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Abstract In this paper, the vibrations of the oscillator with nonlinearity of integer or non-integer order and
with mass variable parameters are considered. New appreciative analytical procedures are developed: first,
based on the generating solution that is the exact analytic solution of the system with constant parameters and
the second, based on the approximate solution in the form of a trigonometric function with exact period of
vibration of the system with constant parameters. For the both methods, the assumed trial solutions represent
the perturbed versions of the solutions of the equations with constant parameters, where the amplitude and
phase of vibration are supposed to be time variable. The amplitude and phase functions are determined using
the averaging procedure over the period of vibration. The obtained approximate analytic solutions are com-
pared with numerical ones. It is shown that the developed methods are accurate for the monotone slow time
variable systems. The example of mass variable oscillator is considered. The influence of mass variation, small
linear viscous damping and of the reactive force is investigated, too.

1 Introduction

The oscillators with time variable parameters are usually divided into two groups: first, with parameters that
are time periodical functions and the oscillations are called parametrically excited vibrations, and the second,
where the parameters are monotone time functions and the vibrations are usually called unstationary vibrations
(see for example [1,2]). In this paper, only the second type of oscillators will be considered. The parameter
variation is assumed to be slow as is the function of the slow variable time. This type of oscillators is widely
applied in textile, carpet and cable industry but also in various machines like sieves, separators and centrifuges.
In general, the mathematical model of the one-degree-of-freedom oscillator with slow time variable parameter
is

ẍ + ω2(τ )x |x |α−1 = ε f (τ, x, ẋ) (1)

where α is the order of nonlinearity (an integer or non-integer), ω is the time variable parameter, τ = εt is the
slow time, ε � 1 is a small parameter, and ε f is the additional small nonlinear function.

For the special case when α = 1, a significant number of analytical solving procedures of the differential
equations with slow time variable parameters and weak nonlinearity are developed. Let us mention some of
them: the Mitropolski–Bogolubov method [3], Krylov–Bogolubov method [4–6], the multiple-scale method
[1], etc. For all of them, it is common that the solution is based on the exact solution of the linear differen-
tial equation with constant parameters where, obviously, the nonlinearity is neglected. The trial solution is
adopted as the perturbed version of the generating solution. The accuracy of the obtained approximate solution
depends on the level of the nonlinearity and the velocity of mass variation: the smaller the nonlinearity and the
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slower the parameter variation, the difference between the analytical and numerical solution of the problem is
smaller. Yuste [7] was the first to extend the Krylov–Bogolubov method for solving of the differential equations
with strong cubic nonlinearity (α = 3) and time variable parameters. The solution is assumed in the form of
the Jacobi elliptic function, where the amplitude, modulus and frequency of the function are supposed to be
time functions. The lack of the procedure is that it is applicable only for the oscillator with the strong cubic
nonlinearity.

The aim of the paper is to consider the oscillator (1) where the parameters are time variable functions and
the order α of the nonlinearity is an integer or a non-integer. Equation (1) represents the generalization of the
previously considered oscillators with slow time variable parameters. In this paper, the procedure developed
for strong nonlinear differential equations with constant parameters [8]

ẍ + ω2
0x |x |α−1 = 0 (2)

with initial conditions

x(0) = x0, ẋ(0) = 0 (3)

where ω2
0 ≡ ω2(0) = const., is adopted for solving of the differential equation (1). Two methods based on the

procedure are developed: in Sect. 2, the trial solution of (1) is introduced in the form [9] of the exact solution
of (2), but with time variable amplitude and phase, and in Sect. 3, the approximate solution is assumed as a
trigonometric function with time variable period function whose profile corresponds to the exact analytical
period [10] of vibration of the oscillator (2). For both procedures, the time variable amplitude, frequency and
phase have to satisfy the averaged version of the differential equation of motion (1). In Sect. 4, the solutions
obtained with the two methods are compared. Two examples are considered: the linear oscillator and the
non-integer order nonlinear oscillator with time variable parameter. To prove the accuracy of the approximate
analytical solution of the non-integer order oscillator with time variable parameter, it is compared with the
numerical solution of the corresponding differential equation. In Sect. 5, the nonlinear oscillator with linear
damping and time variable mass is investigated. The reactive force is of Levi-Civita type [11]. The approxi-
mate analytical solution is obtained by applying the aforementioned methods. As the special case, the linear
oscillator with time variable parameter is considered, and the obtained solutions are compared with previous
ones (see [12–23]). In Sect. 6, the conclusions are given.

2 Solving procedure based on the exact solution of the oscillator with constant parameters

The exact analytical solution of Eq. (2) and its first time derivative have the form of the cosine (ca) and sine
(sa) Ateb functions [24–26], that is,

x = Aca(α, 1, ψ) (4)

and

ẋ = −
√

2√
α + 1

|ω0| A
α+1

2 sa(1, α, ψ) (5)

where

ψ =
√
α + 1√

2
|ω0| A

α−1
2 t + θ. (6)

A and θ are arbitrary constants, and the time derivatives of the cosine and sine Ateb functions are
d
dz

ca(α, 1, ψ) = − 2
α+1 sa(1, α, ψ) and d

dz
sa(1, α, ψ) = caα(α, 1, ψ), respectively. Substituting (4) and the

time derivative of (5) into (2), the equation is identically satisfied.
The solving procedure suggested in this paper assumes the approximate analytical solution of (1) and its

first time derivative in the forms (4) and (5), respectively, but with time variable amplitude, A(t), and time
variable phase, ψ(t), that is,

x = A(t)ca(α, 1, ψ(t)) (7)
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and

ẋ = −
√

2√
α + 1

|ω(τ)| A(t)
α+1

2 sa(1, α, ψ(t)), (8)

where, according to (6), the first time derivative of the time variable phase is

ψ̇(t) =
√
α + 1√

2
ω(τ)A(t)

α−1
2 + θ̇ (t). (9)

Let us find the time derivative of the approximate solution (6)

ẋ = −
√

2√
α + 1

|ω(τ)| A(t)
α+1

2 sa(1, α, ψ(t))+ Ȧca(α, 1, ψ(t))− 2

α + 1
A(t)θ̇(t)sa(1, α, ψ(t), (10)

and compare with (8). The relation (10) is equal to (8), if the following relation is satisfied:

Ȧca − 2Aθ̇

α + 1
sa = 0, (11)

where A ≡ A(t), θ ≡ θ(t), ω ≡ ω(τ), ψ ≡ ψ(t), ca ≡ ca(α, 1, ψ) and sa ≡ sa(α, 1, ψ).
Substituting (7), (8) and the time derivative of (8) into (1), it follows

Ȧsa + 2

α + 1
caαAθ̇ = − ε

ω
ω′ 2

α + 1
Asa −

√
2√

α + 1

1

ωA
α−1

2

ε f

(
τ, Aca,− ω

√
2√

α + 1
A
α+1

2 sa

)
. (12)

As we see, the second-order differential equation (1) is replaced with two first-order differential equations (11)
and (12). After some modification, (11) and (12) are rewritten as

Ȧ = − ε

ω
ω′ 2

α + 1
Asa2 −

√
2√

α + 1

1

ωA
α−1

2

ε f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
sa, (13)

Aθ̇ = − ε

ω
ω′ Asaca −

√
α + 1√

2

1

ωA
α−1

2

ε f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
ca, (14)

where ω′ = d/dτ . Usually, to find the exact solution of Eqs. (13) and (14) is very complicated. This is the
point where the averaging of Ateb functions over the period 2�α is done. Introducing �α as

�α = B

(
1

α + 1
,

1

2

)
,

where B is the beta function [27], and using (13) and (14), we obtain

Ȧ = −εA
ω′

ω

(
2

α + 1

)
1

2�α

2�α∫
0

sa2dψ

−
√

2√
α + 1

1

ωA
α−1

2

1

2�α

2�α∫
0

ε f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
sadψ, (15)

θ̇ = −εω
′

ω

1

2�α

2�α∫
0

sacadψ −
√
α + 1√

2

1

2�αωA
α+1

2

2�α∫
0

ε f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
cadψ, (16)
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that is, according to (9),

ψ̇(t) =
√
α + 1√

2
ωA

α−1
2 − ε

2�α

ω′

ω

2�α∫
0

sacadψ

−
√
α + 1

2�α
√

2

A− α+1
2

ω

2�α∫
0

ε f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
cadψ. (17)

Using the results given by Drogomirecka [25]

2�α∫
0

sacadψ = 0,

2�α∫
0

sa2dψ = 2B

(
3

α + 1
,

1

2

)
.

We have the averaged differential equations of motion

Ȧ = −ω
′

ω

(
2εA

α + 1

)
1

�α
B

(
3

α + 1
,

1

2

)

− ε
√

2

2
√
α + 1

1

ωA
α−1

2

1

�α

2�α∫
0

f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
sadψ, (18)

ψ̇ =
√
α + 1√

2
ωA

α−1
2 − ε

√
α + 1

2�α
√

2

A− α+1
2

ω

2�α∫
0

f

(
τ, Aca,−

√
2√

α + 1
ωA

α−1
2 sa

)
cadψ. (19)

As Eq. (18) is an uncoupled first-order differential equation, it has to be solved, first. Substituting the obtained
A(t) function into (7) and (19) and using the initial conditions (3), the approximate solution (7) of the differ-
ential equation (1) is determined.

2.1 Purely nonlinear oscillator with time variable parameter

Let us consider the purely nonlinear oscillator, when the function f in the differential equation (1) is zero,

ẍ + ω2(τ )x |x |α−1 = 0. (20)

If f = 0, the amplitude and phase expressions according to (18) and (19) are

A = A0

(ω0

ω

)β
, (21)

ψ = ψ0 +
√
α + 1√

2
A
α−1

2
0 ω0

∫ (
ω

ω0

)1−γ
dt, (22)

where A0 and ψ0 are arbitrary constants,

γ =
(
α − 1

2

)
β (23)

and

β =
(

2

α + 1

)
1

�α
B

(
3

α + 1
,

1

2

)
. (24)

It can be concluded that the amplitude and phase of vibration depend not only on ω which is the time variable,
but also on the order of nonlinearity α. Besides:
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Fig. 1 a Amplitude-time and b phase-time diagrams for various values of α and increasing mass

Fig. 2 a Amplitude-time and b phase-time diagrams for various values of α and decreasing mass

1. Analyzing the relation (24), it can be seen that the parameter β is positive for all values of α and has a
tendency to decrease by increasing the parameter α: for α = 0 we have β = 16/15, and for extremely
high values of α, β tends to zero. Thereby, the amplitude of vibration (21) decreases in time for the case
when ω is a monotone increasing time function and increases in time for ω a monotone decreasing time
function independently on the order of nonlinearity α.

2. The parameter γ , given in (23), increases from (−8/15) for α = 0 to limα→∞ γ = 1/3. For α < 1 the
parameter γ is negative, for α > 1 it is positive and for α = 1 it is zero. The influence of the nonlinearity
order on the phase properties could not be in general discussed, but only for certain problems.

2.2 Purely nonlinear oscillator with linear time function

Let us consider the special case of the purely nonlinear oscillator (20) where ω is a linear time function

ω = ω0(1 ± εt). (25)

The amplitude-time expression is already given as (21), but the phase-time relation (22) transforms into

ψ = ψ0 ±
√
α + 1√

2
A
α−1

2
0 ω0

(ω/ω0)
2−γ − 1

ε(2 − γ )
, (26)

where “+” sign in (26) corresponds to the “+”sign in (25) and the “−” sign in (26) to the “−” sign in (25). For
the initial amplitude and phase A0 = 1, ψ0 = 0 and parameter valuesω0 = 1 and ε = 0.01, the amplitude-time
(21) and phase-time (26) diagrams for various orders of nonlinearity α are plotted (see Figs. 1, 2).

1. For the case when ω increases, the amplitude of vibration decreases in time proportional to α as given in
Fig. 1a. The phase angle increases in time: the higher α, the increase is faster (Fig. 1b).

2. If ω decreases with time, the corresponding amplitude of vibration increases: for smaller α, the amplitude
increase is faster (Fig. 2a). The phase angle increases for the case when ω is a linear decreasing function
of time: the increase of the phase angle is faster for a higher order of nonlinearity α (Fig. 2b).
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2.3 Comparison of the purely nonlinear oscillators

Let us compare the purely nonlinear oscillator ( f = 0) with time variable parameter (20) with the correspond-
ing oscillator with constant parameter (2). Comparing the amplitude and phase properties (21) and (26) for the
oscillator with time variable parameter with the relations for the system with constant parameters (4) and (5),
the amplitude and phase angle variations are, respectively,

A = A0kA, (27)

ψ = ψ0 + kψ

√
α + 1√

2
A
α−1

2
0 ω0t (28)

where the correction terms for the amplitude and phase are

kA =
(

1

1 ± εt

)β
, (29)

kψ = (1 ± εt)2−γ − 1

(±)εt (2 − γ )
. (30)

The correction terms (29) and (30) give the correlation between the decrement of the parameter variation εt
and the order of nonlinearity α.

1. For εt → 0, independently on the order of nonlinearity α, both correction parameters, kA and kψ , tend to
1, and the motion of the oscillator is near that with constant parameters.

2. According to (29), for 1 + εt → ∞,the amplitude correction parameter kA is zero, while it is one when
εt → 0. If 1 − εt → 0, the amplitude correction parameter tends to infinity independently on the order of
nonlinearity.

3. The phase correction term kψ depends on the values of (εt) and for high values of (εt) corresponds to the
limes value of (30), that is,

lim
εt→∞ kψ ≈ lim

εt→∞(1 ± εt)1−γ . (31)

4. Using the result 2. in Sect. 2.1, that is, γ ∈ [−8/15, 1/3) for α ∈ [0,∞), and analyzing the relation (31),
it can be concluded that for 1 + εt → ∞, independently on the value of α, the phase correction term
kψ tends to infinity: the higher the smaller the value of α, the faster the increase. For 1 − εt → 0, the
phase correction term tends to zero for all values of parameter α: the smaller the parameter α the faster the
decrease of kψ to zero.

The method suggested in this Section is based on the Ateb function [23] whose application gives very accurate
results in spite of the existence of time variable parameters. The main disadvantage of the Ateb functions is
their complexity for calculation and that they are not already included into the list of known functions [27].

3 Solving procedure based on the exact period of vibration of the oscillator with constant parameters

To avoid the complication connected to Ateb functions, as it is mentioned that they are not included in the
list of known functions, let us suggest the solution of (1) in the form of a trigonometric function that is more
appropriate for calculation.

For ε = 0, the generating solution of Eq. (2) with initial conditions (3) is assumed as a cosine function
with a period that is specified to be the same as the period of vibration of the oscillator (2),

x = A cosψ (32)

where

ψ = θ +�t. (33)

A and θ are arbitrary constants, and

� = �αω0 A
α−1

2 (34)
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is the exact frequency of vibration (see [10]). Substituting (32) with (33) and the first and the second time
derivatives of (32), respectively,

ẋ = −A� sinψ, (35)

ẍ = −A�2 cosψ, (36)

Eq. (2) is approximately satisfied,

d2

dt2 (A cosψ)+ ω2
0(A cosψ)

α−1
2 ≈ 0. (37)

According to the generating solution (32) with (33) of Eq. (2) and its first time derivative (35), the trial solution
of Eq. (1) and its time derivative are assumed as

x = A(t) cosψ(t), (38)

ẋ = −A(t)�(τ, A(t)) sinψ (39)

with

ψ̇(t) = θ̇ (t)+�(A(t), τ ), (40)

where A(t), θ(t) and ψ(t) are time variable functions, and according to (34)

�(A(t), τ ) = �αω(τ)(A(t))
α−1

2 . (41)

Calculating the first time derivative of (38) and equating it with expression (39), it follows

Ȧ(t) cosψ(t)− A(t)θ̇(t) sinψ(t) = 0. (42)

Substituting (38), (39) and the time derivative of (39) into (1) and using the relation (37), we obtain

− Ȧ� sinψ − AȦ
∂�

∂A
sinψ − εA

∂�

∂ω

dω

dτ
sinψ − A�θ̇ cosψ = ε f (τ, A cosψ,−A� sinψ), (43)

where A ≡ A(t), θ ≡ θ(t), ψ ≡ ψ(t). Hence, two first-order differential equations (42) and (43) replace the
second-order differential equation (1). Solving (42) and (43) with respect to Ȧ and θ̇ , we have

Ȧ

(
�− A

∂�

∂A
sin2 ψ

)
= −εA

∂�

∂ω

dω

dτ
sin2 ψ − ε f (τ, A cosψ,−A� sinψ) sinψ, (44)

Aθ̇

(
�− A

∂�

∂A
sin2 ψ

)
= −εA

∂�

∂ω

dω

dτ
sinψ cosψ − ε f (τ, A cosψ,−A� sinψ) cosψ. (45)

Averaging the differential equations in the period 2π , we obtain the following equations:

Ȧ = − 2εA

(5 − α)

1

ω

dω

dτ
− 4εA

1−α
2

(5 − α)ω�α

1

2π

2π∫
0

f (τ, A cosψ,−A� sinψ) sinψdψ (46)

Aθ̇ = − 2εA
1−α

2

(5 − α)�αω

1

2π

2π∫
0

f (τ, A cosψ,−A� sinψ) cosψdψ, (47)

and from (40) and (41)

ψ̇ = �αωA
α−1

2 − 2εA
1−α

2

(5 − α)�αAω

1

2π

2π∫
0

f (τ, A cosψ,−A� sinψ) cosψdψ. (48)

Solving the averaged differential equation (46) and substituting the obtained solution for A into (48), the
approximate function ψ is obtained that gives the solution (38).
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Remark The averaging procedure is valid for α 
= 5, because the expressions (46)–(48) are singular for α = 5.

For f = 0 and initial conditions A0 and ψ0, the solution of (46) is

A = A0(
ω0

ω
)

2
5−α (49)

which gives

ψ = ψ0 +�αA
α−1

2
0 (ω0)

α−1
5−α

∫
ω1− α−1

5−α dt. (50)

The relation (49) represents qualitatively the same result as (21) obtained by the previous method.

4 Comparison of the methods

Let us compare the suggested analytical methods and also the approximate solutions of Eq. (1) with the
numerical one obtained by Runge–Kutta method.

4.1 Linear oscillator

For the linear oscillator, when α = 1, the averaged differential equations (46) and (48) are

Ȧ = −1

2

εA

ω

dω

dτ
− ε

2πω

2π∫
0

f (τ, A cosψ,−A� sinψ) sinψdψ, (51)

ψ̇(t) = ω(τ)− ε

2πωA

2π∫
0

f (τ, A cosψ,−A� sinψ) cosψ. (52)

This result is previously published by Bessonov [13]. For f = 0 and initial conditions A(0) = A0 and
ψ(0) = ψ0, the solution in the first approximation is

x = A0

(ω0

ω

)1/2
cos

(
ψ0 +

∫
ωdt

)
. (53)

Considering the relations (21) and (22) for the linear case, when α = 1, the approximate solution (7) is obtained
as

x = A0

(ω0

ω

)1/2
ca

(
1, 1, ψ0 +

∫
ωdt

)
. (54)

Due to the fact that the cosine Ateb function for α = 1 corresponds to the trigonometric cosine function
(see [26]), the relation (54) transforms into (53). Both approximate methods give the same result, namely the
amplitude of vibration is not constant, but depends on the variation of the parameter ω. The same is valid for
the phase variation.

4.2 Non-integer order nonlinear oscillator

Let us consider the oscillator

ẍ + (1 + 0.01t)2x4/3 = 0, (55)

with initial conditions x(0) = A0 = 0.1 and ẋ(0) = 0.
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Fig. 3 The x−t diagram obtained numerically, and the A−t diagrams for the first method (1) and the second method (2)

Fig. 4 The x−t diagrams obtained analytically (full line) and numerically (dotted line)

According to the first procedure given in Sect. 2 (based on the exact solution of the oscillator with constant
parameters), the amplitude-time variation (21) is

A = A0

(
1

1 + 0.01t

)0.42085

. (56)

According to the second method given in Sect. 3 of this paper (based on the exact period of vibration of the
oscillator with constant parameters), the amplitude-time relation (49) transforms into

A = A0

(
1

1 + 0.01t

)6/11

. (57)

In Fig. 3, the numerical solution of (55) and the amplitude-time diagrams (56) and (57) are plotted. It can be
seen that the first analytical procedure gives a very accurate result for the long time period, but the approximate
solution (57) obtained using the second method is not so accurate. Due to the second procedure, the phase-time
relation (50) is

ψ = 52.3809(1 + 0.01t)
21
11 (58)

where �4/3 = 0.96916, and the approximate solution (38) has the form

x ≈ 0.1

(
1

1 + 0.01t

)6/11

cos

(
1100

21
(1 + 0.01t)

21
11

)
. (59)

In Fig. 4, the x − t diagrams obtained analytically (59) and numerically by solving (55) are plotted. It can be
seen that the difference between the solutions is negligible even for a long time period. The excellent agreement
of the solutions is due to the fact that the approximate solution (59) has approximate periods that are very close
to the exact ones.
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5 Oscillator with time variable mass of Levi-Civita type and with a small damping

One of the mechanical systems with time variable parameters is the mass variable oscillator. If the absolute
velocity of mass adding or separating is zero, the mathematical model of the oscillator is in general

m(τ )ẍ + kαx |x |α−1 = −εdm(τ )

dτ
ẋ − εbẋ (60)

where the first term on the right side of Eq. (60) represents the reactive force that exists according to mass
variation [11] and εbẋ is the damping force. As the mass variation is slow and the damping coefficient is small,
the reactive and damping force are small in comparison to the elastic force.

Comparing Eq. (60) with (1), we have

ω =
√

kα
m

(61)

and

f = −
(

b

m
+ 1

m

dm

dτ

)
ẋ . (62)

Substituting (61) and (62) into (46) and (48), the differential equation (60) transforms into a system of two
averaged first-order differential equations

Ȧ

A
= − ε

(5 − α)m

(
dm

dτ

)
− 2εb

(5 − α)m
, (63)

ψ̇(t) = �αA
α−1

2

√
kα
m
. (64)

In general, the averaged amplitude variation is the solution of (63),

A = A0

(m0

m

) 1
5−α

(exp)

(
− 2εb

5 − α

∫
dt

m

)
, (65)

which gives the phase angle function

ψ = ψ0 +�α
√

kα

(
A0m

1
5−α
0

) α−1
2

∫
m− (α−1)

2(5−α)− 1
2

(
(exp)

(
− 2εb

5 − α

∫
dt

m

)) α−1
2

dt. (66)

The amplitude and the phase of vibration vary in time due to damping, but also due to mass variation. The
order of nonlinearity has a significant influence on the velocity of amplitude and phase increase or decrease.

5.1 Linear mass variation

Let us consider the case when the mass variation is linear, as it is suggested by Yuste [7]

m = m0 + m1τ = m0 + εm1t, (67)

where m1 is a constant and ε is a small parameter. According to (63), we obtain the differential equation for
the amplitude variation

Ȧ

A
= −ε(2b + m1)

(5 − α)m
. (68)

(a) For the special parameter values, when m1/b = −2, the amplitude of vibration is constant, that is,
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A = A0 = const., (69)

and the relation (66) transforms into

ψ = ψ0 + 2

εm1
�αA

α−1
2

0

√
kα

(
m1/2 − m1/2

0

)
. (70)

For this special case in spite of the action of the linear damping, the amplitude of vibration is constant due
to the fact that the linear mass separation makes the compensation to the effect of damping. Using the series
expansion of the function ψ , we have

ψ = ψ0 + 2�αA
α−1

2
0

√
kα
m0

t, (71)

and the approximate period of vibration is independent on the mass variation and damping, as follows:

T = 2π

2�αA
α−1

2
0

√
kα
m0

. (72)

The approximate period value depends only on the order of nonlinearity.

(b) For m1/b 
= −2, the amplitude-time and phase-time functions are

A = A0

(
m

m0

)− 1
5−α

(
1+ 2b

m1

)
(73)

and

ψ =
√

kα
εm1

√
m0

A
α−1

2
0

− α−1
2(5−α)

(
1+ 2b

m1

)
+ 1

2

⎛
⎝(

m

m0

)− α−1
2(5−α)

(
1+ 2b

m1

)
+ 1

2 − 1

⎞
⎠�α + ψ0, (74)

which give the approximate solution (38)

x = A0

(
m

m0

)− 1
5−α

(
1+ 2b

m1

)
cos

⎛
⎝√

kα
εm1

√
m0

A
α−1

2
0

− α−1
2(5−α)

(
1+ 2b

m1

)
+ 1

2

⎛
⎝(

m

m0

)− α−1
2(5−α)

(
1+ 2b

m1

)
+ 1

2 − 1

⎞
⎠�α + ψ0

⎞
⎠ .

(75)

The amplitude and phase variation depend on the relation m1/b, parameter m1 and order of nonlinearity α.
Let us analyze the influence of the relation m1/b on the motion of the oscillator. A numerical example is

considered. If the order of nonlinearity isα = 4/3, the rigidity k4/3 = 1 and the mass decrease is m = 1−0.01t ,
where m0 = 1,m1 = 1 and ε = 0.01, the differential equation of motion for the damping coefficient b is

ẍ + x |x |1/3
1 − 0.01t

= 0.01(1 − b)ẋ . (76)

For the initial conditions x(0) = A0 = 0.1 and ẋ(0) = 0, the analytical solution (75) transforms into

x = 0.1

(1 − 0.01t)0.27273(1−2b)
cos

(
66.028

0.5(1−0.0909(1−2b)

(
1 − (1 − 0.01t)0.5(1−0.0909(1−2b)

))
. (77)

In Fig. 5, the approximate solution (77) and the numerical solution of (76), obtained by using the Runge–Kutta
procedure, are plotted. The x − t diagrams for various values of the damping parameter b are shown.

It can be concluded that for b = 1/2, the amplitude of vibration is constant as it is previously stated (see
Eq. (66)). For the case when the damping is neglected (b = 0), due to mass decrease and existence of the
reactive force, the amplitude of vibration increases. For certain damping (b = 1) that is higher than the limit
value (b = 1/2), the amplitude of vibration decreases. The analytical solution is in a very good relation to the
numeric one in spite of the long time interval under consideration.
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Fig. 5 The x−t diagrams obtained analytically (a—full line) and numerically (n—dot line) for: a b = 0, b b = 1/2 and c b = 1

5.2 Linear oscillator

For the linear oscillator when α = 1

A = A0

(m0

m

) 1
4

(
1+ 2b

m1

)
(78)

and

ψ = 2
√

k1

εm1

(√
m−√

m0
) + ψ0. (79)

If the damping parameter is zero, the amplitude variation is A = A0(m0/m)1/4, as it was previously published
in [4]. Using the series expansion of the functions in (79), the approximate frequency of vibration is

√
k1/m0

that corresponds to the systems with constant mass and without damping.

6 Conclusions

Due to the previous considerations, it can be concluded:

(i) The vibration of the oscillator with monotone time variable parameter has time variable amplitude and
phase. The free vibrations for all of the oscillators with a strong nonlinearity of any order and with the
certain monotone slow time variable parameters are qualitatively the same, independently on the order
of the nonlinearity. The order of nonlinearity quantitatively changes the amplitude and the phase of
vibrations but has no influence on the character of vibrations. Namely, for a certain parameter variation,
the higher the order of nonlinearity, the faster or slower is the amplitude and phase increase or decrease.
The tendency of increase or decrease of amplitude and phase, that is, frequency of vibration variation,
is not directed by the order of nonlinearity but with the type of time parameter variation.

(ii) It is evident that in the oscillator with variable mass for the special relation between the coefficient of
damping and parameter of mass variation (which affects the reactive force), the amplitude of vibration
is constant, but the phase angle varies independently on the order of the nonlinearity.
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(iii) The approximate solution of the nonlinear differential equation with strong nonlinearity of any order
(integer or non-integer) and time variable parameter can be obtained analytically.

(iv) The approximate analytic method for solving the differential based on the exact solution of the corre-
sponding differential equation with constant parameters and strong nonlinearity of any order (integer
or non-integer) gives very accurate results in comparison with the numerical one.

(v) The solving method based on the approximate solution with exact period of vibration of the correspond-
ing oscillator with constant parameter gives very convenient results for the oscillator with time variable
parameters. For technical purpose, the solution is accurate enough and appropriate for practical use.
This solution has the form of a trigonometric function and satisfies the requirements for simplicity and
usefulness for application in techniques.
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