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Abstract This paper analyzes a class of nonconservative systems, whose Lagrangian equations can be reduced
to Euler–Lagrangian equations by introducing a new Lagrangian, which is equal to a product of some function
of time f (t) and the primary Lagrangian. These equations formally have the same form as for the systems
with potential forces, while the influence of nonconservative forces is contained in the factor f (t), and such
systems are called pseudoconservative. It is further shown that the requirement for a nonconservative system
to be considered as a pseudoconservative is the existence of at least one particular solution of a system of dif-
ferential equations with unknown function f (t), or their linear combination with suitably chosen multipliers.
Further on, the energy relations and corresponding conservation laws of those systems are analyzed from two
aspects: directly, on the basis of the corresponding Lagrangian equations and via modified Emmy Noether’s
theorem. So, it has been shown, even in two different ways, that there are two types of the integrals of motion,
in the form of the product of an exponential factor and the sum of the generalized energy (energy function) and
an additional term. For the existence of these integrals of motion, it is necessary and sufficient that there exists
at least one particular solution of a partial differential equation, which is in accordance with the Lagrangian
equations for the observed problem. The obtained results are equivalent to so-called energy-like conservation
laws, obtained via Vujanović-Djukić’s generalized Noether’s theorem for nonconservative systems (Vujanović
and Jones in: Variational Methods in Nonconservative Phenomena (monograph). Acad. Press, Boston, 1989).

1 Reduction of a nonconservative system to the pseudoconservative one

1.1 Lagrangian of the pseudoconservative system

Consider a nonconservative mechanical system, whose position is determined by the set of generalized coor-
dinates qi (i = 1, 2, . . . , n) and whose differential equations of motion are

d

dt

∂L

∂q̇ i
− ∂L

∂qi
= Q∗

i (i = 1, 2, . . . , n), (1.1)

where L(qi , q̇ i , t) = T − U is the Lagrangian of the system, T being the kinetic and U the potential energy,
and Q∗

i the generalized nonpotential forces. Now, define the following problem: find a new Lagrangian in the
form

L̃
(

qi , q̇ i , t
)

= f (t)L
(

qi , q̇ i , t
)
, (1.2)
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so that the system of Lagrangian equations (1.1) can be transformed into the system of Euler–Lagrangian
equations

d

dt

∂ L̃

∂q̇ i
− ∂ L̃

∂qi
= 0 (i = 1, 2, . . . , n), (1.3)

which is same or equivalent to the system of the primary Lagrangian equations (1.1), meaning it can be
reduced to (1.3) using only elementary transformations. When it is possible to find a new Lagrangian in the
form for systems (1.2), which enables the transformation from (1.1) to (1.3), we shall call this system as
pseudoconservative.

If we insert the expression (1.2) into the Lagrangian equations (1.3)

∂L

∂q̇ i

d f

dt
+

(
d

dt

∂L

∂q̇ i
− ∂L

∂qi

)
f = 0

and substitute the variational derivative by a corresponding expression from the Lagrangian equations (1.1),
we obtain

∂L

∂q̇ i

d f

dt
+ Q∗

i f = 0 (i = 1, 2, . . . , n). (1.4)

This system of n differential equations determines the function f (t), and let us remark that it does not depend
on the nature of the potential forces.

Accordingly, in order for a nonconservative system to be determined by the Lagrangian (1.2), it is necessary
and sufficient that there is at least one particular solution for the function f (t), which results from the system
of differential equations (1.4).

1.2 Analysis of this solution

This conclusion does not mean that the obtained function f (t) must satisfy each individual equation (1.4).
Namely, in the general case, the transformation from (1.1) to (1.3) represents the transformation of the starting
system of mutually dependent Lagrangian equations. Therefore, Eq. (1.4) represents the set of mutually depen-
dent requirements, each of which does not need to be satisfied by this function f (t). Only if each Lagrangian
equation (1.1) is individually transformed into the corresponding equation (1.3), independently from the oth-
ers, Eq. (1.4) represents the set of mutually independent requirements and in that case, this function f (t) must
satisfy each individual equation (1.4).

Let us emphasize that the only requirement in the so formulated problem is that the Lagrangian (1.2)
with the chosen function f (t) gives the system of the transformed Lagrangian equations (1.3), which is same
or equivalent to the system of the original Lagrangian equations (1.1). Therefore, the only criterion for the
correctness of the chosen function f (t) is the equivalence or even the identity of the so obtained system of
Lagrangian equations with the original system of these equations.

1.3 Direct determination of function f (t)

In the general case, there is not a single solution for all the differential equations (1.4), which satisfies all these
equations. Namely, if any of these equations is solved by separation of variables,

d f

f
= − Q∗

i

∂L/∂q̇ i
dt,

and then by integration, it follows that

f (t) = Ce
− ∫ Q∗

i
∂L/∂q̇i dt

. (1.5)

In the general case, this expression will not be a function only of time and does not satisfy all other equations
(1.4), except in the following cases: for n = 1 if the expression Q∗/(∂L/∂q̇) is constant, and for n > 1 if
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this expression is same for all the generalized coordinates, Q∗
i /(∂L/∂q̇ i ) = const ≡ −2k. In both cases, this

expression (1.5) simplifies, and for C = 1 becomes

f (t) = e2kt (for n � 1), (1.6)

and represents one particular solution of the system of equations (1.4). Note that in the second case all the
equations (1.4) in fact are reduced only to one.

Example 1 A nonlinear oscillator in a resisting medium with linear damping, when the forces F1 =
−mω2x, F2 = −mbxn and F∗ = −2mkẋ act on this oscillator. In this case, the Lagrangian and nonpo-
tential force are

L(x, ẋ, t) = T − U = 1

2
mẋ2 − 1

2
mω2x2 − mb

n + 1
xn+1, Q∗ = −2mkẋ, (1.7)

and the corresponding equation (1.4) for q = x has the form

mẋ
d f

dt
− 2mkẋ f = 0. (1.8)

Hence, as in the case when the nonlinear force is absent, one particular solution of this equation is f (t) = e2kt ,
and the corresponding new Lagrangian according to (1.2) is

L̃
(

qi , q̇ i , t
)

= f (t)L
(

qi , q̇ i , t
)

= e2kt
(

1

2
mẋ2 − 1

2
mω2x2 − mb

n + 1
xn+1

)
. (1.9)

For b = 0, it is reduced to the Lagrangian of the usual linear oscillator in a resisting medium with linear
damping (see [1], p. 51).

1.4 Hamiltonian formalism

If there is at least one particular solution for the function f (t), one can switch from Lagrangian to Hamiltonian
formalism by introducing the generalized momenta

p̃i = ∂ L̃

∂q̇ i
= f (t)

∂L

∂q̇ i
(i = 1, 2, . . . , n). (1.10)

Then, the corresponding Hamiltonian (or canonical) equations can be obtained in a usual manner (see e.g.,
Goldstein [2] or Whittaker [3]). For example, starting from

δ L̃ = ∂ L̃

∂qi
δqi + ∂ L̃

∂q̇ i
δq̇ i ,

where summation over the repeated indices is understood, substituting ∂L/∂qi by the corresponding expression
from the Lagrangian equations (1.3) and putting p̃iδq̇ i = δ

(
p̃i q̇ i

) − q̇ iδ p̃i , it follows that

δ( p̃i q̇i − L̃) = − ˙̃piδqi + q̇ iδ p̃i . (1.11)

Then, by comparing it with the variation of the expression in the brackets, denoted by H̃ , we obtain

˙̃pi = −∂ H̃

∂qi
, q̇ i = ∂ H̃

∂ p̃i
(i = 1, 2, . . . , n), (1.12)

where a new Hamiltonian is defined as

H̃
(

qi , p̃i , t
)

= p̃i q̇
i − L̃

(
qi , q̇ i , t

)
= f (t)H

(
qi , pi , t

)
. (1.13)

Consequently, if there is one particular solution for function f (t), with the Lagrangian introduced in such
manner, the Lagrangian and Hamiltonian equations formally have the same form as for the systems with
potential forces (without term Q∗

i ), while the influence of the nonconservative forces is contained in the factor
f (t). In that sense, the observed nonconservative system can be treated as a pseudoconservative one, and it is
completely determined by a new Lagrangian (1.2).

This proof is formally same as in the usual formulation of mechanics, but here L̃, p̃i and H̃ take the role
of L , pi and H , multiplied by f (t). However, each step in the usual proof remains valid here too, due to the
fact that the function f is a function only of time, and this will be valid for all other proofs that follow.
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1.5 The general case of pseudoconservative systems

At the end, let us note that, in the general case, the function f could also depend on the generalized coordinates,
and thus, instead of (1.2), we have

L̃
(

qi , q̇ i , t
)

= f (qi , t)L
(

qi , q̇ i , t
)
. (1.14)

In that case, by inserting this expression into the Lagrangian equations (1.3), the following system of the partial
differential equations for determining the function f is obtained:

Ek
i

∂ f

∂qk
+ ∂L

∂q̇ i

∂ f

∂t
+ Q∗

i f = 0 (i = 1, 2, . . . , n), (1.15)

where

Ek
i = ∂L

∂q̇ i
q̇k − δk

i L , (1.16)

which could include more complex cases, such as when Q∗
i = k(q̇ i )2. Let us note that for k = i the coefficient

Ek
i represents the generalized energy of the system. However, due to the significantly greater complexity of

this problem, and due to the absence of these cases in real circumstances, in this paper we shall limit ourselves
to those pseudoconservative systems in which function f only depends on time.

2 Indirect determination of function f (t)

2.1 Formation of combined equation for the function f (t)

When n > 1 and when a particular solution for function f (t) cannot be found through direct solution of the
system of differential equations (1.4), we shall do the following. Consider a linear combination of Eq. (1.4) in
the form

(
∂L

∂q̇1 + λ j−1
∂L

∂q̇ j

)
d f

dt
+ (Q∗

1 + λ j−1 Q∗
j ) f = 0 ( j = 2, 3, . . . , n), (2.1)

where λ j−1 ( j = 2, 3, . . . , n) are the corresponding multipliers. Let us choose those multipliers in such a way
that this equation is simplified as much as possible and introduce an additional requirement: the function f (t)
must not depend on the nature of the problem.

For natural mechanical systems, where the kinetic energy is a quadratic function of the generalized veloc-
ities, the coefficient multiplying d f/dt is their linear function. Hence, one can see that this equation will have
the solutions for the function f (t) not dependent on the nature of the problem only if the quantities Q∗

i are of
the same type, that is, of the form Q∗

i = ki j q̇ j (necessary requirement). In that case, choose the multipliers
λ j−1 so that the coefficients associated with the same q̇ j ( j = 2, 3, . . . , n) in the terms multiplying d f/dt
and f are equal. Thus, n − 1 equations are obtained, from which all the multipliers λ j−1 can be determined.
Further, by inserting the so obtained expressions in Eq. (2.1), it gets the form

A
(

qi , q̇1, t
) d f

dt
+ B

(
qi , q̇1, t

)
f = 0, (2.2)

where A and B are the corresponding coefficients obtained in this way.
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2.2 More complex systems

For more complex, unnatural systems, where the Lagrangian L can be any function of variables qi , q̇ i and t
with or without quantities analogous to Q∗

i (see e.g., [1]), the following can be done. In the first case, when
the quantities Q∗

i are present, using this method, only the variables q̇ j ( j = 2, 3, . . . , n) can be eliminated,
but some more complex terms such as the terms of the type (q̇ i )2 or (q̇ i )3 remain. Then, instead of Eq. (2.2),
the result will be the equation of the same form, but with the coefficients that also depend on the variables that
could not be eliminated,

A
[
qi , q̇1, t; (q̇ i )2, . . .

] d f

dt
+ B

[
qi , q̇1, t; (q̇ i )2, . . .

]
f = 0. (2.3)

2.3 Sufficient requirement for pseudoconservative systems

In order to simplify the transformed equation (2.2) or (2.3) as much as possible, and to obtain the solutions
that are independent from the nature of the problem, it is sufficient that the coefficient B is proportional to the
coefficient A,

B
(

qi , q̇1, t, . . .
)

= K A
(

qi , q̇1, t, . . .
)
, (2.4)

regardless of the values of variables qi , q̇1, t, . . .. In that case, the differential equation (2.2) or (2.3) takes a
simple form,

d f

dt
+ K f = 0, (2.5)

from which for K = −2k one particular solution can be obtained by separation of variables,

d f

f
= 2kdt,

and then by integration

f (t) = e2kt . (2.6)

This result is same as the one obtained directly by solving the system of differential equations (1.4), and it has
the form (1.6), and then the new Lagrangian (1.2) is

L̃
(

qi , q̇ i , t
)

= e2kt L
(

qi , q̇ i , t
)
. (2.7)

If the coefficient B is not proportional to the coefficient A, that is, if B �= K A, then the particular solution of
Eqs. (2.2) or (2.3), which satisfies the required conditions, does not exist. Therefore, in that case, the observed
nonconservative system cannot be reduced to a pseudoconservative one.

Therefore, the sufficient requirement for a nonconservative system to be treated as a pseudoconservative is
the existence of at least one particular solution of the system of differential equations (1.4) or of the combined
equation (2.1), which does not depend on the nature of the problem. In the second case, this is true only if this
equation, transformed into the form (2.2) or (2.3), satisfies the requirement (2.4).

Example 2 A linear oscillator in a resisting medium on an inclined plane, which is moving in the horizontal
direction according to the law xA = V t (Fig. 1).

In this case, we want to determine the position of this oscillator in a more complete way, namely with respect
to the immobile frame of reference Oxyz. This is different from the usual employment of the generalized coor-
dinates for the rheonomic systems and corresponds to the theory of the extended Lagrangian formalism for
those systems [4,5]. Namely, in the usual way, the generalized coordinates applied to those systems always
refer to a moving frame of reference. But, according to this theory, the generalized coordinates must be such that
they determine the position of the considered mechanical system with respect to the same frame of reference
(an immobile one) to which all the dynamical quantities as well as the energy laws refer to. This implies that
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Fig. 1 A linear oscillator in a resisting medium on a moving inclined plane

it is necessary to extend the set of the chosen generalized coordinates by the additional ones, which determine
the position of this moving frame of reference with respect to the immobile Oxyz. But, they are certain a
priori given functions of time, suggested by the considered problem, which limit the motion of this rheonomic
system.

These are the fundamental ideas of the extended Lagrangian formalism for the rheonomic systems. Since
in this formulation all the quantities refer to the same frame of reference, the corresponding energy laws are
more general and more natural than in the standard Lagrangian formulation for such systems, including the
influence of the nonstationary constraints on the energy relations.

In this case, we can determine the position of the oscillator on the inclined plane by the generalized coor-
dinate q1 = ρ = AM , presented in the Figure. The position of the corresponding moving frame of reference
Ax ′y′z′ with respect to Oxyz is determined by the quantity xA = O A, and therefore, it needs to be taken as
the additional generalized coordinates q2 = xA. But, according to the formulation of this problem, the motion
of this oscillator is limited by the fact that the point A in each instant must satisfy the relation xA = V t ;
therefore, this quantity is an a priori given function of time q2 ≡ q0 = xA = V t , so that the complete set of the
extended generalized coordinates is qα = {ρ, q0(t)}. However, then, the corresponding Lagrangian equations
for ρ and q0 determine only the first generalized coordinate ρ, while the second one has an a priori given
solution q0 = V t .

According to the figure, we have that

x = q0 − ρ cos α, y = ρ sin α, z = 0,

�r = −−→
O M = q0�ex + ρ�eρ,

(2.8)

where �ex and �eρ are unit vectors along the x axis and ρ axis, and therefore the kinetic energy of this oscillator is

T = 1

2
m

(
ẋ2 + ẏ2 + ż2) = 1

2
m

(
ρ̇2 − 2ρ̇q̇0 cos α + q̇2

0

)
,

and its Lagrangian

L = T − U = 1

2

(
ρ̇2 − 2ρ̇q̇0 cos α + q̇2

0

) − 1

2
mω2(ρ − ρ0)

2. (2.9)

In this case, the nonpotential forces are

Q∗
ρ = �F∗ · ∂�r

∂ρ
= −2mkρ̇, Q∗

q0
= �F∗ · ∂�r

∂q0
= 2mkρ̇ cos α, (2.10)

and thus the corresponding Lagrangian equations (1.1) have the form

e1 : d

dt
(mρ̇ − mq̇0 cos α) + mω2(ρ − ρ0) = −2mkρ̇,

e2 : d

dr
(mq̇0 − mρ̇ cos α) = 2mkρ̇ cos α.

(2.11)



Analysis of a class of nonconservative systems 2123

Since in this case the system of equations (1.4)

(mρ̇ − mq̇0 cos α)
d f

dt
− 2mkρ̇ f = 0,

(mq̇0 − mρ̇ cos α)
d f

dt
+ 2mkρ̇ cos α f = 0

(2.12)

does not have a solution for the function f (t), which satisfies both of these equations, we shall formulate the
corresponding equation (2.1)

(
∂L

∂ρ̇
+ λ

∂L

∂q̇0

)
d f

dt
+ (Q∗

ρ + λQ∗
q0

) f = 0,

which, after substituting L , Q∗
P and Q∗

Q by the corresponding expressions (2.9) and (2.10) and some rear-
rangement, becomes

[mρ̇(1 − λ cos α) + mq̇0(λ − cos α)]d f

dt
− 2mkρ̇(1 − λ cos α) f = 0. (2.13)

Now, choose the multiplier λ so that the coefficient associated with q̇0 be zero: λ − cos α = 0, which results
in λ = cos α, and then the previous equation takes the form

mρ̇ sin2 α︸ ︷︷ ︸
A(ρ,ρ̇,t)

·d f

dt
−2 kmρ̇ sin2 α︸ ︷︷ ︸

B(ρ,ρ̇,t)

· f = 0.

Hence, it is clear that B = −2k A, so the requirement (2.4) is satisfied and the previous equation is reduced to
a form which does not depend on the nature of the problem,

d f

dt
− 2k f = 0. (2.14)

This equation coincides with (2.5), for K = −2k, thus its particular solution for the function f is f (t) = e2kt ,
in accordance with (2.6), and the new Lagrangian will be

L̃(ρ, ρ̇, t) = e2kt
[

1

2
m(ρ̇2 − 2ρ̇q̇0 cos α + q̇2

0 ) − 1

2
mω2(ρ − ρ0)

2
]
. (2.15)

The correctness of the obtained solution can be verified by forming a new system of Lagrangian equations
(1.3) with this Lagrangian,

d

dt

∂ L̃

∂ρ̇
− ∂ L̃

∂ρ
= 0,

d

dt

∂ L̃

∂q̇0
− ∂ L̃

∂q0
= 0,

which, upon introduction of the expression for L̃ and some rearrangement, results in

e∗
1 : 2k(mρ̇ − mq̇0 cos α) + (mρ̈ − mq̈0 cos α) + mω2(ρ − ρ0) = 0,

e∗
2 : 2k(mq̇0 − mρ̇ cos α) + (mq̈0 − mρ̈ cos α) = 0.

(2.16)

This system of equations is equivalent to the primary system of the Lagrangian equations (2.11), since by using
only elementary transformations it can be transformed into (2.11). Namely, with the introduced notations for
the Eqs. in (2.11) and (2.16), we have e∗

1 + e∗
2 cos α = e1 + e2 cos α and e∗

2 + e∗
1 cos α = e2 + e1 cos α, which

proves that the considered mechanical system indeed can be considered as pseudoconservative.
In this way, it is demonstrated how one can resolve the question whether the considered system is pseudo-

conservative in the sense of the definition of such systems.
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3 Energy laws of pseudoconservative systems

3.1 Energy change law

In further exposition, let us assume that all these requirements are satisfied and that the observed nonconser-
vative system can be treated as a pseudoconservative one. Now, we shall analyze the energy relations of these
systems, and to this aim, let us start from the Lagrangian equations (1.3), multiply them by dqi = q̇ i dt , and
sum them up,

d

(
∂ L̃

∂q̇ i

)
q̇ i − ∂ L̃

∂qi
dqi = 0. (3.1)

This relation can be transformed in the following way:

d

(
∂ L̃

∂q̇ i
q̇ i

)
− ∂ L̃

∂q̇ i
dq̇ i − ∂ L̃

∂qi
dqi = d

(
∂ L̃

∂q̇ i
q̇ i

)
−

(
dL̃ − ∂ L̃

∂t
dt

)
= 0,

which after grouping similar terms and dividing by dt obtains the form

d

dt

(
∂ L̃

∂q̇ i
q̇ i − L̃

)
= −∂ L̃

∂t
. (3.2)

This is the general energy change law for pseudoconservative systems, which formally has the same form
as for the systems with potential forces.

3.2 Discussion of this result

Since, according to (2.7)

∂ L̃

∂t
= ∂

∂t
(e2kt L) = e2kt

(
∂L

∂t
+ 2kL

)
,

then, according to the structure of ∂ L̃/∂t , there are three possible options:

(a) If

∂ L̃

∂t
= 0 ⇔ ∂L

∂t
+ 2kL = 0, (3.3)

then the integral of motion is valid in the form

E = ∂ L̃

∂q̇ i
q̇ i − L̃ = e2kt

(
∂L

∂q̇ i
q̇ i − L

)
= const. (3.4)

(b) If ∂ L̃/∂t can be expressed in the form

∂ L̃

∂t
= d

dt

[
e2ktϕ(qi , q̇ i , t)

]
, (3.5)

then the relation (3.2) is reduced to

d

dt

[
e2kt

(
∂L

∂q̇ i
q̇ i − L + ϕ

(
qi , q̇ i , t

))]
= 0,

which implies that the integral of motion is valid in the form

Eext = e2kt
[

∂L

∂q̇ i
q̇ i − L + ϕ(qi , q̇ i , t)

]
= const. (3.6)

(c) If ∂ L̃/∂t is neither zero nor it can be presented in the form (3.5), then there does not exist any integral of
motion of this type.

The integrals of motion of the first and second type are specific for the considered systems, and their form
justifies the introduction of the name “pseudoconservative system”.
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3.3 Determination of the function ϕ(qi , q̇ i , t)

Necessary condition for the existence of the integrals of motion in the form (3.6) is the relation (3.5),

∂

∂t
(e2kt L) = d

dt

[
e2ktϕ

(
qi , q̇ i , t

)]
,

which can be represented as

2ke2kt L + e2kt ∂L

∂t
= 2ke2ktϕ + e2kt dϕ

dt
,

and, after canceling e2kt , we obtain the following relation:

dϕ

dt
+ 2kϕ = ∂L

∂t
+ 2kL . (3.7)

This equation determines the function ϕ, and it can be written explicitly as

q̇ i ∂ϕ

∂qi
+ q̈ i ∂ϕ

∂q̇ i
+ ∂ϕ

∂t
+ 2kϕ = ∂L

∂t
+ 2kL . (3.8)

This requirement in the form of a partial differential equation must be satisfied by the function ϕ, and for
each particular solution, there is an integral of motion of the type (3.6). Since for the considered problem no
specific requirement has been introduced, the corresponding Lagrangian equations (1.1) must be added to this
equation,

d

dt

∂L

∂q̇ i
− ∂L

∂qi
= Q∗

i (i = 1, 2, . . . , n). (3.9)

Consequently, the necessary and sufficient requirement for the existence of the integrals of motion of type
(3.6) is the existence of at least one particular solution of the partial differential equation (3.8) for the function
f , such that is in accordance with the corresponding Lagrangian equations (3.9). Such integrals of motion are
equivalent to so-called energy-like conservation laws, obtained by applying Vujanović-Djukić’s generalized
Noether’s theorem ([1], pp. 118–120, [6]), while the so formulated requirement is equivalent to their require-
ment for the existence of at least one particular solution of the corresponding so-called generalized Killing’s
equations.

Example 3 For a nonlinear oscillator in a resisting medium with linear damping, defined by (1.7), the equation
for determining the function ϕ (3.8) has the form

ẋ
∂ϕ

∂x
+ ẍ

∂ϕ

∂ ẋ
+ ∂ϕ

∂t
+ 2kϕ = 2kL , (3.10)

because of ∂L/∂t = 0, and the Lagrangian equation (3.9) for this oscillator is

mẍ + mω2x + mbxn = −2mkẋ .

If in the previous relation (3.10) we substitute ẍ by the corresponding expression from this equation and the
Lagrangian L by the expression (1.7), it becomes

ẋ
∂ϕ

∂x
+ (−ω2x − bxn − 2kẋ)

∂ϕ

∂ ẋ
+ ∂ϕ

∂t
+ 2kϕ

= 2k

(
1

2
mẋ2 − 1

2
mω2x2 − mb

n + 1
xn+1

)
.

(3.11)

A particular solution of this equation must contain a term, which is linear with respect to x and ẋ , because x2

and ẋ2 appear in the right-hand side of (3.11), and also an additional term, which depends only on x because
of the last term in (3.11)

ϕ(x, ẋ) = Ax ẋ + B(x). (3.12)
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If in the relation (3.11) we substitute ϕ by this expression, we obtain

ẋ

(
Aẋ + dB

dx

)
+ (−ω2x − bxn − 2kẋ) · Ax+

2k [Ax ẋ + B(x)] = mkẋ2 − mkω2x2 − 2mbk

n + 1
xn+1,

which will be satisfied if

A = mk, ẋ
dB

dx
− Abxn+1 + 2k B = −2mkb

n + 1
xn+1, (3.13)

and the second relation can be written in the form

dB

dt
+ 2k B = mkb

(
1 − 2

n + 1

)
xn+1. (3.14)

Then, a solution of this linear differential equation (with the integration constant zero) is

B(t) = e−2kt mkb

(
1 − 2

n + 1

) ∫
xn+1(t)e2kt dt, (3.15)

and the corresponding particular solution ϕ(t) is the sum of this expression and the term mkx ẋ .
Therefore, all the requirements for the existence of the integrals of motion of the type (3.6) are satisfied,

and having in mind that

∂L

∂ ẋ
ẋ − L = 1

2
mẋ2 + 1

2
mω2x2 + mb

n + 1
xn+1,

it follows that the corresponding energy-like conservation law is valid in the form

Eext = e2kt
[

1

2
mẋ2 + 1

2
mω2x2 + mb

n + 1
xn+1 + ϕ(x, ẋ)

]
= const, (3.16)

where

ϕ(x, ẋ) = mkx ẋ + e−2kt mkb

(
1 − 2

n + 1

) ∫
xn+1(t)e2kt dt. (3.17)

For a special case b = 0, when this nonlinear oscillator becomes the usual linear oscillator, this result will be
reduced to the energy-like conservation law for the usual oscillator with linear damping,

Eext = e2kt
(

1

2
mẋ2 + 1

2
mω2x2 + mkx ẋ

)
= const, (3.18)

(compare with [1], pp. 97–100). But, for k = 0, when ϕ = 0 as well, it reduces to the energy conservation law
for this nonlinear oscillator in the field of two potential forces,

E = 1

2
mẋ2 + 1

2
mω2x2 + mb

n + 1
xn+1 = const. (3.19)

Example 4 A linear oscillator in a resisting medium, on an inclined plane, which is moving in the horizontal
direction according to the law xA = V t (continuation of Example 2).

Here, Eq. (3.8) for determining the function ϕ has the following form:

ρ̇
∂ϕ

∂ρ
+ q̇0

∂ϕ

∂q0
+ ρ̈

∂ϕ

∂ρ̇
+ q̈0

∂ϕ

∂q̇0
+ ∂ϕ

∂t
+ 2kϕ = 2kL , (3.20)

because of ∂L/∂t = 0, and the Lagrangian is given by the expression (2.9), that is,

L = 1

2
m(ρ̇2 − 2ρ̇q̇0 cos α + q̇2

0 ) − 1

2
mω2(ρ − ρ0)

2,
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which suggests the introduction of the quantity

η = (ρ − ρ0) − q0 cos α ⇒ η̇ = ρ̇ − q̇0 cos α. (3.21)

Since

η̇
∂ϕ

∂η
=

(
∂η

∂ρ
ρ̇ + ∂η

∂q0
q̇0

)
∂ϕ

∂η
= ρ̇

∂ϕ

∂ρ
+ q̇0

∂ϕ

∂q0
,

and a similar relation is valid for η̈(∂ϕ/∂η̇), it follows that the previous relation (3.20) takes the more concise
form

η̇
∂ϕ

∂η
+ η̈

∂ϕ

∂η̇
+ ∂ϕ

∂t
+ 2kϕ = 2kL . (3.22)

By means of the relation (3.21), putting ρ − ρ0 = η + q0 cos α, this Lagrangian (2.9) can be expressed as a
function of η and η̇ as

L = 1

2
m(η̇2 − ω2η2) + 1

2
m

(
q̇2

0 sin2 α − 2ω2ηq0 cos α − ω2
0q2

0 cos2 α
)
.

If we insert an a priori given solution q0 = V t for the second generalized coordinate in this expression, its
second term can be represented in the form d

dt (. . . ), where the expression in the brackets is some function
only of time. Here, let us note that the Lagrangians that differ only for a term in the form of a time derivative
of some function are equivalent, that is, they give the same Lagrangian equations. Therefore, if we omit the
last term in the previous expression, we get the equivalent Lagrangian

Leq = 1

2
mη̇2 − 1

2
mω2η2. (3.23)

The results obtained in this way, namely Eq. (3.22) and the Lagrangian (3.23), differ from the correspond-
ing equation (3.10) and the Lagrangian in the previous example for b = 0 only by the presence of η instead of
x . This suggests that the corresponding generalized nonpotential force, associated with this complex problem
and expressed through η, needs to be Q∗

η = −2mkη̇. Namely, if we transform this expression by means of
(3.20) as

Q∗
η = −2mkη̇ = −2mk

(
∂η

∂ρ
ρ̇ + ∂η

∂q0
q̇0

)
= −2mkρ̇ + 2mk cos α q̇0,

and put an a priori given solution q0 = V t in this expression, the second term becomes constant, which is
not important for the considered problem. Thus, Q∗

η can be considered as equivalent generalized nonpoten-
tial force, which corresponds to the unique given nonpotential force Q∗

ρ = −2mkρ̇, and the corresponding
Lagrangian equation for η according to (3.23) will be

d

dt

∂L

∂η̇
− ∂L

∂η
= −2mkη̇. (3.24)

If we write this expression explicitly,

mη̈ + mω2η = −2mkη̇,

and in the relation (3.22) substitute η̃ by the corresponding expression from this equation and L by the expres-
sion (3.23), it obtains the form

η̇
∂ϕ

∂η
+ (−ω2η − 2kη̇)

∂ϕ

∂η̇
+ ∂ϕ

∂t
+ 2kϕ = 2k

(
1

2
mη̇2 − 1

2
mω2η2

)
. (3.25)

This relation is identical in the form to the relation (3.11) for b = 0, having η instead of x . Therefore, one
particular solution of this partial differential equation analogously to (3.17) is

ϕ(η, η̇, t) = mkηη̇, (3.26)
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which can be verified also directly by inserting this expression in the previous relation. Thus, the corresponding
integral of motion can be immediately obtained by substituting x by η in the relation (3.18),

Eext = e2kt
(

1

2
mη̇2 + 1

2
mω2η2 + mkηη̇

)
= const. (3.27)

This is the energy-like conservation law, which coincides with the corresponding integral of motion in the
extended Lagrangian formalism for the rheonomic systems (Mušicki [5]).

This example illustrates how one can obtain the energy-like conservation laws, by finding only one par-
ticular solution of the partial differential equation (3.8). This method is simpler and more practical than the
method based on the Vujanović–Djukić’s generalized Noether’s theorem.

4 Noether’s theorem for pseudoconservative systems

4.1 Total variation in action

Another approach to the analysis of the energy relations is possible by means of Emmy Noether’s theorem,
which is based on the total variation in the action. In this aim, let us start from its definition

ΔW =
t̄1∫

t̄0

L̃(q̄ i , ˙̄qi , t̄)dt̄ −
t1∫

t0

L̃(qi , q̇ i , t)dt (4.1)

where

q̄ i = qi + Δqi , ˙̄qi = q̇ i + Δq̇ i , t̄ = t + Δt, (4.2)

and then apply the same procedure as in the usual formulation of mechanics. Namely, we can approximate the
first integral by the integral in the interval (t0, t1), then develop the function L̃(q̄ i , ˙̄qi , t̄) in Taylor’s series and
express it as a function of Δqi and Δt , and afterward ignore all the infinitesimal quantities of higher order. In
this way, the total variation in the action obtains the following form (see e.g., Dobronravov [7], pp. 142–146)

ΔW =
t1∫

t0

{
d

dt

[
∂ L̃

∂q̇ i
(Δqi − q̇ iΔt) + L̃Δt

]

+
(

∂ L̃

∂qi
− d

dt

∂ L̃

∂q̇ i

)
(Δqi − q̇ iΔt)

}
dt,

(4.3)

This formula has the same form as in the usual formulation of mechanics with only one difference that L̃ is
present instead of L , but let us emphasize that nevertheless every step in proving this formula in the usual
formulation of mechanics in this process is valid too.

4.2 Modified Emmy Noether’s theorem

Based on this result and due to the simplified form of the Lagrangian equations (1.3), and following the proce-
dure in the usual formulation, it is possible to formulate the corresponding Emmy Noether’s theorem for the
pseudoconservative systems as well. Now, take the total variations Δqi and Δt in the following form:

Δqi = qi − qi = εmξ i
m(qk, q̇k, t), Δt = t̄ − t = εmξ0

m(qk, q̇k, t), (4.4)

where Em (m = 1, 2, . . . , r) are arbitrary infinitesimal parameters. Here, it is assumed that these functions
can be dependent on the generalized velocities too, which is in accordance with Vujanović [1]. Let us choose
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these transformations so that the Hamilton’s action remains invariant (ΔW = 0) or it changes up to the gauge
term, in which case

ΔW =
t1∫

t0

Λ̇
(

qk, q̇k, t
)

dt, (4.5)

where Λ, the so-called gauge function, can be any function of qi , q̇ i and t , which includes the first case as
well for Λ = 0.

If ΔW is substituted by expression (4.3), after some rearrangement, we come to the relation

t1∫

t0

{
d

dt

[
∂ L̃

∂q̇ i
Δqi +

(
L̃ − ∂ L̃

∂q̇ i
q̇ i

)
Δt − Λ

]

+
(

∂ L̃

∂qi
− d

dt

∂ L̃

∂q̇ i

)
(Δqi − q̇ iΔt)

}
dt = 0,

and if we substitute Δqi and Δt by (4.4) and put Λ = εmΛm , we obtain

t1∫

t0

εm

{
d

dt

[
∂ L̃

∂q̇ i
ξ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ0

m − Λm

]

+
(

∂ L̃

∂q̇ i
− d

dt

∂ L̃

∂q̇ i

) (
ξ i

m − q̇ iξ0
m

)}
dt = 0.

(4.6)

This relation implies the following conclusion: If the Lagrangian equations for the pseudoconservative
systems (1.3) are satisfied, then the second term in this relation vanishes, and because of the arbitrariness of
the time interval (t0, t1) and the parameters εm , it follows that

Im = ∂ L̃

∂q̇ i
ξ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ0

m − Λm = const (m = 1, 2, . . . , r). (4.7)

Therefore, for every transformation of the generalized coordinate and time (4.4), which preserves the action
invariant or changes it up to the gauge term, there are r independent integrals of motion of the form (4.7). In
this way, by introducing the Lagrangian L̃ = e2kt L , Noether’s theorem becomes applicable to the pseudocon-
servative systems in the same form as for the systems with potential forces.

In order to find the transformations of the generalized coordinates and time (4.4) that satisfy the require-
ments of Noether’s theorem, B. Vujanović (see [1], pp. 80–83) transformed the requirement for the existence
of the integrals of motion (4.5) and expressed it in terms of the functions ξ i

m and ξ0
m (so-called basic Noether’s

identity). So, this problem was reduced to finding at least one particular solution for those functions that
satisfies the so formulated requirement or from it implied the generalized Killing’s equations.

The described procedure can be applied in this case as well, by generalizing it to multi-parameter transfor-
mations and by using only and consistently the total variations. To this aim, let us start form the requirement
(4.5) and transform the left-hand side in the following way:

ΔW =
t1∫

t0

Δ(L̃dt) =
t1∫

t0

[
ΔL̃ + L̃

d

dt
(Δt)

]
dt,

and, after writing explicitly the term ΔL̃ , this requirement (4.5) becomes

t1∫

t0

[
∂ L̃

∂qi
Δqi + ∂ L̃

∂q̇ i
Δq̇ i + ∂ L̃

∂t
Δt + L̃

d

dt
(Δt) − Λ̇

]
dt = 0. (4.8)
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If we apply the relation between the operations Δ and d/dt

Δq̇ i = d

dt
(Δqi ) − q̇ i d

dt
(Δt),

and after some rearrangement, the previous relation can be written in the form

t1∫

t0

[
∂ L̃

∂qi
Δqi + ∂ L̃

∂q̇ i

d

dt
(Δqi ) +

(
L̃ − ∂ L̃

∂q̇ i
q̇ i

)
d

dt
(Δt) + ∂ L̃

∂t
Δt − Λ̇

]
dt = 0. (4.9)

Now, if we substitute Δqi and Δt by (4.4) and put Λ = εmΛm , we obtain

t1∫

t0

εm

[
∂ L̃

∂qi
ξ i

m + ∂ L̃

∂q̇ i
ξ̇ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ̇0

m + ∂ L̃

∂t
ξ0

m − Λ̇m

]
dt = 0, (4.10)

from which, due to the arbitrariness of the time interval (t0, t1) and the parameters εm , it follows

∂ L̃

∂qi
ξ i

m + ∂ L̃

∂q̇ i
ξ̇ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ̇0

m + ∂ L̃

∂t
ξ0

m − Λ̇m = 0 (m = 1, 2, . . . , r). (4.11)

Therefore, if there is at least one particular solution of the system of equations (4.11) for the functions ξ i
m, ξ0

m
and Λm , then the requirement for the existence of the integrals of motion is satisfied and the corresponding
integrals of motion are given by the formula (4.7).

4.3 Discussion of the obtained result

Now, we shall analyze the possible forms of the integrals of motion (4.7), based on the requirements for their
existence (4.11). For this purpose, let us write this requirement in a more suitable form. Transform its first
term using the Lagrangian equations (1.3) in the following way:

∂ L̃

∂qi
ξ i

m = d

dt

(
∂ L̃

∂q̇ i

)
ξ i

m = d

dt

(
∂ L̃

∂q̇ i
ξ i

m

)
− ∂ L̃

∂q̇ i
ξ̇ i

m,

and instead of function ξ i
m introduce new functions ϕ̃m(qk, q̇k, t) by

∂ L̃

∂q̇ i
ξ i

m = −Aϕ̃m(qk, q̇k, t). (4.12)

Hence, relation (4.11) takes the following form:

d

dt
(−Aϕ̃m) +

(
L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ̇0

m + ∂ L̃

∂t
ξ0

m − Λ̇m = 0, (4.13)

and represents the requirement for the existence of the integrals of motion in the equivalent form, expressed
in terms of ϕ̃m (instead of functions ξ i

m), ξ0
m and Λm .

Let us choose the functions ξ0
m and Λm in the form

ξ0
m = A = const, Λm = 0. (4.14)

Then, the previous relation (4.13) is simplified and reduced to

− dϕ̃m

dt
+ ∂ L̃

∂t
= 0, (4.15)
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from which we see that with such choice of ξ0
m and Λm all the functions ϕ̃m are equal (ϕm = ϕ). If we write

this relation in the usual formulation

d

dt
(e2ktϕ) − ∂

∂t
(e2kt L) = 0,

and represent the term dϕ/dt explicitly, after canceling e2kt , it obtains the form

q̇ i ∂ϕ

∂qi
+ q̈ i ∂ϕ

∂q̇ i
+ ∂ϕ

∂t
+ 2kϕ = ∂L

∂t
+ 2kL . (4.16)

This is the equation that determines the function ϕ, and it coincides with the previously obtained Eq. (3.8).
Accordingly, if there is at least one particular solution of this equation, then the requirement for the exis-

tence of integrals of motion is satisfied. In this case, the corresponding integrals of motion (4.7), based on
(4.12) and (4.14), have the form

Im = ∂ L̃

∂q̇ i
ξ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ0

m − Λm = −Aϕ̃ −
(

∂ L̃

∂q̇ i
q̇ i − L̃

)
A,

and this expression can be represented in the usual formulation as well, for example for A = −1 as

Im = ∂ L̃

∂q̇ i
q̇ i − L̃ + ϕ̃ = e2kt

(
∂L

∂q̇ i
q̇ i − L + ϕ

)
= const. (4.17)

In the special case when ∂ L̃/∂t = 0, from Eq. (4.15) it follows that dϕ̃/dt = 0 and hence ϕ̃ = C = const, so
the integral of motion (4.17) has the following form:

Im = ∂ L̃

∂q̇ i
q̇ i − L̃ + C = const,

that is,

I ′
m = ∂ L̃

∂qi
q̇i − L̃ = e2kt

(
∂L

∂q̇ i
q̇ i − L

)
= const. (4.18)

If the partial differential equation (4.16) does not have any particular solution for the function ϕ, the
observed pseudoconservative system does not have any integral of motion.

All these results are in complete accordance with the results from the analysis of the energy relations,
obtained by means of the corresponding Lagrangian equations for pseudoconservative systems (Chapter 3).

Example 5 For a nonlinear oscillator in a resisting medium with linear damping, defined by (1.7), the require-
ment for the existence of the integrals of motion can be taken in the form (4.11), but it is better to take it in the
equivalent and simpler form (4.13) for q = x ,

d

dt
(−Aϕ̃m) +

(
L̃ − ∂ L̃

∂ ẋ
ẋ

)
ξ̇0

m + ∂ L̃

∂t
ξ0

m − Λ̇m = 0. (4.19)

If again we take ξ0
m = A and Λm = 0, this relation is reduced to Eq. (4.16), and using the corresponding

equation of motion of this oscillator, it obtains the form

ẋ
∂ϕ

∂x
+ (−ω2x − bxn − 2kẋ)

∂ϕ

∂ ẋ
+ ∂ϕ

∂t
+ 2kϕ

= 2k

(
1

2
mẋ2 − 1

2
mω2x2 − mb

n + 1
xn+1

)
.

(4.20)
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This relation is identical to Eq. (3.11), where one particular solution is obtained in the form (3.17). Thus, the
corresponding integral of motion (4.17) will be given by (3.16) and (3.17),

Eext = e2kt
(

1

2
mẋ2 + 1

2
mω2x2 + mb

n + 1
xn+1 + mkx ẋ

)

+ mkb

(
1 − 2

n + 1

) ∫
xn+1(t)e2kt dt = const.

(4.21)

This energy-like conservation law for the considered nonlinear oscillator with linear damping has a similar
form as the corresponding ones in a special class of the pseudoconservative systems, where there appears some
time integral and which were elaborated by Vujanović and Jones by application of the Noether’s theorem ([1],
pp. 144–149).

Namely, in this monograph, they considered such systems for which it is possible, by suitable choice of
the function ξ i

m, ξ0
m and Λm , that the relation (4.11) is reduced to the form L̃(qi , q̇ i , t) − Λ̇m = 0 (with our

notation and terminology). Since in this case Λm = ∫
L̃(qi , q̇ i , t)dt , the corresponding integrals of motion

(4.7) are

Eext = ∂ L̃

∂q̇ i
ξ i

m +
(

L̃ − ∂ L̃

∂q̇ i
q̇ i

)
ξ0

m −
∫

L̃(qi , q̇ i , t)dt = const, (4.22)

and for the nonlinear oscillator with linear damping this integral of motion was (for m = 1)

I = e2kt
(

1

2
ẋ2 + 1

2
ω2x2 + b

n + 1
xn+1

)
+ 2k

∫
L̃(x, ẋ, t)dt = const. (4.23)

Our result (4.21) differs from (4.23) only by the sum of the term mkx ẋ and this time integral, but this is
not contradictory, since in general a partial differential equation does not have unique particular solutions. The
first integrand of motion (4.21) is obtained by the method of this theory, by finding a particular solution of the
partial differential equation (3.8), and the second one, the Vujanović–Jones’s integral of motion by means of
the modified Noether’s theorem. Although our integral is obtained by a quite different method, it is equally
valid as the second one. This proves the correctness and significance of this theory, and even an advantage and
applicability of our solution.

In addition, according to our opinion, the integral of motion (4.21) has some advantage, since it demon-
strates directly, through the time integral, the influence of the nonlinear force on the integral of motion. In
addition, for b = 0, the time integral in (4.21) vanishes and this energy-like conservation law immediately
reduces to (3.18), that is, to the corresponding one for the linear oscillator with linear damping. Contrary to
this, for b = 0, the time integral in (4.23) does not vanish and this energy-like conservation law will not be
reduced to (3.18), although it can be obtained in an indirect way, by means of two particular solutions of this
type. However, for k = 0, both integrals of motion, (4.21) and (4.23), reduce to the same form (4.19), that is,
to the energy conservation law for this nonlinear oscillator in the field of the potential forces.

5 Conclusions

(i) The pseudoconservative mechanical systems are defined as such systems for which it is possible to find
a new Lagrangian in the form L̃(qi , q̇ i , t) = f (t)L(qi , q̇ i , t), so that the system of their Lagrangian
equations (1.1) can be transformed into the equivalent system of Euler–Lagrangian equations (1.3). It
immediately implies that the form of their Lagrangian and Hamiltonian equations is same as for the
systems with potential forces, and the influence of the nonconservative forces is contained in the factor
f (t).

(ii) The resolution of the problem whether a nonconservative system can be treated as a pseudoconservative
one is reduced to finding at least one particular solution for the function f (t), which results from the
system of n differential equations (1.4). This can be realized by solving either directly this system of
equations or their linear combination (2.1), reduced to the form (2.2).
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(iii) The corresponding integrals of motion, valid under certain conditions and obtained by means of their
Lagrangian equations or using the modified Noether’s theorem, have an unusual form (3.4) or (3.6),
in which there exists a certain function ϕ(qi, q̇ i, t). The problem of the existence of such integrals of
motion is reduced to finding at least one particular solution of the partial differential equation (3.8)
for this function ϕ. So obtained integrals of motion are equivalent to so-called energy-like conservation
laws, which have been obtained by Vujanović and Djukić by means of the generalized Noether’s theorem
for the nonconservative systems [1].

(iv) The main advantage of this formulation of such nonconservative systems, which can be treated as
pseudoconservative, is that all the corresponding relations and equations formally have the same form
as for the systems with potential forces. Due to this property, the study and representation of such sys-
tems are simplified, as in the procedure of finding their integrals of motion, and some general relations
and laws can be represented in the form similar to the usual one, like the general principles of mechan-
ics. In addition, for such systems, it is possible to employ some methods that are not applicable to the
nonconservative systems, like the canonical transformations and Hamilton–Jacobi’s method, as it can
be shown.
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