its nominal
value and the machining tolerance. Another example is that for most of the engineering materials two standard
deviations off from the midpoint can be used as the truncating points of their strength and yield limits [30]. For
convenience of analysis, in this paper we adopt a theoretical analysis method, namely the equal CDF method
[21], to determine the truncating points, in which the cut CDF parts at the two ends should be guaranteed to
be the same:

FX (x L) = 1 − FX (x R) = CF (4)

where 0 ≤ CF < 0.5 stands for the truncating ratio of CDF. Substituting Eq. (4) into Eqs. (1) and (3) results
in the following:

f̄ X (x) =
⎧⎨
⎩

fX (x)
1−2CF

, x L ≤ x ≤ x R

0, otherwise
, F̄X (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < x L ,

FX (x)−CF
1−2CF

, x L ≤ x < x R,

1, x R ≤ x .

(5)

Based on Eq. (4), x L and x R can be analytically determined for some commonly used distributions such as:
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(i) Normal distribution

x L = φ−1(CF )σ + μ, x R = φ−1(1 − CF )σ + μ (6)

where μ and σ denote the expected value and standard deviation, respectively; φ−1 denotes an inverse
CDF of the standard normal distribution.

(ii) Lognormal distribution

x L = exp

⎛
⎝
√√√√ln

(
1 +

(
σ

μ

)2
)

φ−1(CF ) + ln

⎛
⎝μ

/√
1 +

(
σ

μ

)2
⎞
⎠
⎞
⎠ ,

x R = exp

⎛
⎝
√√√√ln

(
1 +

(
σ

μ

)2
)

φ−1 (1 − CF ) + ln

⎛
⎝μ

/√
1 +

(
σ

μ

)2
⎞
⎠
⎞
⎠ .

(7)

(iii) Type I extreme value

x L = −ln (− ln(CF ))/a + b, x R = −ln (− ln (1 − CF ))/a + b, (8)

where a and b are two distribution parameters in the Type I extreme value CDF.
(iv) Exponential distribution (only has the upper truncating bound)

x R = −μ ln(CF ). (9)

2.2 Reliability analysis problem

For a structure subjected to uncertainty, based on the traditional probability analysis its reliability R can be
defined:

R = Pr {g(X) ≥ 0} , (10)

where Pr represents the probability and g denotes a limit-state function where the structure is safe if g(X) ≥ 0.
The equation g(X) = 0 is usually called the failure surface. X is an n-dimensional vector of independent
random variables, which herein are all truncated probability distributions with the following variation inter-
vals:

xi ∈ x I
i =

[
x L

i , x R
i

]
, xc

i = x L
i + x R

i

2
, i = 1, 2, . . . , n, (11)

where xc
i denotes the midpoint of the i th interval. Like most of the structural analysis, here g(Xc) is assumed

to be larger than 0, which is usually true in practical engineering problems as a real structure is in general safe
at its nominal design. The reliability R can be computed by the following integral:

R = Pr {g(X) ≥ 0} =
∫

g(X)≥0

f̄X(X)dX, (12)

where f̄X(X) denotes the joint PDF of the truncated random variables.
For a reliability problem with truncated distributions, the uncertainty domain will form a multidimensional

box instead of an infinite or semi-infinite space, and the joint PDF f̄X(X) takes non-zero values only within
this box. According to whether the uncertainty domain intersects with the failure surface, different types of
positional relations will emerge. As will be indicated in the following Section, the traditional probability
methods are only applicable to some cases of positional relations, while lose effectiveness for the other ones.
Thus, a new reliability model with wider applicability should be developed for the above truncated distribution
problems.
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3 A new reliability analysis method for truncated distribution problems

As shown in Fig. 2, we can summarize all the possible positional relations between the uncertainty domain and
the failure surface into two different types. In our method, different approaches will be suggested to evaluate
the reliability for the two types of positional relations, and based on it, a hybrid reliability model will be
subsequently proposed for structures with truncated distributions.

3.1 Reliability analysis for the first type of positional relation

In this case, the uncertainty domain and the failure surface have a non-empty intersection set like the two failure
surfaces g1 and g2 in Fig. 2. If the probability methods to evaluate the reliability are used, the integration field
in Eq. (12) will be formed by the uncertainty domain and the failure surface. For different failure surfaces, we
will then have different sizes and shapes of integration fields and hence different probability values. Namely,
the obtained probability can well reflect the reliability of each failure surface, and hence in this case, the
traditional probability methods are still suggested for computation of the structural reliability.

Due to its simplicity and high efficiency, the well-known FORM is used here, in which the original random
variables X (in x space) should be firstly transformed into a set of standard normal variables U (in u space)
[31]:

φ (ui ) = F̄Xi (xi ), ui = φ−1 [F̄Xi (xi )
]
, i = 1, 2, . . . , n (13)

where F̄Xi denotes the CDF of the i th truncated random variable. A corresponding limit-state function G in u
space can be obtained:

g(X) = g(T (U)) = G(U), (14)

where T denotes a probability transformation function based on Eq. (13). Then, the integration in Eq. (12) can
be rewritten as:

R = Pr {g(X) ≥ 0} =
∫

G(U)≥0

fU(U)dU, (15)

where fU denotes a joint CDF of the standard normal variables U. The following optimization problem can
be created to compute the reliability index β of the structure:

{
β = minU‖U‖,
s.t. G(U) = 0,

(16)
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Fig. 2 Positional relation between the uncertainty domain and the failure surface
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where ‖ · ‖ denotes the quadratic norm of a vector. The optimum U∗ is called the most probable point (MPP),
and the reliability index β = ‖U∗‖ represents a minimum distance from the origin to the failure surface in u
space. Finally, the reliability R in Eq. (15) can be approximately obtained:

R ≈ φ(β) = φ
(‖U∗‖) . (17)

The efficient HL-RF algorithm [1,2] is adopted to solve the optimization problem in Eq. (16), which can
be formulated by the following iterations:

βk = G
(
Uk

)−(∇G
(
Uk

))T
Uk

‖∇G(Uk)‖ ,

Uk+1 = −βk ∇G
(
Uk

)
‖∇G(Uk)‖ ,

(18)

where ∇G denotes the gradient vector of G with respect to the random variables.

3.2 Reliability analysis for the second type of positional relation

In this case, there exists an empty intersection set between the failure surface and the uncertainty domain like g3
and g4 in Fig. 2. If the traditional probability methods are used to evaluate the reliability, we will always obtain
an identical reliability value equal to 1.0 for all the failure surfaces belonging to this case. That is to say, based
on the probability analysis, these failure surfaces should be regarded to have an exactly same reliability, which,
however, seems inconsistent with the practical situations. For example, in a practical engineering problem, a
failure surface like g4 is obviously more reliable than g3, because it has a further distance to the uncertainty
domain than the latter and thereby has a smaller possibility to fail. However, the probability analysis cannot
grasp this important characteristic, as here an exactly same probability reliability will be achieved for g3 and
g4. Furthermore, by using the probability reliability methods to deal with a truncated distribution problem, a
numerical difficulty of convergence is likely to be encountered [22]. To overcome the above difficulties, in
our formulation a non-probability convex model technique [32] is extended to perform the reliability analysis
when the second type of positional relation emerges.

By conducting a non-probability analysis, the uncertainty of all the parameters should be quantified only
through their variation intervals x I

i , i = 1, 2, . . . , n, and a corresponding limit-state function can be created:

g
(

x I
1 , x I

2 , . . . , x I
n

)
. (19)

It should be noted that the non-probability intervals here are actually quite different from the above truncated
probability distributions though they have two exactly same bounds for each parameter. The non-probability
interval only contains the bound information of an uncertain parameter, while the truncated distribution has
not only the bound information but also the probability information over the interval.

Then, all the intervals need to be normalized:

x I
i = xc

i + xr
i δi , i = 1, 2, . . . , n (20)

where xr
i = (x R

i − x L
i )/2 denotes the radius of the i th interval, and the normalized variables δi , i = 1, 2, . . . , n

are confined in a symmetric convex polyhedron Cδ = {δ|δi ∈ [−1, 1], i = 1, 2, . . . , n}. Thus, the origin point
of the normalized space just corresponds to the midpoint Xc of the parameters.

Substituting Eq. (20) into Eq. (19) will result in a new limit-state function G ′ in the normalized space:

g
(

x I
1 , x I

2 , . . . , x I
n

)
= G ′ (δ1, δ2, . . . , δn) . (21)

After extending the normalized space Cδ = {δ|δi ∈ [−1, 1], i = 1, 2, . . . , n} to a corresponding infinite space
C∞

δ = {δ|δi ∈ [−∞, ∞], i = 1, 2, . . . , n}, a non-probability reliability index of the structure can be defined
as the minimum distance from the origin to the normalized failure surface G ′ = 0 [32,33]. Then, the following
optimization problem can be created to compute the non-probability reliability index η:{

η = min
δ

{‖δ‖∞} = min
δ

{max (|δ1| , |δ2| , . . . , |δn|)}
s.t. G ′ (δ) = 0

(22)
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Fig. 4 Variation pattern of the hybrid reliability

where ‖ · ‖∞ denotes the infinite norm of a vector. In this paper, the sequential quadratic programming (SQP)
[34] is used to search the optimum δ∗ of the above optimization problem.

Geometrically, η = 1 implies that the uncertainty domain is tangent to the failure surface, that is to say,
they have only one intersection point as shown in Fig. 3. η > 1 means a desirable reliability for the structure as
the uncertainty domain is always inside the reliable field. Additionally, as the failure surface moves away from
the uncertainty domain, the structure will obviously become more reliable, and correspondingly the η will
also become larger. Therefore, through the above non-probability analysis technique, the structural reliability
under the second type of positional relation can be clearly described.

3.3 A hybrid reliability model

Synthesizing the above two cases, a hybrid reliability RH can then be constructed to deal with the reliability
problems with truncated probability distributions:

RH =
{

R = φ (β) = φ (‖U∗‖) ,
{

X| x L
i ≤ xi ≤ x R

i , i = 1, 2, . . . , n
} ∩ {X| g(X) = 0} �= ∅,

η = ∥∥δ∗∥∥∞ ,
{

X| x L
i ≤ xi ≤ x R

i , i = 1, 2, . . . , n
} ∩ {X| g(X) = 0} = ∅,

(23)

where {X|x L
i ≤ xi ≤ x R

i , i = 1, 2, . . . , n} and {X|g(X) = 0} denote the uncertainty domain and the failure
surface, respectively.

As shown in Fig. 4, when the uncertainty domain and the failure surface have a non-empty intersection set,
the hybrid reliability RH will be equivalent to the traditional probability reliability R, and we have RH ≤ 1.
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On the contrary, if the intersection set is empty, the hybrid reliability will be equivalent to the non-probability
reliability index η, and we have RH > 1. An inflexion point occurs when the uncertainty domain is tangent to
the failure surface, and we have RH = 1.

As indicated in Eq. (23), whether the uncertainty domain intersects with the failure surface needs to be
judged when computing the hybrid reliability RH , which is not an easy job in practical applications. The
following procedure can be adopted as a simple treatment to this problem:

(i) Use the non-probability analysis method in Sect. 3.2 to compute the reliability index η.
(ii) If η > 1, it can be sure that there exists an empty intersection set between the uncertainty domain and

the failure surface, and we have RH = η.
(iii) If η ≤ 1, it can sure that the intersection set is non-empty, and the probability analysis method in

Sect. 3.1 should be used to compute the reliability R again and we then have RH = R.

Obviously, the above approach is very stable and applicable to general problems. However, it is not an efficient
method, because we need to carry out both the probability and non-probability analysis for a hybrid reliability
when η ≤ 1.

To improve the efficiency, here we provide another approach to compute the hybrid reliability, in which a
vertex point of the multidimensional uncertainty box is selected to judge whether the uncertainty domain inter-
sects with the failure surface, instead of a time-consuming non-probability analysis process. Two preconditions
should be satisfied for this approach. The first one is g(Xc) > 0, which we have mentioned that will generally
hold true. The other one is that the limit-state function should be ensured to be monotonic over the uncertainty
domain; in other words, a very strong non-linearity is not allowed for the limit-state function. For most practical
engineering problems, this precondition is also not hard to satisfy, as the uncertainty of a structural parameter
always behaves as a small disturbance around its nominal value, and hence the whole uncertainty domain will
be relatively narrow. Thus, it seems not difficult to keep the monotonicity for a practical limit-state function
over such a small domain. The approach then can be outlined as follows:

(i) Compute the gradient ∂G ′(δ)
∂δi

|δ=0 of the limit-state function with respect to the i th uncertain parameter
at the midpoint δ = 0.

(ii) If ∂G ′(δ)
∂δi

|δ=0 < 0, based on the above two preconditions, it can be qualitatively predicted that the failure
surface in δ space will locate on the positive part of the coordinate axis. In other words, if an intersection
point exists between the failure surface and the δi axis, it should have a positive value of δi . In this case,
make Yi = X R

i .

(iii) If ∂G ′(δ)
∂δi

|δ=0 > 0, it can be predicted that the failure surface will locate on the negative part of the

coordinate axis and in this case make Yi = X L
i .

(iv) Repeat the above steps for all the uncertain parameters, and an n-dimensional vector Y can be finally
achieved, which actually stores a vertex point of the multidimensional uncertainty box.

(v) Compute the value of g(Y). If g(Y) > 0, it is sure that the uncertainty domain and the failure surface
have an empty intersection set, and the non-probability analysis method should be used to compute the
hybrid reliability. On the contrary, g(Y) ≤ 0 implies a non-empty intersection set, and correspondingly
the probability analysis method should be used to compute the hybrid reliability.

In the above analysis, a vertex point Y is selected as a judge point to distinguish the positional relation of the
uncertainty domain and the failure surface. Among all the 2n vertex points of the uncertainty box, Y has the
closest distance to the failure surface. As shown in Fig. 5, a two-dimensional problem is taken as an example to
illustrate the use of the suggested approach. If the gradients ∂G ′(δ)

∂δ1
|δ=0 and ∂G ′(δ)

∂δ2
|δ=0 are both smaller than 0,

we will have a failure surface with the shape and location like g1 and g2, and according to our method, the
vertex point in the upper right corner should be used as the judge point Y, which obviously has a smaller
distance to the failure surface than the other three ones. Then, for a failure surface with no intersection set
with the uncertainty domain like g2, we have g(Y) > 0. Otherwise, we have g(Y) ≤ 0 for a failure surface
like g1. By using the above approach, we can easily judge whether the uncertainty domain intersects with the
failure surface only through a very small number of functional evaluations, and hence, a high computational
efficiency can be ensured for the hybrid reliability analysis. On the other hand, as ∂g(X)

∂ Xi
|X=Xc and ∂G ′(δ)

∂δi
|δ=0

has an exactly same sign, they can be both used in the above procedure.
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Fig. 6 A stress–strength model for structural reliability analysis

4 Numerical examples and discussion

Five numerical examples will be investigated, among which three are simple problems with explicit expressions
and the other two are based on simulation models. For convenience of the analysis, the equal CDF method
is employed to determine the truncating points, and furthermore, the truncating ratios of all the concerned
parameters in each numerical example are given a same value CF .

4.1 A traditional stress–strength model

As shown in Fig. 6, a traditional stress–strength model for structural reliability analysis is considered. The
strength R and stress S are both truncated normal distributions, and their ideal distribution parameters are
μR = 500 Mpa, σR = 50 Mpa, μS = 400 Mpa and σS = 80 Mpa. A limit-state function is given by:

g(R, S) = R − S. (24)

Due to the linear limit-state function, the hybrid reliability can be analytically computed. When RL ≤ SR ,
the probability method should be used to calculate the hybrid reliability:

RH = Pr (R − S > 0) =
RL∫

SL

f̄S(S)dS +
SR∫

RL

f̄S(S)

⎡
⎢⎣

R R∫
S

f̄R(R)dR

⎤
⎥⎦dS, (25)
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Fig. 7 Variation of the hybrid reliability with respect to the truncating ratio for the stress–strength problem

Table 1 Hybrid reliabilities of the stress–strength problem under several cases of CF

CF 0.00 0.10 0.20 0.22 0.30 0.35 0.40
RH 0.855 0.944 0.997 1.000 1.466 2.067 3.032

where the truncated PDFs f̄ S and f̄ R can be given by:

f̄ R(R) = fR(R)

1 − 2CF
= 1

(1 − 2CF )
√

2πσR
exp

(
− (R − μR)2

2σ 2
R

)
,

f̄S(S) = fS(S)

1 − 2CF
= 1

(1 − 2CF )
√

2πσS
exp

(
− (S − μS)

2

2σ 2
S

)
.

(26)

Substituting Eq. (26) into Eq. (25) results in

RH = 1

1 − 2CF

(
φ

(
RL − μS

σS

)
− φ

(
SL − μS

σS

))

+ 1

(1 − 2CF )2 φ

(
R R − μR

σR

)(
φ

(
SR − μS

σS

)
− φ

(
RL − μS

σS

))

− 1

(1 − 2CF )2

SR∫

RL

1√
2π

exp

(
− (S − μ)2

2σ 2
S

)
φ

(
S − μR

σR

)
dS. (27)

When RL > SR , the non-probability method should be used to calculate the hybrid reliability. The two
parameter intervals need to be transformed into the normalized space:

RI = Rc + RrδR, SI = Sc + SrδS . (28)

Then, a limit-state function in the normalized space can be created:

G ′(R, S) = RrδR − SrδS + (Rc − Sc) = 0. (29)

It is also a linear function, and hence, the non-probability reliability index can be explicitly obtained:

RH = Rc − Sc

Rr + Sr
. (30)

Making the truncating ratio CF change continuously within the interval [0, 0.4] and for each CF , the hybrid
reliability is computed by the above formulas. A variation curve then can be obtained as shown in Fig. 7, and
the hybrid reliabilities under some specific truncating ratios are also provided in Table 1. It can be found
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Fig. 8 A cantilever beam [35]

that the hybrid reliability behaves as a continuous and monotonically increasing variation with respect to the
truncating ratio CF . It is because that with increase in the truncating ratio the uncertainty domain will become
narrower. Therefore, the relative distance between the uncertainty domain and the failure surface will become
larger, which makes the structure have a smaller possibility to fail and thereby a better reliability. Additionally,
the variation curve can be divided into two different stages according to its rate of change, and the inflexion
point occurs at CF = 0.22 where the hybrid reliability is just equal to 1. In the first stage, the hybrid reliability
increases from 0.855 to 1 with nearly a constant speed when the truncating ratio CF changes from 0 to 0.22,
and in this stage, the probability analysis method is used. In the second stage, the non-probability analysis
method is used, and the hybrid reliability changes with an increasing speed. For CF = 0.4, the reliability
reaches to a large value 3.032.

4.2 A cantilever beam

As shown in Fig. 8, a cantilever beam modified from the numerical example in reference [35] is investi-
gated. Considering that the maximum stress at the fixed end of the beam should be less than a yield strength
S = 320 Mpa, a limit-state function can be created as follows:

g
(
b, h, Px , Py

) = S − 6Px L

b2h
− 6Py L

bh2 , (31)

where L = 1 m is the length of the beam; b and h stand for the width and height of the cross section, respec-
tively; and Px and Py stand for the horizontal force and vertical force, respectively. In this problem, b and h
both follow the truncated normal distribution, and their ideal distribution parameters are μb = 0.1 m, σb =
0.01 m, μh = 0.2 m and σh = 0.015 m;Px and Py both follow the truncated lognormal distribution, and their
ideal distribution parameters are μPx = 65,000 N, σPx = 7,800 N, μPy = 40,000 N and σPy = 2,400 N.

We also make the truncating ratio CF vary within an interval [0, 0.41] and use the present method to compute
the hybrid reliability at each specific CF . In the analysis process, the following gradients are required:

∂g(X)

∂b

∣∣∣∣
X=Xc

= 12Px L

b3h
+ 6Py L

b2h2 > 0,
∂g(X)

∂h

∣∣∣∣
X=Xc

= 12Py L

bh3 + 6Px L

b2h2 > 0,

∂g(X)

∂ Px

∣∣∣∣
X=Xc

= −6L

b2h
< 0,

∂g(X)

∂ Py

∣∣∣∣
X=Xc

= −6L

bh2 < 0.

(32)

It can be found that the first two gradients are always larger than 0, while the second two are always smaller than
0. Thus, for all the different CF , a same vertex point (bL , hL , P R

x , P R
y ) is used to judge whether the uncertainty

domain and the failure surface have an intersection set. Collecting all the computational results, a variation
curve of the hybrid reliability can then be achieved, as shown in Fig. 9. Additionally, the hybrid reliabilities at
seven specific truncating ratios are also given in Table 2. It can be found that the obtained variation curve has
a similar shape as the one in the first numerical example, which is continuous and monotonically increasing
with respect to the truncating ratio CF . Also, the variation curve consists of two segments. In the first one, the
hybrid reliability is a nearly linear function of the truncating ratio, while in the second one it behaves with a
certain degree of non-linearity. The inflexion point of the hybrid reliability occurs at CF = 0.27.

4.3 A 10-bar truss

As shown in Fig. 10, a 10-bar truss [27–29] is considered. The Young’s modulus E of the truss is 68,948 Mpa
and the density ρ is 2, 768 Kg/m3. The length L of the horizontal and vertical bars is 9.144m. A vertical force
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Fig. 9 Variation of the hybrid reliability with respect to the truncating ratio for the cantilever beam

Table 2 Hybrid reliabilities of the cantilever beam under several cases of CF

CF 0.00 0.10 0.20 0.27 0.30 0.35 0.41
RH 0.848 0.913 0.981 1.000 1.170 1.599 2.726

F1 is applied on the node 4, and a vertical force F2 and a horizontal force F3 are applied on the node 2. The
cross-sectional areas Ai , i = 1, 2, . . . , 10 of the bars are random variables all following the truncated normal
distribution, and they have the same distribution parameters μA = 6.5 × 10−3 m2 and σA = 3.25 × 10−4 m2.
The vertical displacement dy of the node 2 needs to be less than a maximum value da = 2.7 × 10−2 m, and
hence, a following limit-state function can be created:

g(A) = da − dy(A). (33)

The axial forces N j , j = 1, 2, . . . , 10 in the bars can be computed by [25]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N1 = F2 −
√

2
2 N8, N2 = −

√
2

2 N10,

N3 = −F1 − 2F2 + F3 −
√

2
2 N8, N4 = −F2 + F3 −

√
2

2 N10,

N5 = −F2 −
√

2
2 N8 −

√
2

2 N10, N6 = −
√

2
2 N10,

N7 = √
2 (F1 + F2) + N8, N8 = a22b1−a12b2

a11a22−a12a21
,

N9 = √
2F2 + N10, N10 = a11b2−a21b1

a11a22−a12a21

(34)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 =
(

1
A1

+ 1
A3

+ 1
A5

+ 2
√

2
A7

+ 2
√

2
A8

)
L

2E ,

a12 = a21 = L
2A5 E ,

a22 =
(

1
A2

+ 1
A4

+ 1
A6

+ 2
√

2
A9

+ 2
√

2
A10

)
L

2E ,

b1 =
(

F2
A1

− F1+2F2−F3
A3

− F2
A5

− 2
√

2(F1+F2)
A7

) √
2L

2E ,

b2 =
(√

2(F3−F2)
A4

−
√

2F2
A5

− 4F2
A9

)
L

2E .

(35)

The maximum displacement dy is then computed by:

dy =
(

6∑
i=1

N 0
i Ni

Ai
+ √

2
10∑

i=7

N 0
i Ni

Ai

)
L

E
, (36)

where N 0
i can be calculated through Eq. (34) with a substitution F1 = F3 = 0 and F2 = 1.

Like the preceding two numerical examples, here the truncating ratio CF is also changed within an inter-
val [0, 0.445]. By using the present method to compute the hybrid reliability, the gradients of the limit-state
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Fig. 10 A 10-bar truss [29]
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Fig. 11 Variation of the hybrid reliability with respect to the truncating ratio for the 10-bar truss

Table 3 Hybrid reliabilities of the 10-bar truss under several cases of CF

CF 0.00 0.10 0.20 0.30 0.345 0.40 0.445
RH 0.827 0.885 0.952 0.998 1.000 1.584 3.291

function with respect to the uncertain parameters are required, and in this example, they always satisfy the
following inequalities:

∂g(A)

∂ A1

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A2

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A3

∣∣∣∣
A=Ac

< 0,

∂g(A)

∂ A4

∣∣∣∣
A=Ac

< 0,
∂g(A)

∂ A5

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A6

∣∣∣∣
A=Ac

> 0, (37)

∂g(A)

∂ A7

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A8

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A9

∣∣∣∣
A=Ac

> 0,
∂g(A)

∂ A10

∣∣∣∣
A=Ac

> 0.

Thus, the same vertex point (AL
1 , AL

2 , AR
3 , AR

4 , AL
5 , AL

6 , AL
7 , AL

8 , AL
9 , AL

10) is used as the judge point when
computing the hybrid reliability for each truncating ratio. A variation curve of the hybrid reliability is given
in Fig. 11, and the hybrid reliabilities at seven specific truncating ratios are also provided in Table 3. When
CF changes from 0 to 0.345, the hybrid reliability can be found slowly increasing from 0.827 to 1, while
rapidly rising from 1 to 3.291 when CF changes from 0.345 to 0.445. The inflexion point of the probability
and non-probability analysis occurs at CF = 0.345.
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Fig. 13 Variation of the hybrid reliability with respect to the truncating ratio for the 25-bar truss

Table 4 Hybrid reliabilities of the 25-bar truss under several cases of CF

CF 0.00 0.10 0.20 0.31 0.35 0.40 0.45
RH 0.778 0.842 0.932 1.000 1.343 2.029 4.043

4.4 A 25-bar truss

A 25-bar truss as shown in Fig. 12 is considered. This structure as well as some other trusses has been well
studied in the references [28,29]. Young’s modulus E of the truss is 199,949.2 MPa, and Poisson’s ratio ν is 0.3.
The length L of each horizontal or vertical bar is 15.24 m. Joint 12 is hinge-supported, and joints 6, 8 and 10
are roller-supported. Joints 7, 9 and 11 are subjected to the vertical loads F3 = 1, 779.2 KN,F2 = 2, 224 KN
and F1 = 1, 779.2 KN, respectively. Joint 1 is subjected to a horizontal load F4 = 1, 334.4 KN. The bars
(1)–(4) have a same cross-sectional area denoted by A1, the bars (5)–(10) A2, the bars (11)–(15) A3, the bars
(16) and (17) A4, the bars (18) and (19) A5, the bars (20) and (21) A6, the bars (22) and (23) A7, and the bars (24)
and (25) A8. All the above areas follow the truncated normal distribution, and their ideal distribution param-
eters are μA1 = 600 mm2, σA1 = 60 mm2, μA2 = 8,000 mm2, σA2 = 800 mm2, μA3 = 6,000 mm2, σA3 =
600 mm2, μA4 = μA5 = μA6 = μA7 = μA8 = 5,000 mm2 and σA4 = σA5 = σA6 = σA7 = σA8 = 500 mm2,
respectively. Considering that the vertical displacement δ of joint 9 should be less than an allowable value
36 mm, a limit-state function can be created as follows:

g(A) = 36 mm − δ(A). (38)

The finite element method (FEM) is used to calculate the structural displacement response δ. The truss element
is employed to create the FEM mesh. Each bar is an element, and there are a total of 25 elements.

By using the present method, a variation curve of the hybrid reliability is obtained as shown in Fig. 13,
and Table 4 gives its values at some specific truncating ratios. It can be found that the hybrid reliability first
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Fig. 14 A closed-hat beam impacting a rigid wall and its cross section [36]

slowly increases from 0.778 to 1 when CF varies from 0 to 0.31, while it rapidly rises from 1 to 4.043 when
CF changes from 0.31 to 0.45. The inflexion point occurs at CF = 0.31.

4.5 An engineering application

The thin-walled beams connected by spot welding are major structures of an automotive body for load support
and energy absorption [36]. The crashworthiness performance is a very important consideration for the design
of thin-walled beams. As shown in Fig. 14, a closed-hat beam impacting a rigid wall with an initial velocity
10 m/s is investigated in this application, which is a kind of typical thin-walled beam in practical automo-
tive bodies. It is formed by a hat beam and a web plate, which are connected by some uniformly distributed
spot-welding points along the two rims of the hat beam. Due to the manufacturing and measuring deviations,
the dimensions L1, L2 and L3, the plate thickness t and round radius R are treated as random parameters.
Because their values will not exceed some limited bounds in practical situations, here the truncating distribu-
tions are employed to quantify the deviations of these five uncertain parameters. Among them, L1, L2 and L3
all follow the truncated normal distribution, and their ideal distribution parameters are μL1 = 18 mm, σL1 =
1.8 mm, μL2 = 70 mm, σL2 = 7 mm, μL3 = 60 mm, σL3 = 6 mm; t and R both follow the lognormal
distribution, and their ideal distribution parameters are μt = 1.85 mm, σt = 0.111 mm, μR = 4 mm and
σR = 0.24 mm. For a thin-walled beam in an automotive body, the axial impact force (average normal impact
force on the rigid wall) is a very important index to evaluate its crashworthiness performance, which is closely
related to the occupant security. Thus, in this application, a reliability analysis is conducted for the axial impact
force Fcrash of the beam, and the following limit-state function is created:

g (L1, L2, L3, t, R) = Fa − Fcrash (L1, L2, L3, t, R) , (39)

where Fa = 55 KN denotes an allowable value of the axial impact force.
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Table 5 Material properties of the closed-hat beam

Young’s Modulus (E) Poisson’s Density (ρ) Yield stress (σs) Tangent
ratio (ν) modulus (Et )

2.0 × 105 Mpa 0.27 7.85 × 10−3 Kg/mm3 310 Mpa 763 Mpa

Fig. 15 An FEM model for the impacting process

Table 6 Hybrid reliabilities for crashworthiness performance of a thin-walled beam

CF RH Convergence point

t R L1 L2 L3

0.05 0.976 2.011 3.985 18.666 69.729 62.726
0.25 1.294 2.005 3.642 18.942 70.627 63.142

FEM is used to compute the axial impact force, and an elasto-plasticity material model of bilinear kinematic
hardening is used with the parameters given in Table 5. The time duration of the impacting process is 20 ms.
The Belytschko–Tsay shell element [37] is used to create the FEM mesh of the impacting system as shown in
Fig. 15, and the total number of the elements is 4,200. A concentrated mass with a weight of 250 Kg is attached
to the end of the closed-hat beam in order to supply enough crushing energy.

Two different cases of CF = 0.05 and CF = 0.25 are considered in this application, and the reliability
analysis results are given in Table 6. For CF = 0.05, the reliability of the axial impact force is only 0.976,
which actually is not a satisfactory result for crashworthiness performance of a practical automotive body.
However, for CF = 0.25, the reliability increases to a relatively large value 1.294, which implies a prominent
promotion of the crashworthiness performance. The above analysis once again indicates that through reducing
the uncertainty domain the structural reliability can be effectively improved. Thus, in practical applications, we
should have a better control of the dimensional deviations of the five uncertain parameters through improving
their manufacturing and measuring precision. Through such a treatment, we can obtain a tighter uncertainty
domain and thereby a better reliability of the crashworthiness performance of this thin-walled beam.

5 Conclusion

In this paper, a new reliability analysis method is proposed for structures with truncated probability distributions.
By using the truncated distributions, a better consistence can be ensured between the random quantification and
the practical deviations of the parameters, and hence, the precision of the reliability analysis can be improved
by a certain extent. By combining the probability and non-probability analysis techniques, a hybrid reliability
model is constructed for the truncated distribution problems. An efficient method is also formulated to com-
pute the hybrid reliability based on a qualitative judgment of the positional relation between the uncertainty
domain and the failure surface, which seems effective for most practical engineering problems though it is not
so rigorous in mathematics. Three numerical examples with explicit expressions are investigated, and in each
one, the truncating ratio of the random parameters is made to change continuously. The computational results
show that the hybrid reliability behaves as a continuous and monotonically increasing variation with respect
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to the truncating ratio. Furthermore, in the probability analysis stage, the hybrid reliability exhibits a nearly
linear relation with the truncating ratio, while a distinctly nonlinear behavior in the non-probability analysis
stage. An inflexion point will emerge when the uncertainty domain and the failure surface has only a tangent
point. The present method is also applied to a practical engineering problem, namely the reliability analysis
of crashworthiness performance for an automotive thin-walled beam. Based on a complex FEM model, the
hybrid reliability for the axis impact force of the beam is successfully analyzed under two different cases of
the truncating ratio.
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