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Abstract Nonlinear torsional vibrations of thin-walled beams exhibiting primary and secondary warpings are
investigated. The coupled nonlinear torsional–axial equations of motion are considered. Ignoring the axial
inertia term leads to a differential equation of motion in terms of angle of twist. Two sets of torsional boundary
conditions, that is, clamped–clamped and clamped-free boundary conditions are considered. The governing
partial differential equation of motion is discretized and transformed into a set of ordinary differential equa-
tions of motion using Galerkin’s method. Then, the method of multiple scales is used to solve the time domain
equations and derive the equations governing the modulation of the amplitudes and phases of the vibration
modes. The obtained results are compared with the available results in the literature that are obtained from
boundary element and finite element methods, which reveals an excellent agreement between different solution
methodologies. Finally, the internal resonance and the stability of coupled and uncoupled nonlinear modes are
investigated. This study can be a preliminary step in the understanding of complex dynamics of such systems
in internal resonance excited by external resonant excitations.

1 Introduction

Thin-walled beams (TWBs) are widely used in engineering applications with minimum weight design criteria,
ranging from civil to aerospace and many other industrial fields. Frequently used TWBs have low torsional
stiffness, and their torsional deformations may be of such magnitudes that it is not adequate to treat the angles of
cross-sectional rotation as small. When the vibration amplitudes are moderate or large, the geometric nonlinear-
ity must be included, and some new phenomena such as hardening (or softening), jump, secondary resonance,
etc. come into play [1]. Unfortunately, the equations of motion of nonlinear systems are very complicated,
and there are no exact or analytical solutions, in most cases. On the other hand, numerical solutions such as
finite element and boundary element methods have no capability to give parametric solutions. Therefore, they
cannot be used to investigate the global and qualitative behavior of the system. Some approximate solutions
such as perturbation methods can overcome deficiencies of exact and numerical methods.

As a pioneering work in the field of TWB theory, Vlasov [2] used the contour-based cross-sectional anal-
ysis with the assumption of small nonuniform angle of twist. The Vlasov’s model has been widely used in
most theoretical and finite element works on TWBs. Loughlan and Ata [3] studied the effects of primary and
secondary warpings on the torsional response of open- and closed-section fiber composite beams. Compar-
isons between theory, experiment, and finite element solutions are shown to give good agreements for the
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Z, angle, and box-section beams. Ferrero et al. [4] developed an analytical theory for determining stress and
stiffness in a TWB under the twist moment including warping effects. Furthermore, Trahair et al. [5] also
used Vlasov’s model to investigate the behavior and design features of steel structures. Salim and Davalos [6]
expanded the Vlasov’s theory to perform the linear analysis of open- and closed-section laminated composite
beams. The effect of warping torsion is also considered, and a close agreement among analytical, experimental,
and finite element results is reported. Shin and Kim [7] obtained an exact solution for twist angle and fiber
stresses of TWBs made of composite materials with single- and double-celled sections subjected to a torsional
moment. Liu et al. [8] studied the axial–torsional vibration of pre-twisted beams and obtained a set of criteria
for checking the validity of the simplifying assumptions used in the prismatic beam warping function. Pi and
Trahair [9] presented a finite element solution of the nonlinear torsional analysis of I-section beams consider-
ing large twist rotations. They concluded that I-section beams have much larger torsional capacities than can
be predicted by linear plastic collapse analysis. Trahair [10] investigated the nonlinear twisting rotation of a
TWB with open section that includes the effects of nonlinear Wagner stiffening torques. Then he extended the
nonlinear analysis to members of more general cross-sections and solved the nonlinear equations with the finite
element method. To show the importance of the problem of nonlinear angle of twist, he stated that although
nonlinear effects rarely occur in practice because of serviceability considerations, some aspects of member
strength may be influenced by nonlinear torsion effects for a number of reasons. First, the strengthening effects
of nonlinear torsion allow torsion members to become fully plastic. Therefore, the use of plastic methods
of strength design for torsion is applicable [5]. Second, the nonlinear torsional effects made the post-lateral
buckling of beams imperfection insensitive. Third, the stiffening effects of the nonlinear torsion justify the
lateral buckling strength of a beam that is bent about its strong axis and cannot be less than its weak axis
in-plane strength. Pi et al. [11] presented a new spatially curved-beam element with warping and Wagner
effects that can be used for the nonlinear large displacement analysis of structures. This element is accurate
and efficient for the nonlinear elastic, buckling, and post-buckling analysis of arches. A close agreement among
analytical, experimental, and numerical results is reported. Mohri et al. [12] investigated a nonlinear model
for large torsion analysis of TWBs including shortening effect [13], pre-buckling deflections, and flexural–
torsional couplings. This model is extended further to finite element formulation, and then, the corresponding
nonlinear equations are solved using the incremental iterative Newton–Raphson method. Sapountzakis and
Tsipiras [14] obtained a boundary element solution for the torsional vibration problem of bars of arbitrary
doubly symmetric cross-section. Furthermore, they [15] utilized boundary element method in nonlinear tor-
sional analysis of doubly symmetric cross-sectional bars at torsional post-buckling configuration in both free
vibration and primary resonance cases. They have shown that in the case of primary resonance excitation of a
bar in torsion at a pre-buckled state, the response could consist of a beating phenomenon. However, there are
many other studies that used analytical or numerical solutions, devoted to the linear and nonlinear torsional
behavior of beams [16–27]. They come to the conclusion that shortening effect plays an important role in
torsional vibrations, and also, that the validity of Vlasov’s theory is poor in comparison with the experimental
results.

Although there exist a large number of research works on the nonlinear torsional vibrations of TWBs, to the
best of the authors’ knowledge, there has been no study about nonlinear normal modes and internal resonance
in the nonlinear torsional vibrations of TWBs including shortening effect. The aim of this study is to

(i) present a perturbation solution for nonlinear torsional vibrations of a straight isotropic TWB,
(ii) parametrically represent the nonlinear torsional dynamic of the TWB in different boundary conditions,

(iii) study the vibration frequency-amplitude dependence of the TWB in torsion,
(iv) study the occurrence of internal resonance in the nonlinear torsional vibrations of the TWB whenever

the torsional frequencies are commensurable or near commensurable,
(v) investigate the effect of the warping on the torsional mode’s coupling of the TWB

(vi) identify the nonlinear normal modes of the TWB in torsion
(vii) study the stability of the nonlinear normal modes of the TWB in torsion.

The structural model considered here incorporates a number of nonclassical effects including primary and
secondary warpings, warping inertia, nonuniform torsional model, and rotary inertia. The TWB is assumed to
be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. The free
vibration problem is solved using the Galerkin discretization and the method of multiple scales. The obtained
results are compared with the available results in the literature that are obtained from boundary element and
finite element methods, which reveals an excellent agreement between different solution methodologies.
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Fig. 1 Schematic description of the TWB and its cross-section

Fig. 2 Cross-sectional coordinates to define complex cross-sections

2 The equations of motion

The structural model consists of a straight uniform box beam with the length of L , width of c, height of b, and
thickness of h (Fig. 1). The reference coordinates (x, y, z) are defined as local coordinates associated with the
beam, and another set of coordinates (s, n, z) is used to define the cross-sectional profile (Fig. 2). The z-axis
is located as to coincide with the locus of the symmetric point of the box beam cross-section along the beam
span.

In order to get pertinent kinematic results to be used later, only the expressions related to the twisting
rotation and extension will be retained. The position of a point of the beam cross-section after deformation,
subscript ‘d’, can be stated as

xd = x cosφ − y sin φ,

yd = x sin φ + y cosφ,

zd = z + w0 − φ′(z, t)(Fw(s)− nrt (s)),

(1)

where φ and w0 denote the angle of twist and average axial deformation [14] of the TWB, respectively. Also,
a prime denotes the derivative with respect to the z-coordinate. The primary warping function (Fw) for the
box beam can be written as

Fw =
s∫

0

[rn(s̄)−�]ds̄. (2)

The perpendicular distances from shear center of the cross-section to the tangent and normal lines of the
mid-line beam contour, rn(s) and rt (s), respectively (Fig. 2), are defined as

rt (s) = x(s)
dx

ds
+ y(s)

dy

ds
,

rn(s) = −y(s)
dx

ds
+ x(s)

dy

ds
.

(3)
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Also, the torsional function � is defined as

� =
∮

rn(s)ds∮
ds

. (4)

Hence, the displacement field can be obtained as

u(x, y, z, t) = xd − x = x(cosφ − 1)− y sin φ,

v(x, y, z, t) = yd − y = x sin φ + y(cosφ − 1),

w(x, y, z, t) = w0 − φ′(z, t)(Fw(s)− nrt (s)).
(5)

In Eq. (4), the terms associated with primary and secondary warping are underscored by one and two superposed
solid lines (see Ref. [28]). The components of acceleration vector can be written as

ax = −φ̈(x sin φ + y cosφ)− φ̇2(x cosφ − y sin φ),

ay = −φ̈(y sin φ − x cosφ)− φ̇2(x sin φ + y cosφ).

az = ẅ0 − φ̈′(Fw(s)− nrt (s)).

(6)

The axial strain is defined as

εzz = dS − ds

ds
, (7)

where

(
dS

dz

)2

= x ′2
d + y′2

d + z′2
d

= 1 + 2
(
w′

0 − φ′′(z, t)(Fw(s)− nrt (s))
) + φ′2(x2 + y2). (8)

ds/dz obtained in similar manner in absence of elastic deformations. Hence, the strain field is obtained as

εzz(n, s, z, t) = ε0
zz(s, z, t)+ nεn

zz(s, z, t),

ε0
zz(s, z, t) = w′

0 − φ′′(z, t)Fw(s)+ 1

2
φ′2(x2 + y2), (9)

εn
zz(s, z, t) = rt (s)φ

′′(z, t),

γsz(s, z, t) = ψ(s, z)φ′(z).

The term above the solid line in the longitudinal strain is a nonlinear term, absent in Vlasov’s model called
Wagner strain [13].

Constitutive relations for an isotropic material can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σss
σzz
σzn
σsn
σsz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q44 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εss
εzz
γzn
γsn
γsz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (10)

where

Q11 = Q22 = E

1 − ν2 , Q12 = Eν

1 − ν2 , Q44 = Q55 = k2G, Q66 = E

2(1 + ν)
. (11)
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E, ν, k are Young’s modulus of elasticity, Poisson’s ratio, and the shear correction factor. The stress resultants
Nzz, Nsz and the stress couple Lzz are defined as

(Nzz, Lzz) =
h
2∫

− h
2

σzz(1, n)dn, (12)

Nsz =
h
2∫

− h
2

σszdn. (13)

Substituting Eq. (10) into Eqs. (12) and (13) and assuming the hoop stress to be negligible, then the 2-D stress
resultants and stress couples are obtained as

⎧⎨
⎩

Nzz
Nsz
Lzz

⎫⎬
⎭ =

⎡
⎣ k11 0 k14

0 k23 0
k14 0 k44

⎤
⎦
⎧⎨
⎩
ε0

zz

φ′
εn

zz

⎫⎬
⎭ , (14)

where the ki j are defined as

k11 = A22 − A 2
12

A11
, k14 = B22 − A12 B12

A11
,

k22 = A66, k23 = 2k22�,

k44 = D22 − B 2
12

A11
.

(15)

The stiffness quantities Ai j and Bi j are defined as

Ai j , Bi j =
h
2∫

− h
2

Qi j (1, n)dn. (16)

The one-dimensional stress measures Tr ,Mp, Bw can be defined in terms of stress resultants and stress couples:

Tz(z, t) =
∮

Nzz ds, (17)

Tr (z, t) =
∮

Nzz(x
2 + y2) ds, (18)

Mz(z, t) =
∮

Nsz�ds, (19)

Bw(z, t) =
∮
(FwNzz − rt Lzz) ds. (20)

Substituting Eq. (9) into Eqs. (12), (17) and (18), and considering the integral of warping function and ignoring
the effects of the secondary warping, Tz and Tr are obtained as

Tz = k11S

(
w′

0 + 1

2

	

I p

S
φ′2

)
, (21)

Tr = Tz
	

I p

S
+ 1

2
Bφ′2, (22)
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where

S =
∮

ds, (23)

B = k11

⎛
⎜⎝Ips −

	

I
2

p

S

⎞
⎟⎠ , (24)

	

I p =
∮ (

x2 + y2) ds, (25)

Ips =
∮ (

x2 + y2)2
ds. (26)

Also, Mz and Bw can be written in terms of the displacement field as

Mz = a77φ
′, (27)

Bw = −a66φ
′′, (28)

where

a77 =
∮
�k23ds, (29)

a66 =
∮ (

F2
wk11 + 2Fwrt k14 + r2

t k44
)
ds. (30)

The reduced mass terms are defined as

m =
∮ h

2∫

− h
2

ρ dn ds, (31)

Ip =
∮ h

2∫

− h
2

ρ(x2 + y2) dn ds, (32)

Ī p =
∮ h

2∫

− h
2

ρ(x2 − y2) dn ds, (33)

Iww =
∮ h

2∫

− h
2

ρ
(
F2
w

+ n2r2
t

)
dn ds. (34)

The governing differential equations of motion are derived using Hamilton’s principle in the absence of
body forces and surface shear forces. Hamilton’s principle is expressed as follows:

t2∫

t1

(δU + δW − δT )dt = 0, (35)

where U, T , and W are the potential energy, kinetic energy, and work done by external force of the system,
respectively, and t1 and t2 are two arbitrary points in time. The energy variations can be written as
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δU = 1

2

∮ L∫

0

(
Nzzδε

0
zz + Lzzδε

1
zz + Nszδγsz

)
ds dz, (36)

δT =
∮ L∫

0

ρ
(
axδu + ayδv + azδw

)
ds dz. (37)

Substituting Eqs. (6), (9), (17)–(20) and (31)–(34) into Eqs. (36) and (37) yields

t2∫

t1

δUdt =
t2∫

t1

⎧⎨
⎩

L∫

0

−
[
T ′

z δw0 +
(

Bw + (
Trφ

′)′ + M ′
z

)]
δφ dz

+ [
Tzδw0 − Bwδφ

′ + (
B ′
w + Trφ

′ + Mz
)
δφ

] ∣∣∣L0
⎫⎬
⎭ dt, (38)

t2∫

t1

δT dt = −
t2∫

t1

⎧⎨
⎩

L∫

0

b1ẅ0δw0 +
(

Ipφ̈ − (
Iwwφ̈

′)′) δφdz + Iwwφ̈
′δφ

∣∣∣L0
⎫⎬
⎭dt. (39)

In the case of free vibration, the Euler–Lagrange equation of motion for large twist angle can be obtained from
Eqs. (35), (38) and (39) as

δw : T ′
z − b1ẅ0 = 0, (40)

δφ : B ′′
w + (

Trφ
′)′ + M ′

z − Ipφ̈ + (
Iwwφ̈

′)′ = 0. (41)

The boundary conditions (B.C.) at two edges of the beam can be stated as

δw0 = 0 or Tz = 0,

δφ = 0 or B ′
w + Mz + Trφ

′ + Iwwφ̈
′ = 0, (42)

δφ′ = 0 or Bw = 0.

Hence, using Eqs. (21)–(34), one can write the Navier form of governing differential equations of motion in
terms of unknown displacement functions as

δw : k11Sw′′
0 + k11 Ī pφ

′φ′′ − b1ẅ0 = 0, (43)

δφ : − (
a66φ

′′)′′ +
(

k11 Ī pw
′
0φ

′ + 1

2
B̄φ′3

)′
+ (

a77φ
′)′ − Ipφ̈ + (

Iwwφ̈
′)′ = 0, (44)

where B̄ = k11 Ips . In Eq. (44), the first term is associated with the restrained warping. a77 presents the usual
Saint-Venant torsional rigidity of the beam. and the term including B̄ is the nonlinear term due to the shortening
effect. It should be remarked that Eqs. (43) and (44) coincide with those obtained by Sapountzakis and Tsipiras
[14] for the beam with solid cross-section.

In order to reduce the governing equations to a single equation, axial inertia should be neglected, and
subsequently, w0 could be exactly eliminated in Eqs. (43) and (44) [14]. Hence,

w′′
0 = − Ī p

S
φ′φ′′, (45)

which after integration leads to,

w′
0 = −1

2

Ī p

S
φ′2 + T̄z

k11S
. (46)
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In the case of constant axial load acting along the bar, T̄z is equal to this axial load, while for a TWB with
axially immovable ends, T̄z represents axial load induced by geometrical nonlinearity,

T̄z = 1

2

k11 Ī p

L

L∫

0

φ′2dz. (47)

Substituting Eq. (46) into Eq. (44) leads to

δφ : (a66φ
′′)′′ −

(
Ī p

S
T̄zφ

′ + 1

2
Bφ′3

)′
− (

a77φ
′)′ + Ipφ̈ − (

Iwwφ̈
′)′ = 0. (48)

Static counterpart of Eq. (48) obtained by neglecting all inertia terms coincides with those obtained by Trahair
[10] for an isotropic thin-walled beam.

3 Discretized equation of motion and perturbation solution

The Galerkin discretization technique is used to obtain a reduced-order model of the beam. In this regard, the
system response is assumed to be in the form

φ(z, t) =
N∑

i=1

φ̂i (z)qi (t), (49)

where N , φ̂i (z), and qi (t) are a finite integer, the characteristic torsional modes of the beam with associated
boundary conditions, and the generalized coordinates, respectively. The Galerkin method can be used to trans-
fer the partial differential equation of motion into a set of ordinary differential equations. Application of the
perturbation methods to the reduced-order model of a nonlinear continuous system with quadratic nonlineari-
ties may lead to both quantitative and qualitative errors [29]. It should be noted that such a problem does not
occur in the system represented by Eq. (48) containing only cubic nonlinearities. Here, nonlinear torsional
vibrations of TWBs with clamped–clamped and clamped-free torsional boundary conditions are investigated
using the two-mode Galerkin’s method.

3.1 Torsionally clamped–clamped TWB

The linear torsional mode shapes of the clamped–clamped TWB are

φ̂i (z) = sin

(
iπ z

L

)
. (50)

Substituting Eqs. (49) and (50) into Eq. (48) in the presence of external axial loading, taking the inner product
of the equation with the corresponding mode shape, and using the orthogonality properties of the mode shapes,
the following discretized equations of motion are obtained:

q̈1 + ω2
1q1 = γ1q3

1 + γ2q1q2
2 ,

q̈2 + ω2
2q2 = γ3q2

1 q2 + γ4q3
2 ,

(51)

where

ω2
1 =

π2L2
(

Ī p
S T̄z + a77

)
+ π4a66

L4 Ip + π2L2 Iww
, ω2

2 =
4π2L2

(
Ī p
S T̄z + a77

)
+ 16π4a66

L4 Ip + 4π2L2 Iww
,

γ1 = −3

8

Bπ4

L4 Ip + π2L2 Iww
, γ2 = −3Bπ4

L4 Ip + π2L2 Iww
,

γ3 = −3Bπ4

L4 Ip + 4π2L2 Iww
, γ4 = −6Bπ4

L4 Ip + 4π2L2 Iww
.

(52)
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In the case of a free warping (a66 = Iww = 0) TWB without axial loading,

ω1 = π

L

√
a77

Ip
, ω2 = 2π

L

√
a77

Ip
. (53)

It should be mentioned that in this case, the two-to-one internal resonance between first and second modes is
not available because the nonlinear interaction terms are equal to zero [30]. The method of multiple scales is
used to obtain the modulation equations governing the amplitude and phase of the torsional modes. The new
independent variables are defined as

Tn = εnt, n = 0, 1, 2, . . . (54)

Therefore, the derivatives with respect to time are replaced by the partial derivatives with respect to the new
variables. That is,

d

dt
= dT0

dt

∂

∂T0
+ dT1

dt

∂

∂T1
+ · · · = D0 + εD1 + · · · ,

d2

dt2 = D2
0 + 2εD0 D1 + ε2(D2

1 + 2D0 D2)+ · · · .
(55)

The solution of Eq. (51) can be stated as

q1(t, ε) = εq11 (T0, T2)+ ε3q13 (T0, T2)+ O
(
ε4) ,

q2(t, ε) = εq21 (T0, T2)+ ε3q23 (T0, T2)+ O
(
ε4) . (56)

Substituting Eqs. (55) and (56) in Eq. (51) and equating the coefficients of the ε-terms of same power yields
the following system of equations:

D2
0q11 + ω2

1q11 = 0,

D2
0q21 + ω2

2q21 = 0,
(57)

D2
0q13 + ω2

1q13 = −2D0 D2q11 + γ1q3
11 + γ2q11q2

21,

D2
0q23 + ω2

2q23 = −2D0 D2q21 + γ3q2
11q21 + γ4q3

21,
(58)

where ωi is the linear natural frequency of Eq. (51). The general solution of Eq. (57) can be written as

q11 = A1 (T2) eiω1T0 + c.c.,

q21 = A2 (T2) eiω2T0 + c.c.,
(59)

where c.c. denotes the complex conjugate of the complex expressions. Substituting the general solutions of
Eq. (57) into Eq. (58) yields

D2
0q13 + ω2

1q13 = (−2iω1 A∗
1 + 3γ1 A2

1 Ā1 + 2γ2 A2 Ā2 A1
)

eiω1T0 + γ1 A3
1e3iω1T0

+ γ2 A1 A2
2ei(ω1+2ω2)T0 + γ2 A1 Ā2

2ei(ω1−2ω2)T0 + c.c.,

D2
0q23 + ω2

2q23 = (−2iω2 A∗
2 + 3γ4 A2

2 Ā2 + 2γ3 A1 Ā1 A2
)

eiω2T0 + γ4 A3
2e3iω2T0

+ γ3 A2
1 A2ei(2ω1+ω2)T0 + γ4 Ā2

1 A2ei(ω2−2ω1)T0 + c.c.,

(60)

where a superscript ∗ denotes the differentiation with respect to T2 and Ām is the complex conjugate of Am .
Secular terms will be eliminated from Eq. (60) if Am is the solution of

− 2iω1 A∗
1 + 3γ1 A2

1 Ā1 + 2γ3 A2 Ā2 A1 = 0,

− 2iω2 A∗
2 + 3γ4 A2

2 Ā2 + 2γ3 A1 Ā1 A2 = 0.
(61)
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Table 1 Fundamental torsional frequency ω1 and induced axial load T̄z of a TWB with clamped–clamped torsional boundary
conditions and immovable ends

Present study Ref. [14] Ref. [21]

B �= 0 B = 0 B �= 0 B = 0 B = 0

ω1(s−1)
Linear 214.22 214.22 214.23 214.23 207.23
φ(L/2) ( rad) 0.1 214.96 214.76 215.04 214.78 207.83

0.2 217.16 216.38 217.44 216.40 209.62
1.5 343.94 313.76 348.86 313.77 −

T̄z(k N )
Linear − − − − −
φ(L/2) ( rad) 0.1 17.6 17.6 17.60 17.60 19.43

0.2 70.39 70.39 70.36 70.39 77.72
1.5 3,959.50 3,959.50 3,891.26 3,959.63 −

a77 = 16, 848 Nm2 , a66 = 25, 200 Nm4, B = 34,251 Nm4, Ip = 0.434 kgm, Iww = 9.6 × 10−4kgm3

Assuming Am = 1
2 am exp (iθm), substituting in Eq. (61) and separating real and imaginary parts leads to

a∗
1 = 0, (62)

a∗
2 = 0, (63)

θ∗
1 = −

(
3γ1

8ω1
a2

1 + γ2

4ω1
a2

2

)
, (64)

θ∗
2 = −

(
3γ4

8ω2
a2

2 + γ3

4ω2
a2

1

)
. (65)

Therefore,

a1 = a10, (66)

a2 = a20, (67)

θ1 = −
(

3γ1

8ω1
a2

10 + γ2

4ω1
a2

20

)
ε2t + θ10, (68)

θ2 = −
(

3γ4

8ω2
a2

20 + γ3

4ω2
a2

10

)
ε2t + θ20, (69)

where a10, a20, θ10, and θ20 are constants of integration. It should be noted that phases and hence the nonlinear
frequencies are functions of the amplitudes.

For validation, the fundamental nonlinear natural frequency and induced axial load (T̄z) of an axially
immovable TWB obtained in the context of this study are compared with those obtained by Sapountzakis and
Tsipiras [14] and Rozmarynowski and Szymczak [21] using boundary element and finite element methods,
respectively. Table 1 shows an excellent agreement between the results of this study and those obtained via
boundary element and finite element methods. Since the assumed mode shapes (Eq. (50)) are not altered by
the axial load (T̄z) or the geometric cross-sectional constant B, the obtained induced axial loads (T̄z) are the
same values in the presence or absence of the parameter B (Eq. (47)).

3.2 Torsionally clamped-free TWB

The linear mode shapes of a torsionally clamped-free TWB are

φ̂i (z) = sin

(
(2i − 1) π z

2L

)
. (70)

Substituting Eqs. (49) and (70) into Eq. (48) leads to the following discretized equation of motion:

q̈1 + ω2
1q1 = γ1q3

1 + γ2q2
1 q2 + γ3q1q2

2 ,

q̈2 + ω2
2q2 = γ4q3

1 + γ5q2
1 q2 + γ6q3

2 ,
(71)
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where

ω2
1 =

4π2L2
(

Ī p
S T̄z + a77

)
+ π4a66

16L4 Ip + 4π2L2 Iww
, ω2

2 =
288π2L2

(
Ī p
S T̄z + a77

)
+ 648π4a66

128L4 Ip + 288π2L2 Iww
,

γ1 = −3Bπ4

128L4 Ip + 32π2L2 Iww
, γ2 = −9Bπ4

128L4 Ip + 32π2L2 Iww
,

γ3 = −54Bπ4

128L4 Ip + 32π2L2 Iww
, γ4 = −3Bπ4

128L4 Ip + 288π2L2 Iww
,

γ5 = −54Bπ4

128L4 Ip + 288π2L2 Iww
, γ6 = −243Bπ4

128L4 Ip + 288π2L2 Iww
.

(72)

In the case of a free warping (a66 = Iww = 0) TWB without axial loading,

ω1 = π

2L

√
a77

Ip
, ω2 = 3π

2L

√
a77

Ip
. (73)

The relationship between frequencies (ω2 = 3ω1) can cause two modes to be coupled, and an internal resonance
can exist. Applying the method of multiple scales leads to the following system of equations:

D2
0q11 + ω2

1q11 = 0,

D2
0q21 + ω2

2q21 = 0,
(74)

D2
0q13 + ω2

1q13 = −2D0 D2q11 + γ1q3
11 + γ2q2

11q21 + γ3q11q2
21,

D2
0q23 + ω2

2q23 = −2D0 D2q21 + γ4q3
11 + γ5q2

11q21 + γ6q3
21.

(75)

The general solution of Eq. (74) is in the form of Eq. (59). Hence, one can rewrite Eq. (75) as

D2
0q13 + ω2

1q13 = (−2iω1 A∗
1 + 3γ1 A2

1 Ā1 + 2γ3 A2 Ā2 A1
)

eiω1T0 + 2γ2 A1 Ā1 A2eiω2T0

+γ1 A3
1e3iω1T0 + γ2 A2

1 A2ei(2ω1+ω2)T0 + γ2 Ā2
1 A2ei(ω2−2ω1)T0

+γ3 A1 A2
2ei(ω1+2ω2)T0 + γ3 A1 Ā2

2ei(ω1−2ω2)T0 + c.c., (76)

D2
0q23 + ω2

2q23 = (−2iω2 A∗
2 + 3γ6 A2

2 Ā2 + 2γ5 A1 Ā1 A2
)

eiω2T0 + 3γ4 A1 Ā1 A1eiω1T0

+γ4 A3
1e3iω1T0 + γ6 A3

2e3iω2T0 + γ5 A2
1 A2ei(2ω1+ω2)T0

+γ5 Ā2
1 A2ei(ω2−2ω1)T0 + c.c..

As mentioned earlier, without the effects of warping (a66 = Iww = 0) and axial loading ω2 = 3ω1, but
warping and nonlinearity can be treated as detuning parameters which make ω2 ≈ 3ω1 (see Fig. 3), therefore,

ω2 = 3ω1 + ε2σ,

ω2T0 = 3ω1T0 + ε2σT0 = 3ω1T0 + σT2.
(77)

In Eq. (76), in addition to the terms proportional to exp (±iωm T0) ,m = 1, 2, secular terms are also produced
by the terms proportional to exp [±m (ω2 − 2ω1) T0] and exp (±3iω1T0). Secular terms will be eliminated
from Eq. (76) if Am is the solution of

−2iω1 A∗
1 + 3γ1 A2

1 Ā1 + 2γ3 A2 Ā2 A1 + γ2 Ā2
1 A2eiσT2 = 0,

−2iω2 A∗
2 + 3γ6 A2

2 Ā2 + 2γ5 A1 Ā1 A2 + γ4 A3
1e−iσT2 = 0.

(78)

Assuming Am = 1
2 am exp(iθm), substituting in Eq. (78), and separating real and imaginary parts leads to

8ω1a∗
1 − γ2a2

1a2 sin λ = 0, (79)

8ω2a∗
2 + γ4a3

1 sin λ = 0, (80)

8ω1a1θ
∗
1 + (

3γ1a2
1 + 2γ3a2

2

)
a1 + γ2a2

1a2 cos λ = 0, (81)

8ω2a2θ
∗
2 + (

3γ6a2
2 + 2γ5a2

1

)
a2 + γ4a3

1 cos λ = 0, (82)
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Fig. 3 Variation in 3ω1 andω2 of TWB with clamped-free torsional boundary conditions versus a66/k11, a77 = 16, 848 Nm2, B =
34, 251 Nm4, Ip = 0.434 kgm, Tz = 0

where

λ = θ2 − 3θ1 + σT2. (83)

Considering Eqs. (81)–(83), one can write

a2λ
∗ − a2σ −

(
3γ3

4ω1
− γ6

8ω2

)
a3

2 −
(

9γ1

8ω1
− γ5

4ω2

)
a2

1a2 −
(

3γ2

8ω1
a1a2

2 − γ4

8ω2
a3

1

)
cos λ = 0. (84)

Multiplying Eq. (79) by ω−1
1 a1 and Eq. (80) by ω−1

2 νa2, where ν = γ2ω2
γ4ω1

, and adding the results leads to

a1a∗
1 + νa2a∗

2 = 0. (85)

Hence,

a2
1 + νa2

2 = C, (86)

where C is a constant proportional to the system’s initial energy. Now a new variable is ξ , which characterizes
the ratio of the first linear mode energy to the total energy, defined as

ξ = a2
1

C
= a2

1

a2
1 + νa2

2

. (87)

It must be noted that the ξ = 0, 1 correspond to the uncoupled modes, that is, to each linear mode, separately.
For the uncoupled modes, the phase difference λ is indefinite, and the frequency response curves for these
modes must be obtained from Eqs. (79)–(82).

Stationary or steady-state oscillations are determined by conditions a∗
1 = a∗

2 = λ∗ = 0. The latter con-
dition means synchronization of the vibrations in two linear modes. From modulation equations (79)–(82),
there are two possibilities: (a1 = 0, a2 �= 0) and (a1 �= 0, a2 �= 0). In the first case, there exists an uncoupled
nonlinear normal mode with the frequency (ωnl

2 ) obtained as

ωnl
2 = ω2 + dθ2

dt
= ω2 + ε2 dθ2

dT2
= ω2 − 3γ6ε

2a2
2

8ω2
. (88)
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Fig. 4 Variation in the nonlinear frequency of uncoupled naturally stable mode (ωnl
2 ) of TWB with clamped-free torsional

boundary conditions versus its amplitude (a2) a77 = 16, 848 Nm2, a66 = 1, 050 Nm4, B = 34, 251 Nm4, Tz = 0, Ip =
0.434 kgm, Iww = 4 × 10−5 kgm3, ε = 0.1, L = 4 m

Figure 4 shows the typical variation in nonlinear natural frequency of the naturally stable uncoupled mode
versus its amplitude.

To study the stability of this mode, A1 and A2 are assumed to be in the following form:

A1 = 1

2
(p1 − q1) eisT2 , A2 = 1

2
a2eiθ2 , (89)

where s transforms the resulting equations into an autonomous system. Substituting Eq. (89) into Eq. (78) and
separating real and imaginary parts, and linearization of the obtained equations yields

p∗
1 +

(
1

3

(
σ + θ∗

2

) + 2γ3

8ω1
a2

2

)
q1 = 0,

q∗
1 −

(
1

3

(
σ + θ∗

2

) + 2γ3

8ω1
a2

2

)
p1 = 0.

(90)

Therefore, using Eq. (82), the eigenvalues of Eq. (90) are determined in a closed form as

�1,2 = ±ia2
2

(
σ

3a2
2

− 2γ3ω2 − γ6ω1

8ω1ω2

)
. (91)

Since the eigenvalues are imaginary values, the uncoupled mode is naturally stable.
In the case of a1 �= 0, a2 �= 0, the stationary solutions correspond to

λ = nπ, n = 0, 1, 2, . . . ,(
(−1)n

γ4

8

)(a1

a2

)3

+
(
γ5

4
− 9ω2γ1

8ω1

)(
a1

a2

)2

−
(
(−1)n

3ω2γ2

8ω1

)(
a1

a2

)

+3γ6

8
− 3ω2γ3

4ω1
− ω2

σ

a2
2

= 0, (92)

where λ = nπ corresponds to in-phase and anti-phase oscillations. On the (a1 − a2) plane, two normal modes
are presented by lines passing through the origin, and extreme values are reached simultaneously. Equation
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Fig. 5 Variation in the amplitude ratio ( a1
a2
) of torsional coupled and uncoupled modes of TWB with clamped-free torsional

boundary conditions versus detuning parameter ( σ
a2

2
), λ = 0, a77 = 16, 848 Nm2, a66 = 1, 050 Nm4, B = 34, 251 Nm4, Tz =

0, Ip = 0.434 kgm, Iww = 4 × 10−5 kgm3, L = 4 m

(92) is a cubic equation of a1
a2

, which for a given detuning level has either one or three real roots. The stability
of these modes can be determined by studying the stability of the corresponding fixed points of Eqs. (79), (80),
and (84) by superposing perturbation parts on the steady-state solutions given by Eq. (92) as

a1 = a10 + εa11,

a2 = a20 + εa21, (93)

λ = λ0 + ελ1,

where a10, a20, λ0 satisfy Eqs. (79), (80) and (84). Substituting Eq. (93) into the modulated equations and
expanding for small perturbed parts and keeping linear terms in a11, a21, λ1 leads to

a∗
11 = 2

γ2

8ω1
a10a20 sin λ0a11 + γ2

8ω1
a2

10
sin λ0a21 + γ2

8ω1
a2

10
a20 cos λ0λ1,

a∗
21 = −3

γ4

8ω2
a2

10
sin λ0a11 − γ4

8ω2
a3

10
cos λ0λ1,

a20λ
∗ =

(
2

(
9γ1

8ω1
− γ5

4ω2

)
a10a20 +

(
3γ2

8ω1
a2

20 − 3γ4

8ω2
a2

10

)
cos λ0

)
a11 (94)

+
(
σ + 3

(
3γ3

4ω1
− γ6

8ω2

)
a2

20 +
(

9γ1

8ω1
− γ5

4ω2

)
a2

10 + 3γ2

4ω1
a20a10 cos λ0

)
a21

− sin λ0

(
3γ2

8ω1
a10a2

20 − γ4

8ω2
a3

10

)
λ1.

The stability is determined by evaluating the eigenvalues of Eq. (94). The eigenvalues should not have
positive real parts to maintain stability. As an example, Fig. 5 shows the variation in the a1

a2
with σ

a2
2

. Variation

in the detuning parameter leads to either one, two, or three stable coupled modes. Since λ = 0 and λ = nπ, n =
1, 2, . . . correspond to the same solutions, here only the case of λ = 0 will be considered. Figure 6, 7, 8 rep-
resent the variation in real and imaginary parts of the eigenvalues versus detuning parameter for λ = 0. There
exists one stable coupled mode for σ

a2
2

≤ −55 and σ

a2
2

≥ 41, one stable coupled mode and two unstable coupled
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(a) (b)

Fig. 6 Variation in the eigenvalues of the first torsional coupled mode of a TWB with clamped-free torsional boundary conditions
versus σ/a2, a real part, b imaginary part. λ = 0, a77 = 16, 848 Nm2, a66 = 1, 050 Nm4, B = 34, 251 Nm4, Tz = 0, Ip =
0.434 kgm, Iww = 4 × 10−5 kgm3, L = 4 m

(a) (b)

Fig. 7 Variation in the eigenvalues of the second torsional coupled mode of a TWB with clamped-free torsional boundary condi-
tions versus σ/a2, a real part, b imaginary part. λ = 0, a77 = 16, 848 Nm2, a66 = 1, 050 Nm4, B = 34, 251 Nm4, Tz = 0, Ip =
0.434 kgm, Iww = 4 × 10−5 kgm3, L = 4 m

(a) (b)

Fig. 8 Variation in the eigenvalues of the third torsional coupled mode of a TWB with clamped-free torsional boundary conditions
versus σ/a2, a real part, b imaginary part. λ = 0, a77 = 16, 848 Nm2, a66 = 1, 050 Nm4, B = 34, 251 Nm4, Tz = 0, Ip =
0.434 kgm, Iww = 4 × 10−5 kgm3, L = 4 m
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modes exist when 40 ≤ σ

a2
2

≤ 41 or −55 ≤ σ

a2
2

≤ −51, three stable coupled modes exist when 38 ≤ σ

a2
2

≤ 40,

and two stable coupled modes and one unstable coupled mode exist for −51 ≤ σ

a2
2

≤ 38. Figure 5 shows that in

a specific level of detuning parameter, the uncoupled stable mode merged with the unstable coupled mode, and
the degenerate coupled mode has a multiplicity of two. In the corresponding detuning to amplitude squared
ratio, the eigenvalues of the stable coupled mode (Eq. (91)) become zero. Considering both the uncoupled and
coupled modes, the system possesses either two or four nonlinear modes.

From another point of view, the first mode, corresponding to the lower branch in Fig. 5, behaves as a center
for σ

a2
2
> −55 and experiences center-saddle bifurcation, when σ

a2
2

approaches to −55 from right. The second

mode, corresponding to middle branch in Fig. 5, behaves as a saddle point for −55 ≤ σ

a2
2

≤ 38, as a center for

38 ≤ σ

a2
2

≤ 40 and as an unstable focal point for 40 ≤ σ

a2
2

≤ 41. The third mode, corresponding to the upper

branch in Fig. 5, behaves as a center for σ

a2
2

≤ 41, and a center-focal bifurcation occurs at this point.

4 Conclusion

Nonlinear torsional vibrations of a thin-walled beam in the presence of warping effects are investigated. A two-
mode Galerkin method is used to discretize the governing differential equation. Then the method of multiple
scales is implemented as an approximate method for the time domain solution of the nonlinear equations.
Finally, the torsional nonlinear modes of the thin-walled beam in different torsional boundary conditions and
their stability are studied. It is shown that in the case of clamped–clamped torsional boundary condition, the
phases and the nonlinear frequencies are functions of the amplitudes, and the number of nonlinear normal
modes is equal to that of the linear normal modes. In the case of the clamped-free torsional boundary con-
dition, due to the relation between the first two natural frequencies, the cubic nonlinearity in the governing
differential equation leads to a three-to-one internal resonance. It is shown that in the case of three-to-one
internal resonance between the first and second modes, the beam may possess one stable uncoupled mode and
either one stable coupled mode, three stable coupled modes, two stable and one unstable coupled modes, or
one stable and two unstable coupled modes.
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