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Abstract In this paper, a 3D electromechanical-coupled isogeometric finite element is presented. An impor-
tant advantage of such elements is the possibility to incorporate geometrical data of computer-aided design
systems into the description of the finite element models. In this work, the isogeometric approach is extended
to a coupled electromechanical finite element with mechanical and electrical degrees of freedom. The proposed
piezoelectric finite element is based on nonuniform rational B-spline shape functions. In order to demonstrate
the functionality and the advantages of the isogeometric piezoelectric element for smart structure and structural
health monitoring applications, various examples are presented. The results obtained with isogeometric ele-
ments agree very well with analytical and numerical reference solutions. It is shown that the better geometrical
approximation introduced by isogeometric elements results in an improvement of the solution quality.

1 Introduction

In recent years, increasing attention is paid to complex smart (adaptive) structures. The reduction in vibrations
and active noise control are two examples of various research efforts [27]. Active control strategies can improve
the performance of a structure, for example, by a reduction in amplitudes in resonance cases. This increases
the safety and the lifetime of a structure and may also allow a reduction in the total weight of a structure.
Additionally, the comfort can be augmented, for example, by an active noise control system. The idea of active
nondestructive testing methods using smart structures for structural health monitoring applications is quite
common nowadays [3]. Here, active piezoelectric materials are used as actuators to excite ultrasonic waves as
well as sensors to monitor the incoming signals.

These examples show the wide range of smart structure applications. Due to the geometric complexity
of engineering structures (wings, engines, fuselage, etc.), new finite element concepts can provide advanta-
ges with respect to the geometric approximation and the data exchange between different software tools of
computer-aided design (CAD) and finite element analysis (FEA).

Dedicated to Professor Hans Irschik on the occasion of his 60th birthday.

C. Willberg · U. Gabbert (B)
Institut for Mechanics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
E-mail: ulrich.gabbert@ovgu.de
Tel.: +49-391-6718609
Fax: +49-391-6712863

C. Willberg
E-mail: christian.willberg@ovgu.de
Tel.: +49-391-6711724
Fax: +49-391-6712863



1838 C. Willberg, U. Gabbert

The so-called isogeometric element concept closes the gap between CAD and FEA. About 80% of the
overall analysis time of an engineering problem is devoted to mesh generation in the automotive, aerospace,
and ship-building industries [15]. The reduction in the meshing time increases the efficiency of numerical
simulations. The isogeometric concept uses the functional description of the geometry from the CAD software
(B-splines, NURBS, T-splines, etc.) and reuses them as shape function for the FEA [7]. No meshing, which
approximates the CAD geometry description with other functions, for example, Lagrange polynomials, is
required, and, consequently, the exact description of the geometry is not lost. This is an important consid-
eration for shape optimization schemes. Not only the exchange between finite element software and CAD
software works better, but also the exact CAD geometry is used for the optimization. This allows an accurate
state of the problem instead of a discretized mesh used by standard finite elements, which leads to better
solutions in the optimization process [25].

Assuming that in the near future the application of isogeometric elements will be common, then also special
multi-physics finite elements are required, for example, for the simulation of piezoelectric smart structures.
Such structures often have a complex and curved electrode configuration [23], which can efficiently be mod-
eled with isogeometric finite elements. Furthermore, as other higher-order finite elements, also isogeometric
elements are less prone to locking. For polynomial orders p ≥ 4, the locking phenomena does not pollute
the solution noticeably [10]. Since NURBS based elements hardly suffer from locking phenomena, smart
structures, which are usually thin-walled, can be modeled using a three-dimensional approach.

One of the most widely used smart materials are piezoceramics made mainly of lead zirconate titanate
(PZT). The main characteristics of piezoelectric materials is their ability to convert mechanical into electrical
energy and vice versa. In order to provide an efficient simulation tool, a reliable mathematical model for the
coupled electromechanical field equations in complex geometries is required.

The objective of this paper is to present the development of a new piezoelectrical element based on
nonuniform rational B-splines (NURBS). The outline of the paper is as follows. In section two, the active
piezoelectrical governing equations are introduced. The used shape functions and the geometrical descriptions
of the electromechanical finite element are described, and the governing finite element equations are derived.
In section three, the reliability of the new isogeometric piezoelectric finite element is verified performing
several static and dynamic benchmark problems. The convergence of the finite element is studied, and the
influence of the exact geometrical description to the accuracy is discussed. In section four, the paper is sum-
marized.

2 Isogeometric finite element analysis of piezoelectric structures

In the following, the theoretical background for the creating isogeometric piezoelectric finite elements is
presented. First, the constitutive equations of an electromechanically coupled piezoelectric material in the
low-voltage range are given. Then, the isogeometric NURBS shape functions are introduced, and the finite
element equations of the piezoelectric element are presented.

2.1 Constitutive equations of a piezoelectric material

Piezoelectric materials are able to transform mechanical deformation in electrical voltage (direct piezoelectric
effect) and vice versa (converse piezoelectric effect). To model a piezoelectric elastic material in a low-voltage
range, the linearized piezoelectric constitutive equations are sufficient to describe the coupled electromechan-
ical behavior [5,13]. The linearized piezomechanical material law can be written as

ε = SEσ + dE, (1)

D = dT σ + εσE. (2)

The parameters σ, ε, E, D, SE , d and εσ are the mechanical stresses, the mechanical strains, the electric field,
the electrical displacement, the elastic compliance matrix measured at constant electric field, the piezoelectric
coupling matrix and the permittivity measured at constant mechanical stress, respectively. The mechanical
strain is related to the displacement u as ε = Du, where
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Fig. 1 Coordinate definition of a piezoelectric patch
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is the differential operator. The electric field is defined as the gradient of the electrical potential Φ as

E = −gradΦ = −
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⎤
⎥⎥⎦ . (4)

Assuming a standard piezoelectric patch with transversal isotropic material properties and utilizing the
coordinate system as shown in Fig. 1, the constitutive equations (1) and (2) can be written as
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, (5)

where SE
66 = 2(SE

11 − SE
12) is the shear modulus in the plane of isotropy x1 − x2.

2.2 Nonuniform rational B-splines as shape functions

NURBS are used as the shape functions for the development of an isogeometric finite element, which has
several advantages in describing curved geometries. Figure 2 shows an example of a typical description of a
circular piezoelectric patch actuator. The geometrical description of this disk is made with NURBS in a carte-
sian coordinate system [x1, x2, x3]. NURBS are defined in parametric knot coordinates [β, ζ, γ ]. A third set
of coordinates, the local coordinates [β̃, ζ̃ , γ̃ ], is needed as well in order to perform a numerical quadrature
(see Sect. 2.3).

A B-spline basis is comprised of piece-wise polynomials joined with prescribed continuity conditions. To
define a B-spline of polynomial order p in one dimension, one needs to understand the notion of a knot vector
V. A knot vector is a set of coordinates in a parametric space, written as

V = [β0, β1, β2, . . . , βncont+p, βncont+p+1] with βi ≤ βi+1 , (6)

where i is the knot index, i = 0, 1, . . . , ncont + p + 1, βi is the i th knot, and ncont is the total number of
control points [1]. There are various ways to define B-spline basis functions, but for computer implementation,
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(a)

(b)

(c)

Fig. 2 A 3D piezoelectric finite element using NURBS shape functions. a Cartesian coordinate system, b knot coordinate system,
c local coordinate system

the application of a recurrence formula is the most common way [9,4]. The first-order basis functions N (β)i,0
of polynomial degree p = 0 are

Ni,0(β) =
{

1, if β ∈ [βi , βi+1)
0, otherwise. (7)

The basis functions Ni,p(β) of higher order p > 0 are defined as

Ni,p(β) = β − βi

βi+p − βi
Ni,p−1(β) + βi+p+1 − β

βi+p+1 − βi+1
Ni+1,p−1(β) , (8)

where the indices i and p denote the i th basis function of polynomial order p. Utilizing the B-spline basis
functions Ni,p(β), the NURBS basis function R p

i (β) can be defined as

R p
i (β) = Ni,p(β)wi∑ncont

j=1 N j,p(β)w j
, (9)

where wi are weights corresponding to each function Ni,p. An arbitrary NURBS curve can be described as
[24]

X(β) =
ncont∑
i=1

R p
i (β)Pi . (10)

The vector X is the position vector of the described curve. Pi are control points in global cartesian coordinates
[x1, x2, x3]. A NURBS curve can be interpreted as projection of a B-spline curve from R

n+1 to a defined
surface in R

n [7]. NURBS are projective invariant, and if the weights are nonnegative, the curve lies in the
convex hull of the control polygon [1]. This projection is controlled by weight parameters wi . The derivatives
of the NURBS basis functions are given as [24]

d

dβ
R p

i (β) = wi
W (β)N

′
i,p(β) − W

′
(β)Ni,p(β)

W (β)2 , (11)

with

W (β) =
ncont∑
j=1

N j,p(β)w j , (12)



Development of a three-dimensional piezoelectric isogeometric finite element 1841

and

N
′
i,p(β) = p

βi+p − βi
Ni,p−1(β) − p

βi+p+1 − βi+1
Ni+1,p−1(β) . (13)

To develop a three-dimensional finite element, we need a three-dimensional NURBS formulation. Follow-
ing Cottrell et al. [7], a rational solid can be described with the basis

R p,q,r
i, j,k (β, ζ, γ ) = Ni,p(β)M j,q(ζ )Ok,r (γ )wi, j,k∑ncont

î=1

∑mcont

ĵ=1

∑lcont

k̂=1
Nî,p(β)M ĵ,q(ζ )Ok̂,r (γ )wî, ĵ,k̂

, (14)

where p, q and r are the polynomial degrees in the knot space direction β, ζ and γ . The geometry is described
as

X(β, ζ, γ ) =
ncont∑
i=1

mcont∑
j=1

lcont∑
k=1

R p,q,r
i, j,k (β, ζ, γ )Pi, j,k . (15)

With help of the product rule, such as given in Eq. (11), the derivatives of each member of the basis of the
rational solid formulation can be calculated analytically.

2.3 Isogeometric finite element formulation

The equations of motion of a piezoelectric continuum can be derived using Hamilton’s principle, which states
that the motion of the system within the time interval [t1, t2] is such that the variation of action vanishes, that
is, the motion of the system takes the path of stationary action [17]

δ

t2∫

t1

(L + W ) dt = 0 , (16)

where

L = 1

2

∫
(ρu̇T u̇ − εT σ − ET D)dV, (17)

represents the Lagrangian of the system and includes the kinetic energy as well as the potential mechanical
and electrical energies. The external work W is given as

W =
∫

V

uT FV dV +
∫

S1

uT FS1 dS1 −
n∑

i=1

uT
i Fi −

∫

S2

ΦQS2 dS2 −
m∑

j=1

Φ j Q j . (18)

The vectors FV , FS1, Fi are given mechanical loads related to a volume V , to a surface S1 and to a control point
i , respectively. The vector u contains the unknown mechanical displacements, and Φ describes the unknown
electrical potential. The scalar values QS2 and Q j are the electric charge related to a surface S2 and to a control
point j , respectively. After substituting Eqs. (17) and (18) into Eq. (16) and rearranging the expression, we
obtain the variational formulation in the form [28]

0 = −
∫

V

[
ρδuT ü + δεT CEε − δεT eT E − δ ET eε − δ ET εσ E

]
dV

+
∫

V

δuT FV dV +
∫

S1

δuT FS1 dS1 +
n∑

i=1

δuT
i Fi

−
∫

S2

δΦQS2 dS2 −
m∑

j=1

δΦ j Q j , (19)
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where the vectors u, ü contain the displacements and the acceleration, respectively. The material matrices
CE = (SE )−1 and e = CE d are the elasticity matrix and the matrix of piezoelectric coupling constants,
respectively. When using the finite element approach, a continuous body is discretized in small subdomains
and all fields are approximated within each local domain. The displacements u and the electrical potential
Φ in a local domain (element) can be expressed in terms of the nodal displacements and the nodal electrical
potentials (Ucont, φcont) and the matrices of the mechanical and electrical interpolation functions (Hu, Hφ)
as [30]

u = HuUcont and Φ = Hφφcont. (20)

This formula is similar to the geometrical description of NURBS shown in Eq. (10). In isogeometric elements,
the nodal displacements and the nodal electrical potentials correspond to those at the control points. The
deflections and the electrical potentials at any point of the finite element of the structure can be obtained using
Eq. (20). Substituting Eq. (20) together with Eqs. (1) and (2) into the variational formulation Eq. (19), results
in the discretized form of the equations of motion of a piezoelectric continuum

MuuÜcont + KuuUcont + Kuφφcont = fext, (21a)

KφuUcont − Kφφφcont = qext. (21b)

The introduced abbreviations denote

– the mass matrix Muu = ρ

∫

V

HT
u HudV ,

– the mechanical stiffness matrix Kuu =
∫

V

BT
u CE BudV ,

– the direct piezoelectric coupling matrix Kuφ =
∫

V

BT
u eT BφdV ,

– the inverse piezoelectric coupling matrix Kφu =
∫

V

BT
φ eBudV ,

– the dielectric stiffness matrix Kφφ = −
∫

V

BT
φ εσ BφdV ,

– the external mechanical forces fext =
∫

V

HT
u FV dV +

∫

S1

HT
u FS1dS1 + HT

u FP ,

– the electric charge qext = −
∫

S2

HT
φ qdS2 − HT

φ Q.

(22)

The indices uu, φφ and uφ denote the coupling between displacement–displacement, electrical potential–
electrical potential and displacement–electrical potential, respectively, and Bu, Bφ are the strain-displacement
matrix and the electric field-electric potential matrix [14].

The vectors F are forces applied to a node (P), a surface (S1) and a volume (V ), whereas the vector Q and
the scalar q are charges applied to a node and a surface (S2), respectively. The NURBS basis functions R p,q,r

i, j,k
are defined in the parameter knot coordinates system [β, γ, ζ ]. For numerical implementation, we have to
map between the cartesian and the knot coordinates [6]. The control polynomial is described by connecting
all control points. The control points do not have to lay inside the structure as it is shown in Fig. 2a. To
obtain the stiffness and the mass matrices we have to integrate over several domains, shown in Eq. (22). A
standard Gaussian quadrature scheme is used to evaluate the integrals arising from the FE formulation [26].
This integration is done in the local coordinate domain, which is achieved by a mapping between the carte-
sian coordinates and the local integration coordinates. This mapping is performed in two steps. Firstly, the
geometrical Cartesian coordinates (e.g., to model a circular disk) are mapped onto the cuboid parameter knot
coordinate system [β, γ, ζ ], and secondly, it is mapped onto the local coordinate system [β̃, γ̃ , ζ̃ ]. Integration
in the local subdomain is performed in the local coordinate system with the help of the following two Jacobian
matrices:
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J1 = ∂x
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and the volume differential

dV = dx1 dx2 dx3 = det J1 dβ dζ dγ = det J1 det J2 dβ̃ dζ̃ dγ̃ . (24)

The surface differential can be derived analogously. All element matrices are assumed to be geometrical linear.
For the formulation of geometrical nonlinear isogeometric elements, we refer to Elguedj et al. [11].

3 Numerical examples

In the following, four benchmark problems are considered to verify the developed 3D piezoelectric finite
element. First, a clamped piezoelectric bimorph beam with a simple geometry is studied. Then, as a dynamic
example, the eigenfrequencies and eigenforms of a piezoelectric free-free disk are calculated. The third bench-
mark shows an active shape-controlled plate, which includes the coupling between an active and a passive
structure. The fourth example is a piezoelectric bimorph ring. The ring can be approximated exactly by using
NURBS. Therefore, the influence of the approximation of the geometry to the solution is studied, because the
exact geometrical description is one of the advantages of the isogeometric elements. Finally, the convergence
behavior of a reference model (ABAQUS) and various models utilizing isogeometric finite elements with an
anisotropic polynomial degree ansatz are compared.

3.1 Piezoelectric bimorph beam

The first benchmark test is a piezoelectric bimorph beam (see Fig. 3a described in [12,21,29]. One side
(x1 = 0) of the beam is clamped. The length, width and height are l = 100 mm, b = 5 mm and h = 1 mm,
respectively. Table 1 shows the material properties of the homogeneous beam [21]. The material properties
and the thickness of the top (gray) and the bottom (dark gray) layer are equal, and both plies are polarized in
x3-direction but with opposite orientation. The beam is modeled with two patches. A patch contains a number
of NURBS elements with C p−1 continuity between the element boundaries inside the patch, where p > 1.
Each patch is defined with a separate knot vector V, and between two patches a C0 continuity exists.

(a) (b)

Fig. 3 Bimorph model (l = 100 mm, b = 5 mm, h = 1 mm). a Model of a piezoelectric bimorph beam. b Calculated displace-
ment u3 at (x1, x2 = b/2, x3 = h/2) under constant external electrical field for ΔΦ = 1 V

Table 1 Material parameter for the bimorph beam (e = CE d)

E ν e31 e32 ε33

2 · 109 N/m2 0.29 −0.046 C/m2 −0.046 C/m2 1.062 · 10−10 F/m



1844 C. Willberg, U. Gabbert

Table 2 Relative difference of the tip deflection

Model dof = 180 dof = 780 dof = 2376

Difference 5.1% 0.582% 0.547%

With a constant electrical field in x3-direction, the upper part of the beam shrinks and the lower part extends.
Thus, a constant bending moment is introduced. Using the Euler–Bernoulli beam theory, the bending moment
is derived as [21]

M = bh2

4
e31 E, (25)

and the displacements are

u(x1) = 3

2

e31ΔΦ

Eh2 x2
1 . (26)

Figure 3b shows the displacements in u3-direction of three calculations with different isogeometric NURBS
elements in comparison with the analytical solution of Eq. (26). The description (p = 2, 2, 2) denotes the poly-
nomial degree in x1−, x2−, x3-directions, and “dof” is the number of degrees of freedom. It can be seen that
the accuracy improves when increasing the polynomial order and also with an increasing number of degrees of
freedom. It is expected that the numerical solution does not coincide with the analytical solution, because the
three-dimensional NURBS solution does not fulfill the assumptions introduced in the Euler–Bernoulli beam
theory exactly.

Table 2 illustrates the relative difference of the tip deflection of the isogeometric FEM solution and the
analytical solution. Each finite element patch is discretized with one element over the thickness. Three refine-
ment methods (p-refinement, h-refinement and k-refinement) can be applied to increase the quality of the
solution. Only the h-refinement and the k-refinement are presented here. A k-refinement means increasing the
polynomial degree as well as the degree of continuity of the solution at the boundaries between the elements.
Cottrell et al. [8] have found that a k-refinement involves much fewer degrees of freedom than a p-refinement,
which increases the polynomial order inside an element only, without influencing the continuity between the
elements. Therefore, the p-refinement is not considered here. It must be noted that the p-refinement and the
k-refinement scheme are equal if only a single element is used.

As starting point a model with 180 degrees of freedom and a uniform polynomial order of p = 2 is chosen.
The relative difference of this solution with respect to the Euler–Bernoulli beam solution is around 5.1%.
Increasing the polynomial order to 12 (using a k-refinement scheme [15]), the difference is reduced to 0.582%.
The number of degrees of freedom is 780. The polynomial order elevation is done only in x1-direction. Using
different polynomial orders in different directions allows a reduction of the degrees of freedom without loosing
much accuracy, according to a complete polynomial elevation.

For the h-refinement, the elements are split into smaller ones. The number of degrees of freedom increases,
but the polynomial order p = 2 does not change. A higher number of degrees of freedom (dof = 2376) has to
be used to reach the same accuracy in the solution that was obtained with the k-refinement. It should be noted
that the effort to solve the system of equations is lower using higher polynomial degrees, but the assembling of
the system matrices requires more effort in relation to the total computational time. The effort can be reduced
by applying efficient quadrature rules, for example, the half-point rule, which make higher-order NURBS
elements more attractive [16]. Alternatively, different polynomial degrees for different directions can be used
to increase the quality considerably with less required assembling time, for example, a mixed polynomial
ansatz (p = 8, 2, 2) with 540 dof results in the same accuracy as an equal polynomial ansatz in all directions
(p = 8, 8, 8) with 5508 dof. The relative difference in the mixed polynomial ansatz is 0.93% and for the equal
polynomial ansatz 0.94%, respectively. In simple structures, this mixed polynomial formulation is relatively
easy to implement. It has to be guaranteed that at the coupling surfaces between different parts of a structure,
equal polynomial degrees are defined.

In Table 3, the quality of the solution is compared to other methods. All models presented in the literature
use five elements to calculate the solution proposed by Marinković et al. (see Eq. (26)) [21]. However, the
degrees of freedom of the other element formulations are not mentioned in the literature.

The solution of Sze et al. [29] is equal to the analytical solution given in Eq. (26), which is used as reference
in Table 3. Sze et al. use a solid-shell element, which is based on the assumptions of the Kirchhoff plate theory.
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Table 3 Relative difference of the static tip deflection of the piezoelectric bimorph beam

Model Sze Gabbert ABAQUS NURBS

Difference 0.0% 0.753% 2.43% 0.84%

Table 4 Piezoelectrical material properties of PIC-151 with the electric constant ε0 = 8.8542 · 10−12As/(Vm)

Parameter Parameter

SE
11 16.83 × 10−12 m2/N d31 −2.14 × 10−10 m/V

SE
33 19.00 × 10−12 m2/N d33 4.23 × 10−10 m/V

SE
55 50.96 × 10−12 m2/N d15 6.1 × 10−10 m/V

SE
12 −5.66 × 10−12 m2/N εT

11/ε0 1936

SE
13 −7.11 × 10−12 m2/N εT

33/ε0 2109

SE
44 50.96 × 10−12 m2/N ρ 7760 kg/m3

SE
66 44.97 × 10−12 m2/N

The solution given by Gabbert et al. [12] is nearly equal to the isogeometric one. Both models are calculated
with volume elements.

The ABAQUS solution is calculated with a fully integrated, quadratic, piezoelectrical elements (C3D20E).
Table 3 conveys that NURBS elements are more accurate for the chosen example than the ABAQUS solution.
To obtain comparable results between the NURBS and the ABAQUS elements, the polynomial degree of the
NURBS elements is chosen as p = 2. ABAQUS needs 432 degrees of freedom, and with NURBS elements,
only 360 degrees of freedom are required to obtain the same accuracy.

It must be noted that the solution of the beam deflection given by Gabbert et al., ABAQUS and the presented
isogeometric element differs from the analytical as well as the solid-shell solution given by Sze. The reason
is that the three-dimensional volume elements do not apply the Kirchhoff hypothesis, which is used for the
analytical solution. This results in a small discrepancy between these three solutions and the analytical solu-
tion. The solid-shell elements proposed by Sze et al. fulfill the Kirchhoff hypothesis. Therefore, the solution
obtained with these elements reproduces the analytical solution exactly. Nevertheless, the tests have shown
that the developed isogeometric NURBS elements give equal or better results than volume elements without
the need to make special assumptions. However, the new NURBS elements are more flexible in using them
for the calculation of complex models, for example, modeling of stringers, applying thick piezoceramics to
thin-walled structures.

3.2 Piezoelectric circular plate

As a second benchmark problem, the eigenfrequencies and the eigenforms of a free-free circular plate are
computed (see Fig. 1). The plate consists of the piezoceramic material PIC-151.1 The material properties are
specified in Table 4. The diameter and the height of the plate are d = 0.03 m and h = 0.001 m, respectively.

The circular plate is metallized on top and bottom and it is modeled with two different electrical potential
boundary conditions. The first calculation assumes that the electrical potential of the whole structure is set to
zero (ideal short circuit). In this case, no piezoelectrical coupling exists and the plate behaves like an elastic
plate. Under this assumption, we can use the analytical solution of a free-free circular plate, for example, given
by Giurgiutiu [13], to verify the solution. In the second calculation, there is no electrical connection between
the top and the bottom surface. In this case, a charge separation takes place which results in a difference of the
electrical potential between the top and the bottom surface.

To calculate the eigenfrequencies of the system an ansatz

[
Ucont
φcont

]
= eiωt

[
Û
φ̂

]
(27)

1 PI Ceramic GmbH, Lederhose—GERMANY, http://www.piceramic.com/index.php, Feb. 2011.

http://www.piceramic.com/index.php
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is used in Eqs. (21a) and (21b) and we obtain
(

−ω2
[

Muu 0
0 0

]
+

[
Kuu Kuφ

Kφu −Kφφ

])[
Û
φ̂

]
=

[
0
0

]
. (28)

From the second equation we receive

φ̂ = K−1
φφKφuÛ. (29)

Substituting Eq. (29) in the first equation of Eq. (28) the eigenvalue problem is derived as

(Kuu + KuφK−1
φφ Kφu − ω2Muu)Û = 0. (30)

In the short circuit case the electric potential φ̂ disappears, which results in

(Kuu − ω2Muu)Û = 0. (31)

In Table 5, the solutions are illustrated. The short circuit case is presented in columns (1)–(3) and the open circuit
case in columns (4) and (5). Results of the short circuit model are calculated with three different approaches,
the analytical solution (1), the ABAQUS finite element solution (2) and the proposed new isogeometric finite
element solution (3). The open circuit results are calculated with ABAQUS finite elements (4) and again with
the new isogeometric finite elements (5). The ABAQUS reference solution uses fully integrated, quadratic
elements (C3D20, C3D20E). The NURBS element solution is calculated with the polynomial order p = 5 in
x1- and x2-direction and with p = 2 in x3-direction (see Fig. 1). The solutions (1)–(3) of Table 5 show a good
agreement between the analytical solution (1) and both numerical solutions (2) and (3). The small discrepancy
with the analytical solution results from the assumption of material isotropy, because only in-plane material
properties can be used in this case. Therefore, the transversal isotropic behavior of the plate is not represented
correctly in the analytical solution. Both the ABAQUS and the isogeometric solution are in good agreement.

The results (4)–(5) of the first eight eigenfrequencies of the ABAQUS (4) and the isogeometric (5) solution
match also very well. It should be noted that not all eigenfrequencies are equally influenced by the piezoelec-
trical coupling. Mainly the second and the eighth eigenmode show a strong influence. The ABAQUS as well
as the isogeometric solution predict the same behavior. Due to the stiffening effect caused by the electrome-
chanical coupling, the eigenfrequencies of the open circuit case are generally higher compared with the short
circuit case.

3.3 Shape control of an active plate

The third benchmark problem deals with an active composite plate. It illustrates the combination of an active
and a passive structure. An active piezoelectric patch applied to a structure can be used to reduce the deflection
of the plate caused by an external load.

The plate model is shown in Fig. 4a. The top and the bottom layer of the plate consist of piezoceramic
material PZT G1195. The material parameters are taken from Kioua and Mirza [20]. The layers in between
the top and the bottom layers are made of T300/976. They are stacked together as a cross ply laminate
[0 , 90 , 0]S . The properties of both materials are given in Table 6. The plate is simply supported, and a con-
stant pressure of p = 200 N/m2 is applied uniformly at the top surface. Each laminate layer is modeled
with three-dimensional finite elements. Each layer is approximated in thickness direction x3 with linear shape
functions to minimize the numerical effort. Tests have shown that significant locking phenomena do not
occur and a higher polynomial degree in x3-direction does not improve the solution. In x1- and x2-direc-
tions, higher-order polynomials are used. For the calculation, the in-plane polynomial degrees are chosen as
p1 = 4 and p2 = 4. Each layer is discretized equally. When applying different electrical boundary conditions
(ΔΦ = 0 V, ΔΦ = 15 V, ΔΦ = 27 V), which are proposed by Kioua and Mirza [20], the deformations of
the plates are reduced.

The normalized displacement u3 is shown in Fig. 4b. The results are compared with an ABAQUS reference
solution, where fully integrated elements with quadratic shape functions are used to simulate a quarter of the
plate (C3D20, C3D20E, dof = 191823). The solid lines denote the isogeometric finite element solution, and
the crosses describe the results obtained using ABAQUS. Both solutions coincide with solutions given by
Marinkovic̀ et al. [22].

Figure 5a, b show the deformed shape of the plate for ΔΦ = 0 V and ΔΦ = 27 V. Both deformed shapes
coincide with the solutions obtained by ABAQUS as well as by Marinkovic̀ [22].
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Table 5 First eight non-zero transversal eigenfrequencies in kHz and mode shapes of a circular plate

Number Modeshape Different models

1 2 3 4 5

1 3.13 3.11 3.1 3.17 3.17

2 5.4 5.41 5.41 6.25 6.26

3 7.3 7.2 7.21 7.37 7.34

4 12.23 12.08 12.1 12.91 12.93

5 12.84 12.53 12.56 13.64 13.65

6 19.7 19.04 19.11 19.69 19.74

7 21.02 20.45 20.51 22.79 22.86

8 22.97 22.38 22.44 25.14 25.22

Short circuit case (1—analytical solution, 2—ABAQUS elastic, 3—NURBS elastic); open circuit case (4—ABAQUS piezoelec-
tric, 5—NURBS piezoelectric)

(b)(a)

Fig. 4 Model of the active plate. a Model of a active simply supported composite plate (a = b = 254 mm h = 1.336 mm).
b Deformation of the active plate at x2 = b/2 and x3 = h/2 with solid lines (isogeometric element solution) and crosses
(ABAQUS solution)
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Table 6 Material properties of the active plate [20]

Properties PZT G1195 T300/976
Layer thickness 0.254 mm 0.138 mm

SE
11 1.587 × 10−11 m2/N 6.666 × 10−12 m2/N

SE
22 1.587 × 10−11 m2/N 1.111 × 10−10 m2/N

SE
44 4.132 × 10−11 m2/N 1.408 × 10−10 m2/N

SE
66 4.132 × 10−11 m2/N 4.000 × 10−10 m2/N

ν12 0.3 0.018
ν23 0.3 0.3
e31 −22.86 C/m2 –
e32 −22.86 C/m2 –

(a) (b)

Fig. 5 Deformed shape of a composite plate under a constant surface load (p = 200 N/mm2) a 0 V, b 27 V

Fig. 6 Cross section of the clamped piezoelectric ring-type bending actuator with clamped outer edge (Ri = 3.1 mm, Ro =
9.555 mm)

3.4 Bimorph ring actuator

The fourth example is a clamped bimorph ring actuator consisting of two piezoelectric layers (Fig. 6). This type
of actuator is used, for example, to build piezoelectric linear motors [18]. The material of both layers is PIC
151. The properties are given in Table 4; Fig. 6 shows the setup. The height of the layers is h/2 = 0.254 mm.
Both layers are poled in opposite directions, and an electrical potential difference of ΔΦ = 200 V between
the top and the bottom surface is applied, which activates both actuators. The opposite polarization introduces
a bending moment in the same manner as the bimorph beam presented in Sect. 3.1. Due to the symmetry
of the problem, only a quarter of the ring is modeled with NURBS elements as well as with standard finite
elements (C3D20E). This simplifies the application of the boundary conditions in comparison with any smaller
segment, which could also be used. Results calculated with ABAQUS by applying a very fine mesh (C3D20E,
dof = 676404) are taken as reference values.

The deformation of a calculated quarter of the bimorph ring is illustrated in Fig. 7a, b which shows the u3
displacements of the ring at the position (x1, x2 = 0, x3 = h/2). The ABAQUS reference solution (crosses)
as well as the converged solution calculated with the new isogeometric NURBS element (solid line) are plotted.
Both results are in good agreement.

In Fig. 8, the evolution of the relative error of the maximum u3-displacements with respect to the degrees
of freedom is illustrated. The simulations utilizing the isogeometric piezoelectrical element concept are per-
formed with three different polynomial degree templates. The polynomial degree is changed only in x1- and
x2-direction (p1 = p2 = p). In x3-direction for all isogeometric NURBS elements a quadratic polynomial
(p = 2) has been prescribed.

Increasing the number of degrees of freedom results in a decreasing error for both numerical models.
As expected, the accuracy increases using higher polynomial degrees. The convergence rate of the quadratic
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(b)(a)

Fig. 7 Bimorph ring actuator ΔΦ = 200 V . a Quarter of the bimorph ring actuator, b u3 displacement at x3 = h/2

Fig. 8 Convergence of three NURBS (p1 = p2 = p, p3 = 2) and one ABAQUS solution (p = 2)

ABAQUS elements and the quadratic NURBS elements are identical, because an equal polynomial order of
the shape functions is used. The convergence rate only depends on the polynomial degree [2] and not on the
polynomial type. NURBS elements are nevertheless better due to the exact approximation of the geometry
[19]. This can also be seen in Fig. 8, where the NURBS curve (p = 2) and the ABAQUS solution have the
same convergence rate, but the NURBS solution is more accurate due to the exact description of the geometry.
The solution with isogeometric NURBS elements needs only one half of the degrees of freedom to get the
same accuracy as the ABAQUS solution.

4 Conclusions

In the paper, the development of a new isogeometric piezoelectric finite element is presented. For the simu-
lation of complex structures, the isogeometric analysis has great advantages. Therefore, the development of
isogeometric multiphysics finite elements is of great importance, for example, for the analysis and the design
of smart structures. Very recently, the new isogeometric finite element has also been successfully applied to
model Lamb wave propagation in thin structures.

The developed finite element has been tested by solving several benchmark problems, and a good agree-
ment has been shown with analytical and ABAQUS reference solutions. The coupling between piezoelectric
structural elements and passive structures can be easily implemented by using equal order polynomials in the
bonding area between both parts. The tests have demonstrated that the use of higher-order polynomial degrees
in isogeometric elements results in a reduction in the required total number of degrees of freedom. Further-
more, it is shown that a better geometrical approximation with isogeometric elements, for example, if circular
piezoelectric patches are used, results in more accurate solutions in comparison with standard isoparametric
finite elements.
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Since real structures are very complex, the proposed finite elements can lead to a significant reduction in
the required degrees of freedom in order to obtain a sufficiently accurate solution of a problem. This results in
a notable reduction in the computational effort.

Acknowledgments The authors would like to thank the German Research Foundation (DFG) and all project partners PAK357
for their support (GA 480/13-1).
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