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Abstract In the present work, the propagation of longitudinal stress waves along a nanoscale bar with initial
stress is investigated by using a unified nonlocal model with two length scale parameters. In principle, the
analysis of wave motion is based on Love rod theory including the effects of lateral deformation. However,
here are not ignored the contribution of shear stress components due to lateral deformations in the calculation
of total elastic strain energy. By applying Hamilton’s principle, the explicit general solution is obtained, and
comparative results containing the different effects are presented and discussed.

1 Introduction

The propagation of longitudinal stress waves in micro/nanostructural elements has been the subject of numer-
ous recent studies. When the classical continuum theories are applied to the analysis of these small structures,
they are found to be inadequate in the explanation of the size-dependent behavior. Therefore, the wave prop-
agation analysis in different structural elements (e.g. beam, rod, bar, plate, shell) having extremely small
overall dimensions can be investigated with the nonlocal continuum theories, which reflect the microstructural
features. The longitudinal stress waves in an infinite circular cylindrical rod made of an isotropic nonlocal
material were investigated [1]. The longitudinal wave propagation in a one-dimensional nanorod was studied
[2] using the Laplace transform technique under time-harmonic conditions. A detailed study on the dispersion
of longitudinal waves in single-walled armchair carbon nanotubes was presented in [3]. The group velocities of
longitudinal and flexural wave propagations in single- and multi-walled carbon nanotubes were studied [4] in
the frame of continuum mechanics. A unified model including both the classical gradient model and Eringen’s
integral model was developed [5] for the wave propagation in a nonlocal elastic material. The effects of initial
axial stress on wave propagation in SWNTs and DWNTs was investigated [6] using a generalized nonlocal
beam model. The transverse wave characteristics of carbon nanotubes was studied [7] using a generalized
gradient elasticity beam model. A nonlocal Euler–Bernoulli bar model was developed [8] for analyzing the
ultrasonic wave propagation in nanorods. The axial wave propagation of a double nanorod system was investi-
gated [9] using Eringen’s nonlocal elasticity theory. A nonlocal continuum model including the lateral inertia
effect, but without the initial stress effect, was developed [10] for analyzing the ultrasonic wave propagation
in nanorods. In [11], Eringen’s nonlocal elasticity theory was used to model the dispersion characteristics of
ultrasonic waves in a nanorod. A nonlocal Euler–Bernoulli bar model was developed [12] for constructing
a spectral finite element dynamic stiffness matrix of nanorods. Furthermore, a detailed study on nonlocal
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torsional vibration of nanorods can be found in [13]. The small-scale effect on the axial vibration of clamped–
clamped and clamped-free nanorods was studied in [14]. The size-dependent free vibration of nanotubes with
surface effects was investigated [15] using Love’s continuum model for longitudinal wave propagation. A
nonlocal elasticity solution for the longitudinal stress waves of bars was presented [16] based on the modified
couple stress theory [17], love rod model [18] and Kecs approach [19]. In the meantime, it should be mentioned
that for the nanoscale wave propagation, some interesting works that contain new dispersion and spectrum
relations can be found in [20–22].

The initial stresses occurring in micro- or nanostructures, particularly due to the different manufacturing
processes, are more important compared to other conventional structures, as mentioned in [23]. Current liter-
ature shows that the initial stress effects on the nanoscale wave propagation mostly have been studied using
the Bernoulli–Euler rod model. Therefore, in this work, the longitudinal stress waves for micro- or nanobars
are investigated under the initial stress (compressive or tensile) effect, in a more general frame. In the present
analysis, a unified nonlocal elasticity model is used, and the lateral deformation and the shear strain effects are
also considered. The aim of this work is to investigate more realistically the longitudinal stress waves under
the existing initial stress.

2 Basic equations and differential equations of motion

According to the basic hypotheses of the Love approach, the displacement field is expressed as

u = u (x, t) , v = −νy
∂u

∂x
and w = −νz

∂u

∂x
, (1)

where u, v and w are the x, y and z components of the displacement vector, respectively, and ν is the Poisson’s
ratio. The x axis is taken in the longitudinal direction of the microbar; y and z are the axes at the geometrical
centre of the cross-section.

For the displacement field specified by Eq. (1), the strains and stresses are conventionally obtained as

εx = ∂u

∂x
, εy = ∂v

∂y
= −ν

∂u

∂x
, εz = ∂w

∂z
= −ν

∂u

∂x
, γxy = ∂u

∂y
+ ∂v

∂x
= −νy

∂2u

∂x2 , (2)

γxz = 2εxz = ∂w

∂z
+ ∂u

∂z
= −vz

∂2u

∂x2 , γyz = 2εyz = ∂w

∂y
+ ∂v

∂z
= 0,

σxx = Eεx , σyy = σzz = 0, τxy = − E

2(1 + v)
vy

∂2u

∂x2 , τxz = − E

2(1 + v)
vz

∂2u

∂x2 , τyz = 0, (3)

where εx , εy and εz are the normal strains, γxy, γxz and γyz are the shear strains, σxx , σyy and σzz are the
normal stresses, τxy, τxz and τyz are the shear stresses and E is the elasticity modulus.

The differential equations of motion, taking into account the presence of initial stress, can be expressed as
follows [24,25]:

∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
− N0

A

∂2u

∂x2 = ρ
∂2u

∂t2 , (4)

∂τyx

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
− N0

A

∂2v

∂x2 = ρ
∂2v

∂t2 , (5)

∂τzx

∂x
+ ∂τzy

∂y
+ ∂σzz

∂z
− N0

A

∂2w

∂x2 = ρ
∂2w

∂t2 , (6)

where N0 is the axial initial force and A is the perpendicular cross-sectional area of the bar.

3 Unified nonlocal model and general solution

The unified nonlocal model used in the present analysis is based on combining the nonlocal integral model of
Eringen [26] and the gradient elasticity model [27–30]. This unified model [5,6 and 30] has been proposed as

(
1 − lm∇2) σi j = (

1 − ls∇2) (
λδi j εkk + 2G εi j

)
, (7)



A more general investigation for the longitudinal stress waves 2067

where lm and ls are the material constants in the nonlocal integral model and in the gradient elasticity model,
respectively. λ and G are Lamé constants, ∇2 (= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) is the Laplacian operator and δi j denotes
the Kronecker delta.

Using Eqs. (4)–(7), and after a few simple derivative operations, the existing stress components are obtained:

σxx = (1 + 2ν) l2
m

(
N0

A

∂3u

∂x3 + ρ
∂3u

∂x∂t2

)
+ E

(
∂u

∂x
− l2

s
∂3u

∂x3

)
, (8)

τxy = −νyl2
m

(
N0

A

∂4u

∂x4 + ρ
∂4u

∂x2∂t2

)
+ Eνy

2 (1 + ν)

(
l2
s
∂4u

∂x4 − ∂2u

∂x2

)
, (9)

τxz = −νzl2
m

(
N0

A

∂4u

∂x4 + ρ
∂4u

∂x2∂t2

)
+ Eνz

2 (1 + ν)

(
l2
s
∂4u

∂x4 − ∂2u

∂x2

)
, (10)

In the present analysis, the governing equation of longitudinal wave motion is deduced from Hamilton’s princi-
ple. Here, the total elastic strain energy including also the contribution of shear stress components is expressed
as in [19]:

U = 1

2

∫ ∫ ∫ (
σxxεxx + τxyγxy + τxzγxz

)
dV . (11)

The kinetic energy T is given by

T = 1

2
ρ

∫ ∫ ∫ (
u̇2 + v̇2 + ẇ2) dV . (12)

The potential energy V is given by

V = −1

2

L∫

0

N0

(
∂u

∂x

)2

dx . (13)

By putting Eqs. (8–10) into Eq. (11), the total elastic strain energy expression becomes

U = 1

2

L∫

0

{

(1 + 2ν) l2
m

(
N0

∂u

∂x

∂3u

∂x3 + ρ A
∂u

∂x

∂3u

∂x∂t2

)
+ E A

(
∂u

∂x

)2

− E Al2
s
∂u

∂x

∂3u

∂x3

+ l2
mν2 Ip

(
N0

A

∂2u

∂x2

∂4u

∂x4 + ρ
∂2u

∂x2

∂4u

∂x2∂t2

)
− Eν2 Ip

2 (1 + ν)

[

l2
s
∂2u

∂x2

∂4u

∂x4 −
(

∂2u

∂x2

)2
]}

dx, (14)

where Ip denotes the second polar moment.When considered the displacement field (1), the kinetic energy
expression becomes

T = 1

2

L∫

0

[

ρ A

(
∂u

∂t

)2

+ ρ ν2 Ip

(
∂2u

∂x∂t

)2
]

dx . (15)

By applying Hamilton’s principle (the Lagrangian function is L = T − U − V ), the governing equation of
motion is obtained as follows:

− ρ

E

∂2u

∂t2 +
(

1 − N0

AE

)
∂2u

∂x2 + (1 + 2ν) l2
m

(
N0

AE

∂4u

∂x4 + ρ

E

∂4u

∂x2∂t2

)

−l2
s
∂4u

∂x4 − ν2r2
0 l2

m

(
N0

AE

∂6u

∂x6 + ρ

E

∂6u

∂x4∂t2

)

− ν2r2
0

2 (1 + ν)

∂4u

∂x4 + l2
s

ν2r2
0

2 (1 + ν)

∂6u

∂x6 + ρ

E
ν2r2

0
∂4u

∂x2∂t2 = 0. (16)
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Associated boundary conditions are

[

(No − E A)
∂u

∂x
+ (E Al2

s + Eν2 Ip

2 (1 + ν)
− l2

m (1 + 2ν) No)
∂3u

∂x3 +
(

l2
mν2 Ip

No

A
− l2

s Eν2 Ip

2 (1 + ν)

)
∂5u

∂x5

−
(

ρ ν2 Ip +l2
m (1 + 2ν) ρ A

) ∂3u

∂x∂t2 + l2
m ρ ν2 Ip

∂5u

∂x3∂t2

]

|δu|L
0 = 0, (17.1)

[
1

2

(
l2
m (1 + 2ν) No − l2

s E A − Eν2 Ip

2 (1 + ν)

)
∂2u

∂x2

+
(

l2
s Eν2 Ip

2 (1 + ν)
− l2

mν2 Ip
No

A

)
∂4u

∂x4 − l2
mν2 Ip ρ

∂4u

∂x2∂t2

]
,

∣
∣δu′∣∣L

0 = 0, (17.2)
[

1

2

(
l2
s E A − l2

m (1 + 2ν) No
) ∂u

∂x
+ 1

2

(

l2
mν2 Ip

No

A
− l2

s Eν2 Ip

2 (1 + ν)

)
∂3u

∂x3

]
∣
∣δu′′∣∣L

0 = 0, (17.3)

[
1

2

(
l2
s Eν2 Ip

2 (1 + ν)
− l2

mν2 Ip
No

A

)
∂2u

∂x2

] ∣∣δu′′′∣∣L
0 = 0. (17.4)

In this study, a harmonic longitudinal wave propagating along the axial direction is assumed, and therefore its
propagation can be expressed in the complex form as

u = Ũeik(x−ct), (18)

where k denotes the wave number, c is the phase velocity and Ũ is the wave amplitude.
Substituting Eq. (18) into the governing equation (16), the corresponding general solution for the phase

velocity is obtained in dimensionless form as

c∗ =

√√√√
√

1 − γ +
(

ν2r2
0 k2

2(1+ν)

)
− γ k2l2

m

[
(1 + 2ν) + ν2r2

0 k2
] + l2

s k2

[
1 + ν2r2

0 k2

2(1+ν)

]

1 + ν2r2
0 k2 + k2l2

m

[
(1 + 2ν) + ν2r2

0 k2
] , (19)

where c∗ = c
c0

, c0 =
√

E
ρ , r0 =

√
Ip
A and γ = N0

AE . For a rod, the gyration radius r0 is given by (a/
√

2), where
a is the radius of rod.

The angular frequency is given by

ω = co

√√√
√√

(1 − γ ) k2 +
(

ν2r2
0 k4

2(1+ν)

)
− γ k4l2m

[
(1 + 2ν) + ν2r2

0 k2
] + l2s k4

[
1 + ν2r2

0 k2

2(1+ν)

]

1 + ν2r2
0 k2 + k2l2m

[
(1 + 2ν) + ν2r2

0 k2
] . (20)

The group velocity (cg = ∂ω
∂k ) can be obtained as

cg = co
1 − γ + 2a1k2 + [

3a2 + 2a1b1 − b2 (1 − γ )
]

k4 + 2a2b1k6 + a2b2k8

(
1 − γ + a1k2 + a2k4

)1/2 (
1 + b1k2 + b2k4

)3/2 , (21)

where

a1 = ν2r2
o

2 (1 + ν)
+ l2

s − γ l2
m (1 + 2ν) , a2 = l2

s
ν2r2

o

2 (1 + ν)
− γ l2

mν2r2
o ,

b1 = ν2r2
o + l2

m (1 + 2ν) , b2 = l2
mν2r2

o .
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4 Degenerate solutions and numerical results

In Figs. 1a, b, the dispersion curves based on the present nonlocal elasticity model including the lateral defor-
mation and shear strain effects for the rod with the initial stress are compared with those of the rod without
initial stress, for γ = −0.05 and γ = 0.05, respectively, where m = ls/ lm, lk is the dimensionless wave
number, c∗ denotes the dimensionless phase velocity for the initial stress case, and c∗(γ = 0) denotes the
dimensionless phase velocity for the initially stress—free state. The length scale parameters that are related
to the microstructure can be estimated from molecular dynamics or molecular mechanics simulations and
with the nonlocal theory. Eringen due to the different considerations proposed the values of lm as 0.39d and
0.31d [26], where d denotes the distance between the atoms. The value of lm was adopted as 0.39d, in [31],
following Eringen. In [32], the same parameter was identified as 0.82d. In [5], the optimal value of lm was
identified as 0.218d. The other length scale parameter ls was identified in [30] as d/

√
12, also the same value

was adopted in [33]. In [34], it was reported that the length scale parameter lm should be less than 2 nm. Dif-
ferent values of the nonlocal length scale parameters available in literature also can be found in [35]. Although
no sufficient information for the values of length scale parameters, they were taken into account to be the same
order of the carbon–carbon bond length, as in [6]. Since the accurate values of the length scale parameters
are not yet defined sufficiently, and furthermore, considering that they can take different values for different
cases (e.g. crystal structures, working conditions), the ratio m(= ls/ lm) was taken as the variable in numerical
calculations. In addition,the length scale parameter for the simple comparison aim is chosen as lm = l =
a/

√
96, and Poisson’s ratio ν is taken as 1/3. Again, for the simplicity, the parameter l was expressed depend-

ing on of the rod radius a. Figures 1a, b show that the effect of initial stress (tensile or compression) on the
dispersion curves is very unimportant for values of the scale length ratio m > 1.

By putting lm = ls = 0 in Eq. (19), the generalized local solution is obtained as

c∗ =

√√
√√
√

1 − γ +
(

ν2r2
0 k2

2(1+ν)

)

1 + ν2r2
0 k2

. (22)

The above local solution (22) may be regarded as generalized Kecs solution [19] for the rod with initial stress.
On other hand, two important limit cases can be obtained from the general solution. Firstly, for short

wavelengths (i.e. k → ∞), the general dispersion relation (19) is reduced to the following form:

c∗ =
√(

ls
lm

)2 1

2 (1 + ν)
− γ . (23)

Equation (23) shows that for shorts wavelengths, the general dispersion relation derived here including lateral
deformations and shear strains effects is not affected by the radius of the rod. It is clear that short waves will
exist for dimensionless initial loading parameter γ < 0 (i.e. tensile loading). On the contrary, for dimensionless

Fig. 1 Comparison of phase velocities based on the present solution via the initial stress presence, against the dimensionless wave
number, for the different values of the material length scale ratio m: a γ = −0.05, b γ = 0.05
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Fig. 2 Variation of the phase velocity based on the present solution in the case of short wave, against the material length scale
ratio m, for γ = −0.05, 0, 0.05

initial loading parameter γ > 0 (i.e. compressive loading), the short waves will exist as long as this inequality

is provided: γ <
(

ls
lm

)2
1

2(1+ν)
. It should be noticed that in the particular case ls = lm , scale effect is lost, and

thus, the solution will be obtained in terms of ν and γ . Furthermore, it is also seen that the phase velocity is
independent of the scale effect for ls = 0 (i.e. Eringen’smodel), and therefore a nonlocal solution cannot be
obtained for short waves. In addition, it must be also noticed that the local method gives a solution without
Poisson’s ratio only in terms of γ , and for the rod without the initial stress a solution cannot be obtained.
Figure 2 shows that by increasing the parameter m, the phase velocity increases always (i.e. with initial tensile
stress, initial compression stress and without initial stress cases).

Secondly, for long wavelengths (i.e. k → 0), the general dispersion relation (19) is reduced to the following
form:

c∗ = √
1 − γ . (24)

Equation (24) shows that for long wave lengths, generally both the local and nonlocal dispersion expressions
presented here will be identical.

When ignoring the contribution of the shear stress components in the calculation of the total elastic strain
energy, the governing equation of motion (16) is reduced to the following form:

− 1

c2
0

∂2u

∂t2 + ∂2u

∂x2 − N0

AE

∂2u

∂x2 + 1

c2
0

ν2r2
0

∂4u

∂x2∂t2

+ l2
m

(
N0

AE

∂4u

∂x4 + 1

c2
0

∂4u

∂x2∂t2 − ν2r2
0

N0

AE

∂6u

∂x6 − 1

c2
0

ν2r2
0

∂6u

∂x4∂t2

)

− l2
s
∂4u

∂x4 = 0, (25)

and the dispersion relation (19) is re-obtained in the following reduced form:

c∗
L =

√
1 − γ − γ k2l2

m(1 + ν2k2r2
0 ) + k2l2

s

1 + ν2k2r2
0 + k2l2

m

(
1 + ν2k2r2

0

) . (26)

The above dispersion relation may be regarded as the generalized Love dispersion relation and is denoted by
c∗

L . By setting ν = 0 in the above equation (26), the previous solution [6] is obtained as follows:

c∗ =
√

1 + l2
s k2

1 + l2
mk2 − γ , (27)

and when ν = γ = ls = 0, the other previous solution [8] is obtained.
In Figs. 3a, b, the dispersion curves based on the generalized nonlocal Love model for the rod with the

initial stress are compared to those of the rod without the initial stress; for γ = −0.05 and, γ = 0.05,
respectively, c∗

L denotes the dimensionless phase velocity for the initial stress case, and c∗
L (γ = 0) denotes

the dimensionless phase velocity without the initial stress case. Figure 3a shows that the initial stress effect
decreases the value of the phase velocity with increasing scale parameters ratio m(= ls/ lm), in the tensile
initial axial loading case. However, Fig. 3b shows that for the compressive initial axial load case, this effect is
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a

b

Fig. 3 Comparison of phase velocities based on the generalized Love rod solution via the initial stress presence, against the
dimensionless wave number, for the different values of the material length scale ratio m: a γ = −0.05, b γ = 0.05

very different. It can be seen from Eq. (26) that as the dimensionless wave number lk exceeds the critical value,
the phase velocity becomes imaginary. As stated clearly in [36,37], here the angular frequency (see Eq. (28))
also becomes imaginary, which corresponds to the exponential instability. In this case, the width of stationary
zone is determined by the critical wave length λcrit = 2π/kcrit. In Fig. 3b, the critical dimensionless wave
numbers (lk)crit for m(ls/ lm) = 0.5, 0.75, 1, 1.25 and 1.5 are obtained, respectively, as: 1.51636, 1.75469,
2.09352, 2.49851 and 2.94301.

When comparing Figs. 1 and 3, for the tensile initial axial load case, it can be concluded that the shear
strain effect for the phase velocity is significant for the values of the scale length ratio m (= ls/ lm) relatively
small (e.g. m = 0.5), and in particularly for high wave numbers. A comparison between Figs. 1b and 3b shows
that the present general model under compressive axial load has not encountered any critical wave number, in
the same range, contrary to the nonlocal Love model. This result is probably due to the negligence of the shear
strain effect.

For short wavelengths (i.e. k → ∞), the Love dispersion relation (26) is reduced to the following form:

c∗ = √−γ . (28)

Equation (28) shows clearly that the short waves only will exist for dimensionless initial loading parameter
γ < 0 (i.e. tensile loading), and contrary to the general solution (i.e. Eq. (23)), the result does not depend on
the scale parameters.

The angular frequency ωL becomes

ωL = co

√
(1 − γ ) k2 + −γ k4l2m

[
1 + ν2r2

0 k2
] + l2s k4

1 + ν2r2
0 k2 + k2l2m

[
1 + ν2r2

0 k2
] . (29)

The tensile initial axial load effect on the angular frequency is compared for the present general nonlocal, and
the nonlocal Love models, in Figs. 4a, b. γ is taken as 0.05, where ω̄ is the dimensionless angular frequency
and is defined as ω̄ = ωa/co.The comparison shows that this effect is crucial for the nonlocal Love model. In
particular for high values of the wave number and small values of the materials parameters ratio m (= ls/ lm),
this effect becomes more significant.

The group velocity cgL is obtained as

cgL = co
(1 − γ ) + 2

(
m2 − γ

)
l2k2 + (

2m2l2 + 2m2ν2r2
o − 5γ ν2r2

o

)
l2k4 − 2γ l2k6ν2r2

o

(
l2 + ν2r2

o

) − γ l4k8ν4r4
o√[

(1 − γ ) + (
m2 − γ

)
l2k2 − γ l2k4ν2r2

o

]
3
√[

1 + (
ν2r2

o + l2
)

k2 + l2k4ν2r2
o

] ,

(30)

where the subscript L denotes the Love rod model.
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a b

Fig. 4 Variations of the dimensionless angular frequencies against the dimensionless wave number a the present solution,
b the nonlocal Love solution, for γ = −0.05 (dashed line) and γ = 0 (solid line)

Fig. 5 Comparison of group velocities based on the present solution via the initial stress presence against the dimensionless wave
number for the different values of the material length scale ratio m, and γ = −0.05 a the present solution, b the nonlocal Love
solution

The tensile initial axial load effect on the group velocity is compared for the present general nonlocal and
the nonlocal Love models in Figs. 5a, b. γ is taken as 0.05. It can be seen from Fig. 5a that with increasing
parameter m, the tensile stress effect on the group velocity decreases significantly. In general, for small values
of the dimensionless wave numbers lk < 0.5, and for high values of lk > 2, this effect becomes less important.
Therefore, the obtained results from the current general nonlocal model show that the tensile initial stress effect
on the group velocity is not significant in general. It can be seen from Fig. 5b that the tensile initial stress
effect on the group velocity increases always, for values of lk < 0.5. It can be concluded that in the nonlocal
Love model, this increase is more significant for small values of m and for high values of lk. The comparison
shows that this effect is more significant for the nonlocal Love model.

In Figs. 6a, b are compared, for the tensile initial axial load and the compressive initial axial loads, respec-
tively, the angular frequency variations versus the wave number, for the present general nonlocal model, the
nonlocal Love model and the Born–Karman model. In numerical calculations, m (= ls/ lm) = 2/3 was taken
as in [6], and the rod radius a was chosen to be 3d. Figures 6a, b show that the existing general nonlocal
solution presented here is more compatible with the Born–Karman solution.

The Born–Karman expression is given by

ω = 2co

d
Sin

(
kd

2

)
, (31)

where d denotes the distance between the atoms.
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a
b

Fig. 6 Comparison of dimensionless angular frequencies for the present, the nonlocal Love and Born–Karman solutions
a γ = −0.05, b γ = 0.05

5 Conclusions

In this work, the longitudinal stress waves in nanoscale bars under the initial stress effect are investigated in
more detail by using a unified nonlocal elasticity model including both the integral and gradient models. The
lateral deformation and shear strain effects on the phase velocity, the group velocity and angular frequency,
are discussed under the initial stress presence. It is seen from the present work that, in particular, depending
on the sign of the initial stress, the shear effect for the different cases can be significant. A general comparison
between the present general nonlocal model and the nonlocal Love model shows that, in particular for the com-
pressive initial stress, the results obtained from both models are too different to be significant. Furthermore,
it is understood that the material length scale ratio has a crucial effect on the results. It can be concluded that
the present unified nonlocal elasticity model gives more satisfactory and reasonable information regarding the
characteristics of the longitudinal stress waves.
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