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Abstract It has been shown recently that the class of elastic bodies is much larger than the classical Cauchy
and Green elastic bodies, if by an elastic body one means a body incapable of dissipation (converting working
into heat). In this paper, we study the boundary value problem of a hole in a finite nonlinear elastic plate that
belongs to a subset of this class of the generalization of elastic bodies, subject to a uniaxial state of traction at
the boundary (see Fig. 1). We consider several different specific models, including one that exhibits limiting
strain. As the plate is finite, we have to solve the problem numerically, and we use the finite element method
to solve the problem. In marked contrast to the results for the classical linearized elastic body, we find that the
strains grow far slower than the stress.

1 Introduction

The stress concentration due to the presence of defects, such as holes or inclusions, is an important factor in
determining the design and development of most load-bearing structural elements and has thus been studied
with assiduity within the context of several constitutive theories including classical linearized elasticity. One
of the classical problems in linearized elasticity is the stress concentration due to the presence of a circular
hole in an infinite plate subject to traction on the boundary (see Bickley [1] and Love [2]). The generalization
of this problem has been carried out for plates with a variety of holes of different shapes (see Murakami [3])
and for circular and elliptic holes for different nonlinear elastic bodies subject to a variety of loads. In this
paper, we study the problem within the context of a new class of elastic bodies, which is a subset of a recent
generalization of classical Cauchy and Green elastic bodies. While some simple problems have been studied
within this class of new elastic bodies, the boundary value problem of a plate with a hole and problems such as
inclusions, etc., wherein stress concentration occurs, has not been studied within the context of such bodies.

In Cauchy elastic bodies (see Truesdell and Noll [4]), the Cauchy stress is given in terms of the deforma-
tion gradient, and in Green elastic bodies (see [4,5]), the stored energy is given in terms of the deformation
gradient with the stress being derivable from the stored energy. The linearization of the constitutive model for
a general nonlinear elastic body under the assumption that the displacement gradient is sufficiently small leads
to the constitutive theory for a linearized elastic body. While the response of a linearized elastic body can be
expressed by either prescribing the stress in terms of the linearized strain or the linearized strain in terms of
the stress (a similar situation presents itself in the case of a linear(ized) viscoelastic body), this is not true in
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Fig. 1 Plate with an hole under uniaxial boundary traction

the case of general nonlinear elastic bodies. In general, the nonlinear constitutive relation for the stress is not
invertible.1 Linearization of the new class of elastic bodies, wherein implicit relationships exist between the
deformation gradient and the stress or those in which the deformation gradient is expressed as a function of the
stress, under the usual assumption that the Frobenius norm of the displacement gradient is small, in marked
departure from the linearized case, leads to models wherein the linearized strain can be given as a nonlinear
function of the stress.

As mentioned earlier, it has recently been shown that the class of elastic bodies is much more general
than previously thought (see Rajagopal [7,8] and Rajagopal and Srinivasa [9,10]). The generalization that has
been put into place allows for an elastic body to be defined through implicit constitutive relations between the
nonlinear Cauchy–Green stretch and the Cauchy stress by relations of the form:

f (B, T, ρ) = 0, (1)

where B is the Cauchy–Green stretch tensor,2 T is the Cauchy stress tensor, and ρ is the mass density. In virtue
of the balance of mass, we can recast the dependence on the density with the dependence on the determinant
of B and so express the relationship between B and T.

A special subclass of the above class of implicit models is the following class of explicit models that
provide an expression for B in terms of T, namely (see Rajagopal [7])

B = g(T, ρ). (2)

For isotropic bodies, we have

B = α0I + α1T + α2T2, (3)

where αi , i = 0, 1, 2, depend on the principal invariants of T and the density. Model (3) essentially reverses
the role of the Cauchy–Green stretch tensor and the stress tensor from the classical model, for the response of
isotropic homogeneous compressible elastic solids. While the classical model can be inverted when invertible,
to obtain a model that belongs to the class defined by (2), not all models of the class defined by (2) can be
obtained by such an inversion.

The classical procedure of linearizing the relationship (1) under the assumption that the displacement gra-
dient be sufficiently small leads to a relationship between the linearized strain ε and the stress T of the form
[8,11]

ε = h(T). (4)

1 Truesdell and Moon [6] have determined conditions under which the relation is invertible, but their interest lay in determining
the invertibility of isotropic functions.

2 Though it is referred to as the stretch tensor, to be more precise, it is the square of the stretch tensor V.
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For isotropic bodies, we then have

ε = β0I + β1T + β2T2, (5)

where βi , i = 0, 1, 2, depend on the principal invariants of T. A nonlinear relationship such as (5) between
the strain and the stress is impossible to obtain by linearizing classical Cauchy or Green elasticity (see [11,12]
for a detailed discussion of the same).

Constitutive theories wherein the linearized strain is a nonlinear function of the stress allows one to
describe the response of elastic bodies that were hitherto not possible, for instance the problem of frac-
ture in brittle materials in which the body fractures within the realm of small strains. As is well known,
within the context of the linearized theory of elasticity, both the strain and the stress grow proportional to
the square root of the inverse of r , where r is the radial distance from the tip of a crack, within the con-
text of the theory of linearized elasticity. But such a growth is self-contradictory, as the linearized theory is
only valid if the displacement gradient and hence the strain is very small. It turns out that the generaliza-
tion (5) that leads to models in which the linearized strain is a nonlinear function of the stress, allows one
to obtain bounded strains that can be fixed to be as small as we wish a priori, while the stress is allowed
to grow and even become unbounded. Rajagopal and Walton [13] have shown that in the case of anti-plane
strain involving a crack in an infinite body, for a large class of the generalized elastic bodies, the strain
remains bounded even at the crack tip. The ability to predict bounded strains for the crack problem is insuf-
ficient to advocate the use of models belonging to this new class of elastic bodies. It is necessary to fur-
ther study whether models belonging to this new class predict meaningful physical results for a variety of
boundary value problems, before they can be adopted for further use. It is with such a view in mind that
several simple boundary value problems have been studied within the context of these new constitutive mod-
els. However, even more studies, in which the results are in agreement with observations and experimental
results, are necessary to provide some confidence with regard to the usefulness and efficacy of such mod-
els.

As mentioned above, recently, several boundary value problems have been studied within the context of
this new class of elastic bodies. The problems of uniaxial extension, shear, circumferential shear, and torsion
for different subclasses of bodies belonging to this new class of elastic bodies have been studied by Rajagopal
[12]. Bustamante and Rajagopal [11,14] studied plane stress and plane strain problems involving members
of this new class of elastic bodies. Interestingly, even within the context of the simple shearing of members
of this new class of elastic bodies, Bustamante and Rajagopal [15] find the possibility of multiple solutions,
as well as solutions wherein one finds the presence of pronounced stress boundary layers in that there are
narrow regions adjacent to the boundary wherein the gradients of the stress are very large, while in the region
outside the narrow region, the stresses are essentially constant. Rajagopal and Saravanan [16] have studied
the inflation of a compressible spherical annulus of members of this new class of elastic materials and found
the development of pronounced stress boundary layers in the case of a spherical inclusion Rajagopal and
Saravanan [17] have also studied the extension, inflation, and the circumferential shearing of a cylindrical
annulus of such compressible elastic solids and once again found the development of stress boundary layers.
Most recently, Bustamante and Rajagopal [15] have studied the simple shearing of a class of incompressible
isotropic elastic solids belonging to this new class.

In particular, we are concerned with the response of a planar slab of such a material with a hole when subject
to tensile loading (see Fig. 1). In the case of the classical linearized elastic body, the stress concentration factor
is 3 and occurs at the location (ri , 0) in a polar coordinate system (see, for example, [18]), where ri is the
radius of the hole. In the classical linearized elastic body, the stress and the strain grow in the same manner
as they are related linearly. In the case of the model that we study, in view of the fact that there is a limiting
strain as the stress grows, we should expect the growth in the strain to be far more moderate than the growth
in the stress. We find this to indeed be the case. We find that the strain grows very much slower than the stress
as we approach the hole. While the stress concentration for the material being studied is higher than that for a
linearized elastic body, the strains that are engendered are much smaller than that in the elastic body obtained
by linearizing the nonlinear relationship.

The organization of the paper is as follows. In Sect. 2, we introduce the basic kinematics, the constitutive
theory and record the boundary value problem. As the problem considered leads to a nonlinear system of
partial differential equations in a finite and reasonably complex geometry, it is necessary to resort to a numer-
ical solution of the problems; in Sect. 3, we provide the details concerning the finite element method as well
as the documentation of the results of the numerical procedure, and in Sect. 4, we discuss the implications of
the results.
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2 Basic equations

2.1 Kinematics

Let X ∈ κR(B) denote a particle belonging to a body B in the reference configuration κR(B), and let x ∈ κt (B)
denote the position of the same particle in the current configuration κt (B), at time t . We assume the mapping
χ that assigns to each particle X ∈ κR(B) the position x at time t , that is, x = χ(X, t), is sufficiently smooth
to make all the derivatives that are taken to be meaningful. The displacement u and the deformation gradient
F are defined through

u = x − X, F = ∂χ

∂X
, (6)

respectively. The Cauchy–Green stretch tensors B and C are defined through B = FFT, C = FTF, and the
Green–St.Venant strain E and the linearized strain ε are defined through

E = 1

2
(C − I), (7)

ε = 1

2

[(
∂u
∂x

)
+

(
∂u
∂x

)T
]

, (8)

respectively.

2.2 Constitutive equations for a new class of elastic bodies

In this paper, we consider only ‘isotropic’ bodies, and it follows from (5) that

ε = β0I + β1T + β2T2,

where β0, β1, and β2 are scalar functions that depend on three mutually independent invariants. We consider
the set

IT = trT, I IT = 1

2
tr(T2), I I IT = 1

3
tr(T3). (9)

A special subclass of the class of materials defined through (5) was proposed by Bustamante [19], who
proved the existence of a scalar function W = W (T) s.t.

ε = ∂W

∂T
. (10)

In the case of an isotropic material, we have W (T) = W (IT , I IT , I I IT ), and it follows from (9) and (10) that

ε = W1I + W2T + W3T2, (11)

where we have used the notation W1 = ∂W
∂ IT

, W2 = ∂W
∂ I IT

and W3 = ∂W
∂ I I IT

.

2.3 Boundary value problem

In the absence of body forces, under the assumption that the body is static, the stress tensor T has to satisfy
the equilibrium equation

divT = 0. (12)

The compatibility equations for the components of the linearized strain tensor are [2]

εkn,lm + εlm,kn − εkm,ln − εln,km = 0, (13)

where only six of the above equations are independent.
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In the linearized theory of elasticity, there are two methods that are used to solve boundary value problems;
to work with the displacement field as the main unknown variable which leads to the Navier equations, or to
use the stress potential such that for 2D problems one arrives at the biharmonic equation.

In the case of the new class of materials we are interested in, if we follow the procedures described above,
we obtain highly nonlinear equations for the following reasons:

• If we consider the first alternative of working with the displacement field u as the main unknown variable,
we obtain ε by appealing to (8) and as a consequence (13) is satisfied automatically.
For this new class of materials from (5), we would need to calculate the components of T. In general, (5)
may not be invertible (in some interesting problems, we may obtain more than one solution); therefore,
we may need numerical methods to determine T.
Once we obtain T, we need to solve (12) for u.

• If we consider the second method of working with a stress potential, such that (12) can be satisfied auto-
matically, then for the two-dimensional problem, we can use the solution in terms of the Airy’s stress
potential �

T 11 = �,22, T 22 = �,11, T 12 = −�,12, (14)

whereas for three-dimensional problems, we can use the stress (symmetric) tensor potential a, where [20]

T km = ekr pemsqars,pq , (15)

where ei jk is the permutation symbol.
With the above representations, (12) is satisfied automatically. The next step for this new class of materials
is to obtain the components of ε from (5) and to replace these components in (13). In the two-dimensional
case, we would obtain a highly nonlinear fourth-order partial differential equation for � (see, for example,
[11]), and in the three-dimensional case, we would obtain a system of six highly nonlinear fourth-order
partial differential equations for the six independent components of a.

The equation to be solved for � for the two-dimensional case working with Cartesian coordinates is docu-
mented in [11]. To date, there has been little success in finding exact solutions for such problems, and even the
numerical resolution of the problems seems quite daunting; therefore, we choose to work with u as the main
variable, and in this case, we would need to solve the boundary value problem defined through:

divT = 0 x ∈ κ t (B), Tn = t̂ x ∈ ∂κ t
t (B), u = û x ∈ ∂κu

t (B), (16)

where t̂ and û are the prescribed traction and displacement on the boundaries ∂κ t
t (B), ∂κu

t (B), respectively,
where ∂κ t

t (B) ∪ ∂κu
t (B) = ∂κ t (B) and ∂κ t

t (B) ∩ ∂κu
t (B) = Ø. The components of T are related to u through

(using (8) and (11))

ε = W1I + W2T + W3T2, ε = 1

2

[(
∂u
∂x

)
+

(
∂u
∂x

)T
]

, (17)

where W depends (in general, nonlinearly) on T.

3 Numerical solution of the boundary value problem using the finite element method

3.1 Finite element approximation

We are interested in studying the behavior of a thin plane square plate with a circular hole, which is under
the effect of a uniform traction σ∞ applied on two of the edges of the plate (see Fig. 1). We can consider the
problem as a two-dimensional problem, and we shall denote by x and y the coordinates of a point in the plate
and the origin of the coordinate system being located at the center of the hole. Let ri and L denote the radius
of the hole and half of the length of the plate, respectively (see Fig. 1). Far away, we apply a uniform tension
σ∞. We will assume that ri � L .

In Fig. 2, we have a depiction of the mesh for a quarter of the whole plate. Due to the symmetries of this
problem, only a quarter of this plate is needed for our analysis. We notice that near the hole, the density of the
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Fig. 2 Mesh for a quarter of the whole plate

Fig. 3 Mesh near the surface of the hole

meshing is far greater than away from the hole, as we expect a more rapid change in the distributions of the
stresses and strains near the hole.

In Fig. 3, we provide a closer view of the meshing near the hole.
The main purpose of the study is to determine the growth of the stress and strain in a body whose consti-

tutive relation belongs to the subclass of elastic bodies (10). We shall pick a specific form for the function W
as given below:

W (IT , I IT ) = −α

[
IT − 1

β
ln(1 + β IT )

]
+ αγ

ι

√
1 + 2ιI IT , (18)

where IT and I IT are as defined in (9)1,2, and where α, β, γ , and ι are constants. The values for these constants
are assumed to be (using the international system)

α = 10−3, β = 10−5 1

Pa
, γ = 10−1, ι = 1

1

Pa2 . (19)
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Remark We need to point out that the model (18) and the values (19) have not been obtained by corroboration
against actual experimental data. The constitutive theory (5), (10) has been presented recently (see [11,12,14,
15,19]), and it is necessary to explore the implications and consequences of these new class of constitutive
relations by solving some boundary value problems. The particular form for W used in this paper has been
considered in previous works (see [14]), and it follows from (11) that the explicit expression for the linearized
strain that corresponds to the special choice for the function W is

ε = −α

[
1 − 1

(1 + β IT )

]
I + αγ√

1 + 2ιI IT
T. (20)

It follows that in a simple uniaxial extension problem, the constitutive relation (20) leads to a limiting strain.
The values for the constants shown in (19) are similar in magnitude to the values used in [14].

To solve the boundary value problem (16), we used the finite element method (nonlinear analysis), devel-
oping our own code written in Matlab. Figure 2 shows one of the meshes used. We also provide some additional
details with regard to the computations:

• Statistics for the mesh: 1,989 nodes and 3,659 elements.
• Type of element: 3-nodes linear triangle.
• Method used to solve the nonlinear equations: Quasi-Newton method with relaxation (line search mini-

mization).
• Number of increments: 200.

The external load and dimensions for the geometry are as follows:

σ∞ = 1 Pa, L = 1 m, ri = 0.025 m. (21)

3.2 Results

We need to study the influence of the mesh density on our results, and in order to do so, we would need to study
the error, with regard to the numerical results as a function of the mesh density (for example, in relation to the
number of nodes). If we know the exact solution for this boundary value problem, which can be denoted as ue

for the displacement field, and if ui denotes the displacement field for the different mesh densities considered,
then we could define the error through

ei =
∫
κ t (B)

‖ue − ui‖ dv∫
κ t (B)

‖ue‖ dv
. (22)

However, we do not have an exact solution for this problem; therefore, we determine (approximately) the rate
of convergence in the following way. Let us define u f as the displacement field obtained using the finest mesh;
then, we can calculate

f i =
∫
κ t (B)

‖u f − ui‖ dv∫
κ t (B)

‖u f ‖ dv
. (23)

Thereafter, we calculate the approximated ‘rate of convergence’ Ri as

Ri = f i − f i−1

ni − ni−1
, (24)

where nk would be the number of nodes for the meshes considered.
For simplicity, we do not calculate the above integrals for the whole body, but only for a part of the line

(x, 0) (see Fig. 1), where we expect to obtain maximum stress concentration. Also, for that line, we replace
the norms ‖u f − ui‖, ‖u f ‖ by |u f

1 (x, 0) − ui
1(x, 0)|, and |u f

1 (x, 0)|, respectively. Therefore, we have

f i =
∫ L

r |u f
1 (x, 0) − ui

1(x, 0)| dx∫ L
r |u f

1 (x, 0)| dx
. (25)

Figure 4 displays the behavior of Ri as a function of the number of nodes for different meshes.
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Fig. 4 Convergence error

Fig. 5 Contour plot for the strain ε22

In Figs. 5, 6, we have depicted ε22 and T22 as functions of the radial distance in a neighborhood adjacent
to the hole.

If T ∞
22 and ε∞

22 are the stress and strain components evaluated far away from the surface of the hole3, we
can define

T̄22(x) = T22(x, 0)

T ∞
22

, ε̄22(x) = ε22(x, 0)

ε∞
22

. (26)

Figure 7 portrays the behavior of T̄22 and ε̄22. In that figure, we have also plotted the ‘linear solution,’ which
is the result for T̄22 and ε̄22; in the case, we consider the linear constitutive equation

ε = −αβ IT I + αγ T, (27)

which can be obtained from (20) when ι = 0 and β IT � 1. In this case, the curves for T̄22 and ε̄22 are the
same as expected for the linearized solution.

We notice in Figs. 5 and 6, as is to be expected, that the highest strain and stress occur near the point
(ri, 0). We also see that the maximum strain is of the order of ten to the power of minus four. The fact that the

3 In the practice, we obtain T ∞
22 and ε∞

22 evaluating T22(x, 0) and ε22(x, 0) for x large enough, such that the stress and strain
distributions are almost uniform and unaffected by the presence of the hole. In that case, T ∞

22 ≈ σ∞.
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Fig. 6 Contour plot for the stress T22. Stress in [Pa]
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Fig. 7 Variation of the normalized stress and strain near the hole

linearized strain remains small, and more importantly, the growth of the linearized strain being much slower
than the stresses, as one approaches the hole, cannot be overemphasized. It is also worth noting that the stress
concentration factor is close to 9, this is, however, not unexpected, as the constitutive relation for bodies with
such a limiting stress, allows for the body to withstand a much higher stress concentration, as the strains are
yet limited and within the small strain approximation.

Figures 4, 5, 6, 7 were obtained assuming σ∞ = 1 Pa.
In Fig. 8, we display the manner in which T̄22 and ε̄22 vary with x , for different values for the external

load σ∞.

4 Final remarks

The aim of this study was to determine the stresses and strains that manifest themselves in a classical problem
in solid mechanics, namely the problem of a plate with a hole subject to uniform loading at infinity, within the
context of a new class of constitutive relations that shows much promise with regard to the resolution of prob-
lems, which usually lead to a singularity in the linearized strain, thereby contradicting the basic assumption
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Fig. 8 Behavior of the normalized stress and strain near the hole for different values of the external load σ∞ Pa. (a) 0.25, (b) 0.5,
(c) 0.75, and (d) 1

within which the classical linearized elastic model is derived, namely that the strain is very small. As expected,
the growth of the strain as one approaches the hole is much slower than the growth of the stress. This result is
in keeping with the result obtained by Rajagopal and Walton [13], who found that the linearized strain, even
at the tip of a crack (the body being subject to a state of anti-plane strain), is bounded. As mentioned earlier, it
is necessary to evaluate the usefulness of the new class of models by solving several other specific boundary
value problems.
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