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Abstract The subloading surface model is based on the simple and natural postulate that the plastic strain rate
develops as the stress approaches the yield surface. It therefore always describes the continuous variation of the
tangent modulus. It requires no incorporation of an algorithm for the judgment of yielding, i.e., a judgment of
whether or not the stress reaches the yield surface. Furthermore, the calculation is controlled to fulfill the con-
sistency condition. Consequently, the stress is attracted automatically to the normal-yield surface in the plastic
loading process even if it goes out from that surface. The model has been adopted widely to the description of
deformation behavior of geomaterials and friction behavior. In this article, it is applied to the formulation of
the constitutive equation of metals by modifying the past formulation of this model. This modification enables
to avoid the indetermination of the subloading surface, to make the reloading curve recover promptly to the
preceding loading curve, and to describe the cyclic stagnation of isotropic hardening. The applicability of the
present model to the description of actual metal deformation behavior is verified through comparison with
various cyclic loading test data.

1 Introduction

The conventional elastoplasticity model [9], premised upon the idea that the interior of a yield surface is
an elastic region, has contributed to the prediction of the elastoplastic deformation behavior of solids such as
metals, geomaterials, and concretes. However, it cannot describe cyclic loading behavior, the application being
limited to the description of monotonic loading behavior. Various elastoplasticity models aimed at describing
cyclic loading behavior have been proposed to date. They require a pertinent description of the plastic strain rate
induced by the rate of stress inside the yield surface. They are termed the unconventional plasticity model by
Drucker [9] and also designated as the cyclic plasticity model [32]. They are classified into models based on the
concepts of kinematic hardening, i.e., the “translation” (parallel displacement) of (sub)yield surface enclosing
a purely elastic region and the concept of expansion/contraction, i.e., “size-variation” of the loading surface.
The multi surface model [36,43], the two surface model [5,40], and the nonlinear kinematic hardening model
[1,3,4] belong to the former category, and only the subloading surface model belongs to the latter category.
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Here, note that the kinematic hardening [46] is merely the simple method proposed to describe the anisot-
ropy of plastically pressure-dependent metals. It does not have sufficient generality applicable even to the
plastically pressure-dependent, i.e., frictional materials (e.g., soils, rocks, and concretes) that obey the rota-
tional hardening (cf. [22]) and the friction behavior as known from the fact: the unrealistic situation that the
yield surface of frictional material does not involve the stress-free state is engendered when subjected to the
increase in compressive or deviatoric stress if it undergoes the kinematic hardening, i.e., the parallel trans-
lation, although it must involve always the stress-free state slightly. The models based on the concept of the
kinematic hardening assume the (sub)yield surface enclosing the purely elastic domain so that they possess
various problems as follows:

1. The tangent modulus decreases discontinuously at the (sub)yield point or the contact point of assumed
surfaces, violating the smoothness condition [15,16,21]. Consequently, the smooth stress–strain curve
observed in real materials cannot be predicted.

2. The judgment of whether or not stress reaches yield or a larger subyield surface is required, and thus, the
computer algorithm for the judgment must be incorporated.

3. The computer algorithm pulling back the stress to the (sub)yield surface(s) is required in the computer
program.

4. The plastic strain rate is not induced for the change of stress inside the (sub)yield surface. Therefore, any
strain accumulation is not predicted during cyclic loading inside that surface, even if the (sub)yield surface
reaches the fully yield (high stress) state. It produces a risky mechanical design because remarkable strain
accumulation is induced for real materials in such state.

5. The uniqueness of the solution is violated if the tangential-inelastic strain rate induced by the stress rate tan-
gential to the yield surface is incorporated, which cannot be ignored in the description of non-proportional
loading behavior and further analyses of plastic instability problems.

On the other hand, in the subloading surface model [12–14], any surface independent of the conventional
yield surface, renamed as the normal-yield surface, is not introduced. Instead, the model is based on the simple
and intuitive postulate that the plastic strain rate develops as the stress approaches the normal-yield surface.
The measure describing the approaching degree to the normal-yield surface is given by the ratio, called the
normal-yield ratio, of the size of the subloading surface to that of the normal-yield surface, while the sub-
loading surface passes through the current stress point and is similar to the normal-yield surface. In addition,
the evolution rule of the normal-yield ratio is formulated such that it increases so that the subloading surface
approaches the normal-yield surface in the plastic loading process. Then, the plastic modulus is derived by
substituting this evolution rule into the consistency condition obtained by time differentiation of the subload-
ing surface. Therefore, the stress is automatically attracted to the normal-yield surface. Here, the subloading
surface model fulfills always not only the continuity condition but also the smoothness condition [15,16,21]
leading to the description of smooth transition from the elastic to the plastic state. Moreover, the judgment of
whether or not the stress reaches the yield surface is unnecessary because the current stress always lies on the
subloading surface.

Eventually, all the aforementioned problems in the unconventional plasticity models based on the con-
cept of kinematic hardening are excluded from the subloading surface model. The subloading surface model
has been applied widely to the formulations of constitutive equations of soils (e.g., [2,21,24,30,41,47,49]).
Furthermore, the constitutive equation of friction, called the subloading-friction model, has been formulated
by Hashiguchi et al. [28] based on the concept of a subloading surface. The model concisely describes the
plastic sliding velocity induced by the rate of contact traction below the friction criterion, exhibiting the smooth
transition from the elastic to the plastic sliding state, and the accumulation of plastic sliding during the cyclic
loading of contact traction. Further, it has been extended to describe the transition from the static to the kinetic
frictions and the recovery of static friction [31]. The stick-slip phenomenon has been analyzed using the sub-
loading-friction model [45]. On the other hand, the subloading surface model has been criticized intensely by
Dafalias [7] stating that the subloading surface model fits the description of soil behavior but is inapplicable
to that of metal behavior predicting “quite unrealistic, basically due to the strong undershooting”.

This article addresses the formulation of the constitutive equation of metals based on the subloading surface
model by modifying its past formulation [13,14]. The modification is attained for the rigorous translation rule
of the similarity-center to avoid the occurrence of indetermination of the subloading surface, for the prompt
recover of the reloading curve to the preceding loading curve and for the cyclic stagnation of isotropic hard-
ening [3,44] with basic modification by the concept of subloading surface. Then, the validity of the present
model for the prediction of real deformation behavior of metals is verified by comparisons with various cyclic
loading test data.
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The direct notations AB for Air Br j , A : B for Ars Brs, �: A for Γi jrs Ars and A : � for ArsΓrsi j are used
for arbitrary second-order tensors A, B and fourth-order tensor �, where Einstein’s summation convention is
applied for a letter of the repeated suffix taking 1, 2, 3.

2 Strain rate

Designating the current configuration of the material particle as x and the current velocity as v, the velocity
gradient is described as L = ∂v/∂x by which the strain rate and the continuum spin are defined through
D ≡ (L + LT )/2 and W ≡ (L − LT )/2, respectively, ()T standing for the transpose. Limited to the infinites-
imal strain, let the strain rate D be decomposed additively into the elastic strain rate De and the plastic strain
rate Dp as

D = De + Dp, (1)

where in the context of the infinitesimal elastic deformation De be given as the hypoelastic equation [48] in
the Hooke’s type as

De = E−1 : ◦
σ, (2)

where E is the fourth-order tensor describing the elastic tangent modulus and σ is the Cauchy stress, with (◦)
denoting the proper objective corotational rate tensor

◦
T ≡ •

T −ωT + Tω, (3)

for an arbitrary second-order tensor T, where ω is the spin of the rigid-body rotation of the material, i.e., the
spin of the substructure of the material. The continuum spin W can be used as the corotational spin ω for
infinitesimal deformation, whereas W is calculated from the velocity gradient. The elastic tangent modulus
tensor E in Hooke’s form is

Ei jkl = νE
(1+ν)(1−2ν)

δi jδkl + E
2(1+ν)

(δikδ jl + δilδ jk)

E−1
i jkl = 2−ν

3E δi jδkl + 1+ν
2E (δikδ jl + δilδ jk)

}
. (4)

E and ν are the Young’s modulus and shear modulus, respectively. δi j is the Kronecker’s delta, i.e., δi j =
1 for i = j and δi j = 0 for i �= j . Here, the hypoelastic-plastic constitutive equation incorporating proper
corotational rates for stress and anisotropic hardening variables holds only for infinitesimal deformation but it
holds even for the finite rotation.

3 Refinement of formulation in the subloading surface model

The discussion of this Section is devoted to the formulation of the constitutive equation of metals, modifying
the past formulation of the subloading surface model by avoiding the indetermination of the subloading surface,
by making the reloading curve recover promptly to the preceding loading curve and by introducing the cyclic
stagnation of isotropic hardening.

The conventional yield surface, renamed as the normal-yield surface, for metals is given as

f (σ̂) = F(H) (5)

where

σ̂ ≡ σ − α. (6)

F is the isotropic hardening function exhibiting the size of the normal-yield surface, which is the function
of the isotropic hardening variable H . α is the kinematic hardening variable, i.e., the back stress. Here, it is
assumed that f (σ̂) is the function of σ̂ in the homogeneous degree-one fulfilling f (|s|σ̂) = |s| f (σ̂) for an
arbitrary scalar variable s. Therefore, the normal-yield surface maintains a similar shape.

To describe the plastic strain rate induced by the rate of stress inside the yield surface, it is assumed that
the plastic strain rate is induced progressively as the stress approaches the yield surface. First, let the surface,
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Fig. 1 Normal-yield, subloading, and similarity-center surfaces

called the subloading surface, be incorporated, which always passes through the current stress point and main-
tains the similar shape and same orientation to the yield surface, renamed the normal-yield surface. Then, let
the similarity ratio, i.e., the ratio of the size of subloading surface to that of normal-yield surface, called the
normal-yield ratio and designated by the symbol R(0 ≤ R ≤ 1), be introduced as the general measure of
approaching to the normal-yield surface. The subloading surface is represented by the following equation (see
Fig. 1):

f (σ̄) = RF(H) (7)

where

σ̄ ≡ σ − ᾱ = R(σy − α) = σ̃ + Rŝ (8.1)
ŝ ≡ s − α, s̄ ≡ s − ᾱ = Rŝ (8.2, 3)
ᾱ = s − Rŝ (8.4)
σ̃ ≡ σ − s = R(σy − s) (8.5)

⎫⎪⎬
⎪⎭ ,

s represents the center of similarity of the normal-yield and the subloading surfaces, called the similarity-cen-
ter. ᾱ stands for the conjugate point in the subloading surface to the point α in the normal-yield surface. σy
signifies the conjugate point on the normal-yield surface to the current stress point σ on the subloading surface.
All of the relations of variables in Eq. (8) hold by virtue of the similarity of the subloading surface to the
normal-yield surface as known from Fig. 1.

The material-time derivative of Eq. (7) reads

∂ f (σ̄ )

∂σ̄
: ◦
σ −∂ f (σ̄ )

∂σ̄
: ◦
ᾱ = •

R F + R
•
F (9)

which is rewritten as

N̄ : ◦
σ −N̄ :

⎛
⎝ ◦

ᾱ +
•
F
F

σ̄ +
•
R
R

σ̄

⎞
⎠ = 0 (10)

where

N̄ ≡ ∂ f (σ̄ )

∂σ̄

/∥∥∥∥∂ f (σ̄ )

∂σ̄

∥∥∥∥(‖N̄‖ = 1) (11)

noting the following Euler’s theorem for the homogeneous function in degree-one of σ̄ :

∂ f (σ̄ )

∂σ̄
=

∂ f (σ̄ )
∂ σ̄

: σ̄

∂ f (σ̄ )
∂ σ̄

: σ̄

∂ f (σ̄ )

∂σ̄
=

∂ f (σ̄ )
∂ σ̄

: σ̄
∂ f (σ̄ )
∂σ̄∥∥∥ ∂ f (σ̄ )
∂σ̄

∥∥∥ : σ̄

∂ f (σ̄ )
∂ σ̄∥∥∥ ∂ f (σ̄ )
∂ σ̄

∥∥∥ =
∂ f (σ̄ )
∂ σ̄

: σ̄

N̄ : σ̄
N̄ = f (σ̄ )

N̄ : σ̄
N̄ = RF

N̄ : σ̄
N̄. (12)
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‖ ‖ designates the magnitude, i.e., ‖T‖ = √
T : T. The variable

◦
ᾱ in Eq. (10) is described from Eq. (8.3) as

◦
ᾱ = R

◦
α − •

R ŝ + (1 − R)
◦
s . (13)

The most elastic deformation behavior is induced in the state in which the normal-yield ratio is zero, i.e., R = 0
in which the stress lies on the similarity-center, i.e., σ = s. Consequently, the similarity-center s is interpreted
as the most elastic stress state. Here, the most elastic stress state, i.e., the similarity-center s approaches the
normal-yield surface, following stress σ as the plastic deformation proceeds. However, from physical perspec-
tive, the similarity-center should not approach the normal-yield surface without limitation, although the small
yield surface enclosing a purely elastic region is allowed to go up unlimitedly to the fully plastic state in the
other cyclic plasticity models based on the concept of kinematic hardening. In addition, from the mathematical
perspective, the subloading surface is not determined uniquely if the stress coincides with the similarity-center
lying just in the normal-yield surface.

To formulate the evolution rule of the similarity-center to avoid the unlimited approach of the similar-
ity-center to the normal-yield surface, first, let the following surface, called the similarity-center surface, be
introduced as presented in Fig. 1, which passes through the similarity-center s and has a similar shape and
orientation to the normal-yield surface with respect to the back stress α,

f (ŝ) = �s F(H), i.e., �s = f (ŝ)/F(H), (14)

where the variable �s(0 ≤ �s ≤ 1) represents the ratio of the size of the similarity-center surface to that
of the normal-yield surface, called the similarity-center yield ratio. It plays the role of the measure for the
approaching degree of the similarity-center to the normal-yield surface. Since the similarity-center must lie
inside the normal-yield surface as described above, the similarity-center yield ratio must be less than unity.
Then, the following inequality must hold:

f (ŝ) ≤ χ F(H), i.e., �s ≤ χ (15)

where χ (<1) is the material constant exhibiting the maximum value of �s . The time differentiation of Eq. (15)
at the limit state that s lies on the outermost surface f (ŝ) = χ F(H) yields

∂ f (ŝ)
∂ ŝ

:
⎛
⎝◦

s − ◦
α −

•
F
F

ŝ

⎞
⎠ ≤ 0 for f (ŝ) = χ F(H), (16)

in which the relation {∂ f (ŝ)/∂ ŝ}:ŝ(= f (ŝ)) = χ F for �s = χ on account of Euler’s homogeneous func-
tion f (ŝ) in degree-one of ŝ is taken into account. Let the following equation be assumed, which fulfills the
inequality (16):

◦
s − ◦

α −
•
F
F

ŝ = c‖Dp‖
{
σy − α − �s

χ
(sy − α)

}
(17)

where it holds that

σy − α − �s

χ
(sy − α) =

{
σy − α = (σ − s)/R for �s = 0 (s = α)
σy − sy for �s = χ.

(18)

c is the material constant affecting the rate of similarity-center. sy is the conjugate point on the normal-yield
surface to the point s on the similarity-center surface with respect to α, i.e.,

sy = α + ŝ
�s

. (19)

The similarity-center approaches the current stress for �s = 0 under the non-hardening state
•
F = 0,

◦
α = 0.

The fulfillment of inequality (16) by Eq. (17) is justified by the fact that the vector σy −sy forms an obtuse angle
to the outward-normal vector ∂ f (ŝ)/∂ ŝ of the similarity-center surface leading to {∂ f (ŝ)/∂ ŝ} : (σy − sy) ≤ 0
in the six-dimensional stress space as presented in Fig. 1. It holds from Eqs. (8.4) and (19) that
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σy − α − �s

χ
(sy − α) = σy − s + (s − α) − �s

χ

s − α

�s
= σ̃

R
−

(
1

χ
− 1

)
ŝ.

Inserting this relation in Eq. (17), the translation rule of the similarity-center is given by

◦
s = c‖Dp‖

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+ ◦
α +

•
F
F

ŝ. (20)

Substituting Eq. (20) into Eq. (13), one obtains

◦
ᾱ = ◦

α +(1 − R)

⎧⎨
⎩c‖Dp‖

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+
•
F
F

ŝ

⎫⎬
⎭ − •

R ŝ. (21)

Inserting Eq. (21) into Eq. (10), it follows that

N̄ : ◦
σ −N̄ :

⎡
⎣ ◦

α +(1 − R)

⎧⎨
⎩c‖Dp‖

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+
•
F
F

ŝ

⎫⎬
⎭ − •

R ŝ +
•
F
F

σ̄ +
•
R
R

σ̄

⎤
⎦ = 0,

i.e.,

N̄ : ◦
σ −N̄ :

⎡
⎣ ◦

α +c(1 − R)‖Dp‖
{

σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+
•
F
F

{σ̄ + (1 − R)ŝ} +
•
R
R

(σ̄ − Rŝ)

⎤
⎦ = 0. (22)

Making use of the relations

σ̄ + (1 − R)ŝ = σ − ᾱ + s − α − (s − ᾱ) = σ̂
σ̄ − Rŝ = σ − ᾱ − (s − ᾱ) = σ̃

,

Eq. (22) is simplified to

N̄ : ◦
σ −N̄ :

⎧⎨
⎩ ◦

α +c(1 − R)‖Dp‖
{

σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+
•
F
F

σ̂ + •
R

σ̃

R

⎫⎬
⎭ = 0. (23)

Furthermore, let the evolution rule of the normal-yield ratio R be given by

•
R = U (R)‖Dp‖ for Dp �= 0 (24)

where U is a monotonically decreasing function of R, satisfying the following conditions:

→ +∞ for 0 ≤ R ≤ Re (quasi-elastic state), (25.1)
> 0 for Re < R < 1 (subyield state), (25.2)
= 0 for R = 1 (normal-yield state), (25.3)
< 0 for R > 1 (over normal-yield state), (25.4)

U (R)

⎧⎨
⎩

Re(<1) is the material constant denoting the value of R below which the elastic deformation is induced prac-
tically. Equation (24) with Eq. (25) will be incorporated below into the consistency condition. In particular,
the calculation is controlled to attract stress automatically to the normal-yield surface in the plastic loading

process even if it goes out from that surface because of
•
R < 0 for R > 1 by Eq. (24) with Eq. (25.4). Let the

function U satisfying Eq. (25) be simply given by

U (R) = ucot

(
π

2

〈R − Re〉
1 − Re

)
(26)
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where u is a material function in general and 〈 〉 is the Macaulay bracket implying 〈s〉 = (s + |s|)/2, i.e.,
〈s〉 = s for s ≥ 0 and 〈s〉 = 0 for s<0 for an arbitrary scalar variable. Equation (24) with Eq. (26) can be
integrated analytically as

R = 2
π
(1 − Re)cos−1

{
cos

(
π
2

〈R0−Re〉
1−Re

)
exp

(
−u π

2
ε p−ε

p
0

1−Re

)}
+ Re

ε p − ε
p
0 = 2

π
(1 − Re)

1
u ln

cos
(

π
2

〈R0−Re〉
1−Re

)
cos

(
π
2

R−Re
1−Re

)

⎫⎪⎪⎬
⎪⎪⎭ , (27)

under the initial condition ε p = ε
p
0 : R = R0, where ε p ≡ ∫ ‖Dp‖dt (t : time).

Substituting Eq. (24) into Eq. (23), the following consistency condition is obtained:

tr(N̄
◦
σ) − N̄ :

[
F ′

F

•
H σ̂ + ◦

α +U‖Dp‖ σ̃

R
+ c(1 − R)‖Dp‖

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}]

= 0. (28)

In what follows, we introduce the associated flow rule

Dp = λ N̄(λ > 0) (29)

where λ is the proportionality factor. Inserting Eq. (29), Eq. (28) is rewritten as

N̄: ◦
σ −λM p = 0 (30)

where

M p ≡ N̄ :
[

F ′h
F

σ̂ + a + U
σ̃

R
+ c(1 − R)

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}]

, (31)

F ′ ≡ dF/dH, h ≡ •
H /λ, a ≡ ◦

α /λ. (32)

It holds from Eq. (30) that

λ = N̄: ◦
σ

M p
, Dp = N̄: ◦

σ

Mp
N̄. (33)

The strain rate is given from Eqs. (1), (2), and (33) as

D = E−1 : ◦
σ + (N̄ : ◦

σ)

Mp
N̄, (34)

from which the proportionality factor described in terms of the strain rate, denoted by Λ instead of λ, in the
flow rule (29) is given as follows:

Λ = N̄ : E : D

M p + N̄ : E : N̄
. (35)

Using Eq. (35), the stress rate is given from Eq. (34) as follows:

◦
σ = E : D − N̄ : E : D

M p + N̄ : E : N̄
E : N̄. (36)

The loading criterion is given by Hashiguchi [21], Hill [34,35]:

Dp �= 0 : Λ > 0,
Dp = 0 : otherwise

}
, (37)

where the judgment of yielding is not necessary because the current stress always lies on the subloading surface,
which plays the role of a loading surface, although a judgment is necessary in the other plasticity models.
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For the normal-yield state R = 1(ᾱ = α, U = 0), the plastic strain rate in Eq. (33) is reduced to

Dp = N̂ : ◦
σ

M p
N̂, M p ≡ N̂ :

(
F ′h
F

σ̂ + a
)

, N̂ ≡ ∂ f (σ̂)

∂σ̂

/∥∥∥∥∂ f (σ̂)

∂σ̂

∥∥∥∥ (38)

which is no more than the plastic strain rate in the conventional plasticity model with the isotropic and kine-
matic hardening. For u → ∞ leading to the abrupt decrease in the function U from U → ∞ for R < 1 to
U = 0 for R = 1 in Eq. (26), the plastic modulus M p in Eq. (38) drops abruptly from the infinite value to the
value M p in Eq. (38) so that the present model behavior is reduced to the conventional elastoplasticity model
behavior, thereby exhibiting an abrupt transition from the elastic to the plastic state. However, as u becomes
smaller, a more gentle transition from the elastic to the plastic state is described. Therefore, u plays the role to
alleviate the abrupt transition from the elastic to the plastic state.

The plastic strain rate formulated above depends only on the stress rate component normal to the yield/sub-
loading surface, called the normal stress rate, but it is independent of the component tangential to the yield/sub-
loading surface, called the tangential stress rate, because it is derived simply based on the consistency condition.
However, the inelastic strain rate induced by the tangential stress rate, called the tangential-inelastic strain
rate [19], cannot be ignored in the non-proportional loading process, which is necessary also for the analysis
of plastic instability problems [23,25,26,29,38,39].

The incorporation of the tangential-inelastic strain rate formulated by Hashiguchi [19,27] into Eqs. (34)
and (36) engenders the extended constitutive equations shown below.

D = E−1 : ◦
σ +

〈
N̄ : ◦

σ

M p

〉
N̄ + ξ Rτ

2G

◦
σ

′
t , (39)

◦
σ = E : D −

〈
N̄ : E : D

M p + N̄ : E : N̄

〉
E : N̄ − 2Gξ Rτ

1 + ξ Rτ
D′

t (40)

where

◦
σ

′
n ≡ (n̄′ ⊗ n̄′) : ◦

σ = (n̄′ : ◦
σ)n̄′,

◦
σ

′
t ≡ Ī′

t : ◦
σ = ◦

σ
′ − ◦

σ
′
n(N̄ : ◦

σ
′
t = 0)

}
, (41)

D̄′
t ≡ Ī′

t : D = D′ − (n̄′ : D′)n̄′, (42)

n̄′ ≡ N̄′

‖N̄′‖ (‖n̄′‖ = 1), (43)

Ī′
t ≡ Ī′ − n̄′ ⊗ n̄′

(
Ī ′
t i jkl ≡ 1

2
(δikδ jl + δilδ jk) − 1

3
δi jδkl − n̄′

i j n̄
′
kl

)
, (44)

Ī′ ≡ Ī − 1

3
I ⊗ I

(
Ī ′
i jkl ≡ 1

2
(δikδ jl + δilδ jk) − 1

3
δi jδkl

)
, (45)

Īi jkl ≡ 1

2

(
δikδ jl + δilδ jk

)
. (46)

I and Ī denote the identity tensors in the second-order and the fourth-order, respectively. ()′ in the second-order
tensor implies the deviatoric part, i.e., T′ ≡ T − (trT)/3. G (= E/{2(1 + ν)}) is the elastic shear modulus,
and ξ and τ(≥1) are material constants.

The tangential-inelastic strain rate has no loading criterion and is generated if and only if the deviatoric
tangential stress rate is added, falling within the framework of hypoelasticity for which the complete inte-
grability condition does not hold, so that the time integration depends on the loading path. Here, it is generated
gradually with the increase in the normal-yield ratio R as sown in the third terms of the right-hand sides in
Eqs. (39) and (40), so that both the continuity and the smoothness conditions are fulfilled always. In contrast,
not only the smoothness but also the continuity conditions are violated, resulting in losing the uniqueness of
the solution in the other plasticity models if the tangential-inelastic strain rate is incorporated because it is
predicted suddenly when the stress reaches the surface enclosing the purely elastic region. Therefore, no other
cyclic plasticity model has been extended to describe the tangential-inelastic strain rate.
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26 Enhancement of the description of cyclic loading behavior

The unique relation ε p − ε
p
0 = f (R − R0) holds under the initial condition ε p = ε

p
0 : R = R0 in the

monotonic loading process if U in Eq. (24) is the function of only the normal-yield ratio R as shown in
Eq. (27) as an example. Therefore, ε p induced during a certain change of R in the monotonic loading process
is identical irrespective of loading processes, e.g., the initial loading, the reloading and the inverse loading, and
of the proportional and non-proportional loadings. This fact engenders the description that the returning of the
reloading stress–strain curve to the previous loading curve is unrealistically gentle. Therefore, it engenders the
impertinent prediction of cyclic loading behavior, i.e., the prediction of the unrealistically large plastic strain
accumulation during the cyclic loading process. The above-described insufficiency in the subloading surface
model for the description of cyclic loading behavior has been criticized intensely by Dafalias [7] stating that
the subloading surface model fits the description of soil behavior but is inapplicable to that of metal behavior
predicting “quite unrealistic, basically due to the strong undershooting.” Here, it is noteworthy that the bound-
ing surface model with a radial mapping proposed later by Dafalias and Herrmann [6] has a structure similar
to the subloading surface, as was written “It appears that the first time a radial mapping formulation was
proposed, it was in reference to granular materials by Hashiguchi and Ueno [12]” by Dafalias [7]. However,
the above-described insufficiency in the description of deformation behavior by the present formulation in the
subloading surface model would not originate from the intrinsic nature of this model contrary to the assessment
by Dafalias [7]. In what follows, the past formulation of the subloading surface model will be modified to
supply this insufficiency.

First, note the following facts:

1. The difference between the curvatures in the reloading and the inverse loading curves becomes larger as
the plastic state develops. This fact is known as the Masing rule [42].

2. The similarity-center to be the most elastic stress state approaches the normal-yield surface as the plastic
state develops, and the approaching degree of the similarity-center to the normal-yield surface is expressed
by the similarity-center yield ratio �s in Eq. (14) as described in Sect. 3.

3. The transition from the elastic to the plastic state is more abrupt, i.e. the curvature of the stress–strain
curve is larger for a larger value of the material parameter u in the function U (R) in Eq. (26), as described
in Sect. 3. Therefore, u is expected to be larger for the reloading state but smaller for the inverse loading
state.

4. Therefore, the difference between the values of u for the reloading and the inverse loading states should
be larger for the larger value of �s .

5. The degree of reloading can be judged by how the stress is directed outward from the similarity-center
surface when it is observed from the similarity-center. It can be expressed by the scalar product of the
direction vector σ̃r/‖σ̃r‖ and the normalized outward-normal vector n̂s of the similarity-center surface in
the six-dimensional stress space, while σ̃r is the modified stress stemming from the similarity-center to
the current stress as described below. The scalar product is presented as

Sσ ≡ n̂s : σ̃′

‖σ̃′‖ (−1 ≤ Sσ ≤ 1) (47)

where

σ̃m ≡ 1

3
trσ̃, σ̃′ ≡ σ̃ − σ̃mI, (48)

n̂s ≡ ∂ f (ŝ)
∂s

/∥∥∥∥∂ f (ŝ)
∂s

∥∥∥∥ (‖n̂s‖ = 1). (49)

Sσ can be regarded as the measure of the direction of deviatoric stress observed from the similarity-center
surface.

Eventually, introducing the variables �s and Sσ , let the material parameter u in Eq. (26) be extended as
follows:

u = ū exp(us�s Sσ ),⎛
⎝=

⎧⎨
⎩

ū exp(us) for �s = 1 and Sσ = 1
ū for �s = 0 or Sσ = 0
ū exp(−us) for �s = 1 and Sσ = −1

⎞
⎠ . (50)
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(similarity -center)
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(improved)

Fig. 2 Stress–plastic strain curve predicted by the modified subloading surface model: rapid recovery to preceding monotonic
loading curve

u is the continuous function of the variables �s and Sσ , while the forms of u for the particular values of
them are designated in the bracket. Sσ = 1, 0 and −1 designate the states that the similarity-center lies in
the outward-normal, tangential, and inward-normal direction, respectively, of the similarity-center surface.
�s = 1 and 0 designate the states that the similarity-center lies on the center of the normal-yield surface and
on the normal-yield surface, respectively. ū and us are the material constants, whereas the former denotes the
average value of u. Then, u increases in the loading direction leading to the reloading but inversely it decreases
in its opposite direction leading to the inverse loading. By this modification, the phenomenon that the stress
returns rapidly to the previous loading curve in the reloading process after a partial unloading is described
realistically as depicted in Fig. 2, and thus, the plastic strain accumulation for the cyclic loading process is
suppressed realistically.

27 Material functions of metals

The functions of the normal-yield, the subloading, and the similarity-center surface for the von Mises yield
condition with the kinematic hardening are adopted for metals as follows:

f (σ̂ ) =
√

3

2

∥∥σ̂
′∥∥ , f (σ̄ ) =

√
3

2

∥∥σ̄ ′∥∥ , N̂ = N̄ = N̄′ = n̄′ = σ̄′∥∥σ̄′∥∥ , (51)

f (ŝ) =
√

3

2

∥∥ŝ′∥∥ ∂ f (ŝ)
∂ ŝ

=
√

3

2

ŝ′

‖ŝ‖ . (52)

The hardening function H in Eq. (5) is given for metals as follows [14,17]):

F = F0
[
1 + h1{1 − exp(−h2 H)}] (53.1)

F ′ = F0h1h2exp(−h2 H),
•

H =
√

2
3‖Dp‖ =

√
2
3

•
ε

P
, h =

√
2
3 (53.2–4)

}

where h1, h2 are the material constants, and εEp is referred to as the equivalent plastic strain.
The evolution equation of the kinematic hardening variable α is given as follows [17,22]:

◦
α = aα

(
rαF

σ̄′

‖σ̄′‖ −
√

2

3
α

)
‖Dp‖, a = aα

(
rαF

σ̄′

‖σ̄′‖ −
√

2

3
α

)
(54)

where aα and rα are material constants. In fact, Eq. (54) reduces to dαa = aα(rα F ∓ αa)dε
p
a in the uniaxial

loading process, where the upper and lower signs signify extension and compression, respectively, ε p
a denoting

the axial plastic strain. Here, α translates to approach the conjugate point
√

3/2rα FN̄(= √
3/2rα F σ̄′/‖σ̄′‖) on

the limit surface ‖σ′‖ = rαF of kinematic hardening, i.e., α → √
3/2rα F σ̄′/‖σ̄′‖(αa → rα F for the uniaxial

loading).
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Introducing Eq. (52) into Eqs. (14) and (50), one obtains

�s =
√

3

2

‖ŝ′‖
F

, n̂s = ŝ′

‖ŝ′‖ , u = u0 exp

(
us

√
3

2

‖ŝ′‖
F

ŝ′

‖ŝ′‖ : σ̃′

‖σ̃′‖

)
. (55)

Inserting Eqs. (51), (53), and (54) into Eqs. (20) and (31), the evolution rule of the similarity-center and
the plastic modulus read

◦
s = ‖Dp‖

[
c

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+ a +
√

2

3

F ′

F
ŝ

]
, (56)

M p ≡ σ̄′

‖σ̄′‖ :
[√

3

2

F ′

F
σ̂ + a + U

R
σ̃ + c(1 − R)

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}]

. (57)

The normal-yield ratio R is calculated by solving the equation of the subloading surface as follows: Substi-
tuting Eqs. (8.1) and (51.2) into Eq. (7), the subloading surface is expressed as√

3

2
‖σ̃′ + Rŝ′‖ = RF, i.e. tr(σ̃′ + Rŝ′)2 = 2

3
R2 F2. (58)

The normal-yield ratio R is calculable using the following equation that is derived by solving the quadratic
equation (58):

R =
σ̃′ : ŝ′ +

√
(σ̃

′ : ŝ′)2 + ( 2
3 F2 − ‖ŝ′‖2

) ‖σ̃′‖2

2
3 F2 − ‖ŝ′‖2

(59)

where only the known variables σ, α, s and F are included in the right-hand side.

28 Cyclic stagnation of isotropic hardening in metals

It has been observed through experiments for metals that isotropic hardening stagnates despite the development
of the equivalent plastic strain for a certain range in the beginning stage of re-yielding after reverse loading.
This phenomenon considerably affects the cyclic loading behavior in which the reverse loading is repeated.
In particular, the isotropic hardening saturates finally in the cyclic loading under a constant strain amplitude.
To describe this phenomenon, the concept of the non-hardening region, i.e., cyclic stagnation of isotropic hard-
ening, was proposed by Ohno [44], modifying the memory surface of plastic strain proposed by Chaboche
et al. [3] (see also [4]). The concept holds that isotropic hardening does not proceed when the plastic strain
lies inside a certain region, called the non-hardening region, in the plastic strain space. The non-hardening
region expands and translates when the plastic strain lies on the boundary of the region, and the plastic strain
rate is induced in the outward direction of the region. It is similar to the notion of the yield surface based
on the assumption that the plastic strain rate is not induced when the stress lies inside that surface, while the
plastic strain and the isotropic hardening variable for the non-hardening region correspond to the stress and the
plastic strain rate, respectively, for the yield surface. Thereafter, the formulation that the isotropic hardening
stagnates when the back stress lies inside the certain region of stress space was proposed by Yoshida and
Uemori [51,52], where the nonlinear kinematic hardening rule is adopted. However, it cannot describe the
stagnation behavior of isotropic hardening of metals without kinematic hardening, while isotropic hardening
and the kinematic hardening would be mutually independent phenomena. The following defects are involved
in these formulations.

1. Isotropic hardening is induced suddenly when the plastic strain (or the back stress in Yoshida and Uemori’s
[51,52] formulation) reaches the boundary of the nonhardening region, violating the smoothness condition
[15,16,18,21]. Consequently, the smooth stress–strain curve cannot be described except for a particular
treatment.

2. A judgment of whether or not the plastic strain (or the back stress) reaches the boundary of the nonhar-
dening region is necessary.



996 K. Hashiguchi et al.

3. A numerical operation to pull back the plastic strain (or the back stress) to the boundary of the nonhardening
region so as not to move outward from the nonhardening region is necessary.

4. The direct time integration of plastic strain rate itself is physically meaningless in the general deformation
process with a rigid-body rotation, but it has been used in the formulations of the cyclic stagnation of
isotropic hardening [3,44].

In the following discussion, a pertinent formulation without these deficiencies is presented for the cyclic
stagnation of isotropic hardening, based on the concept of a subloading surface.

First, define the basic variable for the formulation of the cyclic stagnation of isotropic hardening. The plastic
strain rate Dp is independent of the rigid-body rotation possessing the objectivity, and thus, it is related to the

corotational stress rate
◦
σ as the constitutive relation. Then, consider the state variable whose corotational rate is

the plastic strain rate Dp and let it be termed the accumulation of plastic strain rate, abbreviated as the plastic
strain below for the sake of simplicity, letting it be denoted by εp which may be regarded as a sort of measure

of plastic deformation. By replacing T,
•
T, and

◦
T with εp,

•
ε

p
and Dp, respectively, in Eq. (3), one obtains

Dp ≡ ◦
ε

p = •
ε

p − ωεp + εpω. (60)

Therefore, the plastic strain is calculated by the equation

εp =
∫ •

ε
p
dt =

∫
(Dp + ωε p − εpω)dt . (61)

The continuum spin W can be adopted as the corotational spin ω describing the spin of rigid-body rotation of
material for the infinitesimal strain but finite rotation as described in Sect. 2. Here, the rationality of Eq. (60)

would be captured also by the example of Prager’s [46] linear-kinematic hardening rule
◦
α = aDp (a: material

parameter) leading to αDp ≡ ◦
α = •

α −ωα + αω so that the back stress is calculated by α = ∫ •
α dt =∫

(
◦
α +ω α − α ω)dt = ∫

(aDp + ω α − α ω)dt in the similar way to Eq. (61). The material-time derivative

and the corotational rate of the plastic strain εp are given by
•
ε

p
(non-objective tensor) and

◦
ε

p = Dp (corota-
tional objective tensor), respectively, in Eq. (60), while the material-time derivative and the corotational rate of

the kinematic hardening variable α are given by
•
α (non-objective tensor) and

◦
α = aDp (corotational objective

tensor), respectively, in Prager’s kinematic hardening rule. Likewise, the corotational rate of strain ε is given

by D ≡ ◦
ε = •

ε −ω ε + εω. Equation (60) is to be one of the most fundamental and direct application of the
corotational rate tensor, while it should be noted that this notion is limited to the infinitesimal deformation since
the additive split of the strain rate into the elastic and the plastic parts does not hold in the finite deformation.

Equations (60) and (61) are indispensable in order to apply the cyclic stagnation theory of isotropic hard-
ening to practical engineering problems that material rotates as seen often in machine tools such as gears,
screws, wheel shafts, and pulleys. The past formulations for the cyclic stagnation of isotropic hardening have
been limited to the deformation without rigid-body rotation.

Assuming that the isotropic hardening stagnates when the plastic strain ε p lies inside a certain region in
the plastic strain space, let the following surface, called the normal-isotropic hardening surface, be introduced
as stated by Chaboche et al. [3]:

f
(

�
ε

p) = K (62)

where
�
ε

p ≡ εp − �
α. (63)

K and
�
α designate the size and the center, respectively, of the normal-isotropic hardening surface, the evolution

rules of which will be formulated later. The function f (
�
ε

p
) in Eq. (62) is explicitly given by

f
(

�
ε

p) =
√

2

3

∥∥∥�
ε

p
∥∥∥ , (64)

for Eq. (51) in the Mises yield condition.
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Fig. 3 Normal-isotropic and sub-isotropic hardening surfaces

Furthermore, we introduce the surface, called the sub-isotropic hardening surface, which always passes
through the current plastic strain εp and which has the similar shape and orientation to the normal-isotropic
hardening surface (see Fig. 3). It is expressed by the following equation:

f
(

�
ε

p) = �

RK (65)

where
�

R(0 ≤ �

R ≤ 1) is the ratio of the size of the sub-isotropic hardening surface to that of the normal-
isotropic hardening surface. It plays the role as the measure for the approaching degree of plastic strain to

the normal-isotropic hardening surface. Then,
�

R is referred to as the normal-isotropic hardening ratio. It is

calculable from the equation
�

R = f (
�
ε

p
)/K in terms of the known values εp,

�
α and K .

The material-time derivative of Eq. (65) leads to the consistency condition for the sub-isotropic hardening
surface:

∂ f
(

�
ε

p)
∂

�
ε

p : Dp −
∂ f

(
�
ε

p)
∂

�
ε

p : �
α
◦ = �

R
•
K + �

R
•
K . (66)

Now, for the formulation of the evolution rule of the size K of the normal-isotropic hardening surface, let
it be assumed that

1. The normal-isotropic hardening surface expands if and only if the sub-isotropic hardening surface expands,
i.e. the plastic strain rate is directed outward of the sub-isotropic hardening surface. It therefore holds that

•
K > 0 for

∂ f
(

�
ε

p)
∂

�
ε

p : Dp > 0(
�

R
•

> 0)

•
K = 0 for

∂ f
(

�
ε

p)
∂

�
ε

p : Dp ≤ 0(
�

R
•

≤ 0)

⎫⎪⎪⎬
⎪⎪⎭ .

2. The expansion rate of the normal-isotropic hardening surface increases as the plastic strain approaches

the normal-isotropic hardening surface, i.e. as the normal-isotropic hardening ratio increases. Then,
•
K is

the monotonically increasing function of
�

R.
3. In order that the normal-isotropic hardening surface expands continuously, its rate must be zero when the

plastic strain lies just on its center, i.e.
•
K = 0 for

�

R = 0 because the rate is zero during the process that

the plastic strain returns to the center, i.e.
•
K = 0 for

�

R
•

< 0.
Based on these assumptions, let the evolution rule for the size of the normal-isotropic hardening surface
be given by

•
K = C

�

R
ζ
〈

∂ f
(

�
ε

p)
∂

�
ε

p : Dp

〉
= C

�

R
ζ
〈

∂ f
(

�
ε

p)
∂

�
ε

p : N̄

〉
‖Dp‖ (67)

where C and ζ(≥1) are the material constants.
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Now, for the formulation of the evolution rule of the center
�
α of the normal-isotropic hardening surface,

let the following be assumed.

1. The center of the normal-isotropic hardening surface translates if and only if the sub-isotropic hardening
surface expands, i.e. if the plastic strain rate is directed outward of the sub-isotropic hardening surface
and thus it holds that

�
α
◦ �= 0 for

�

N : Dp > 0(
�

R
•

> 0)
�
α
◦ = 0 for

�

N : Dp ≤ 0(
�

R
•

≤ 0)

⎫⎬
⎭

where

�

N ≡
∂ f

(
�
ε

p)
∂

�
ε

p

/∥∥∥∥∥∥
∂ f

(
�
ε

p)
∂

�
ε

p

∥∥∥∥∥∥ (68)

Here, it is known from the consistency condition in Eq. (66) that
�

N must be used for
�
α
◦

instead of

∂ f (
�
ε

p
)/∂εp being used for

•
K .

2. The translation rate of the center of the normal-isotropic hardening surface increases as the plastic strain
approaches the normal-isotropic hardening surface, i.e. as the normal-isotropic hardening ratio increases.

Then,
�
α
◦

is the monotonically increasing function of
�

R.
3. In order that the normal-isotropic hardening surface translates continuously, the translational rate must be

zero when the plastic strain lies just on its center, i.e.
�
α
◦ = 0 for

�

R = 0 because the rate is zero during the

process that the plastic strain returns to the center, i.e.
�
α
◦ = 0 for

�

R
•

< 0.

4. The direction of translation is outward-normal
�

N of the sub-isotropic hardening surface.

Based on these assumptions, let the following evolution rule for the center of the normal-isotropic
hardening surface be given by

�
α
◦ = A

�

R
ζ 〈�

N : Dp〉�

N (69)

where A is the material constant which will be related to the material constant C below.
Then, substituting Eqs. (67) and (69) into Eq. (66), one obtains

∂ f
(

�
ε

p)
∂

�
ε

p : Dp −
∂ f

(
�
ε

p)
∂

�
ε

p : A
�

R
ζ 〈�

N : Dp〉�

N = �

RC
�

R
ζ
〈

∂ f
(

�
ε

p)
∂

�
ε

p : Dp

〉
+ �

R
•
K . (70)

Taking account of
�

R
•

= 0 for
�

R = 1 in Eq. (70), the following must hold:

A = 1 − C. (71)

Substituting Eq. (71) into Eq. (69), the evolution rule for the center of the normal-isotropic hardening surface
is determined finally as

�
α
◦ = (1 − C)

�

R
ζ 〈�

N : Dp〉�

N = (1 − C)
�

R
ζ 〈�

N : N̄〉‖Dp‖�

N. (72)

The normal-isotropic hardening surface expands without the translation in case of C = 1 but inversely trans-
lates without the expansion in case of C = 0. Here, assume that the normal-isotropic hardening surface evolves
in between these extreme cases leading to

0 ≤ C ≤ 1. (73)
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Fig. 4 Evolution of normal-isotropic hardening ratio

Substituting Eqs. (67) and (72) for the evolution rules of
�
α and K into Eq. (66), we have

�

R
•

= 1

K

⎛
⎝〈

∂ f
(

�
ε

p)
∂

�
ε

p : Dp

〉
−

∂ f
(

�
ε

p)
∂

�
ε

p : �
α
◦ − �

R
•
K

⎞
⎠

= 1

K

⎛
⎝
〈

∂ f
(

�
ε

p)
∂

�
ε

p : Dp

〉
−

∂ f
(

�
ε

p)
∂

�
ε

p : (1 − C)
�

R
ζ 〈�

N : N̄〉‖Dp‖�

N

−�

RC
�

R
ζ
〈

∂ f
(

�
ε

p)
∂

�
ε

p : N̄

〉
‖Dp‖

⎞
⎠ .

Then,
�

R
•

is given by

�

R
•

= 1

K

〈
∂ f

(
�
ε

p)
∂

�
ε

p : N̄

〉
‖Dp‖

[
1 − {1 − C(1 − �

R)}�

R
ζ
]

(74)

in which it holds that

�

R
•

‖Dp‖

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 1
K

〈
∂ f

(
�
ε

p)
∂

�
ε

p : N̄

〉
for

�

R = 0,

< 1
K

〈
∂ f

(
�
ε

p)
∂

�
ε

p : N̄

〉
for

�

R < 1,

= 0 for
�

R = 1,

< 0 for
�

R > 1,

(75)

noting Eq. (73) (see Fig. 4). The evolution equation (24) of the normal-yield ratio R is first assumed and then
it is incorporated into the consistency condition of the subloading surface to formulate the plastic modulus. On

the other hand, the evolution equation (74) of the normal-isotropic hardening ratio
�

R is not formulated first but
is instead obtained from the consistency condition of the sub-isotropic hardening surface with the substitutions
of evolution rules for the size and the translation of the normal-isotropic hardening surface.

The calculation is controlled to fulfill the consistency condition (66). Therefore, the plastic strain is attracted
automatically to that surface even if it goes out from that surface by virtue of the inclusion of the inequality
�

R
•

< 0 for
�

R > 1 as shown in Eq. (75). Furthermore, the judgment of whether or not the plastic strain lies on
the normal-isotropic hardening surface is not necessary in the present model. In contrast, the incorporations of
the computer algorithms for the judgment whether or not the plastic strain lies on the boundary of the complete
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stagnation region of isotropic hardening and for pulling back the plastic strain to the boundary are necessary
in the other models for the cyclic stagnation of isotropic hardening [3,4,44,51].

It is assumed that the isotropic hardening variable H evolves under the following rules.

1. Isotropic hardening is induced if and only if the sub-isotropic hardening surface expands, i.e. the plastic
strain rate is directed outward of the sub-isotropic hardening surface. Consequently, it holds that

•
H > 0 for

�

N : Dp > 0 (
�

R
•

> 0)
•

H = 0 for
�

N : Dp ≤ 0 (
�

R
•

≤ 0)

⎫⎬
⎭ .

2. The isotropic hardening rate increases as the plastic strain approaches the normal-isotropic hardening

surface, i.e. as the normal-isotropic hardening ratio increases. Then,
•

H is the monotonically increasing

function of
�

R.
3. In order for the isotropic hardening to develop continuously, its rate must be zero, i.e.

•
H = 0 for

�

R = 0,
when the plastic strain lies just on the center of the normal-isotropic hardening surface because the rate

is zero during the process in which the plastic strain returns to the center, i.e.
•

H = 0 for
�

R
•

< 0.
4. The isotropic hardening rule of Eq. (53.2) in the monotonic loading process holds as it is when the plastic

strain Dp lies on the normal-isotropic hardening surface (
�

R = 1). It is induced in the direction of the
outward-normal ∂ f (

�
ε

p
)/∂

�
ε

p
of that surface.

Then, let the following evolution rule of isotropic hardening be assumed by extending Eq. (53.2):

•
H =

√
2

3

�

R
υ〈�

N : Dp〉 =
√

2

3

�

R
υ〈�

N : N̄〉‖Dp‖, h =
√

2

3

�

R
υ〈�

N : N̄〉 (76)

where υ(≥1) is the material constant.
Employing the extended isotropic hardening rule in Eq. (76), the rate of similarity-center in Eq. (56) and

the plastic modulus in Eq. (57) are modified as follows:

◦
s = ‖Dp‖

[
c

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+ a +
√

2

3

F ′

F

�

R
υ〈�

N : N̄〉ŝ
]

, (77)

M p ≡ N̄ :
[√

2

3

F ′

F

�

R
υ〈�

N : N̄〉σ̂ + a + U

R
σ̃ + c(1 − R)

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}]

. (78)

On the other hand, the isotropic hardening is restored suddenly when the plastic strain reaches the boundary
of the non-hardening region so that the nonsmooth stress–strain curve is predicted in the past formulations for
the cyclic stagnation of isotropic hardening [3,44,51,52]. In order to avoid this deficiency, it was proposed by
Ohno [44] that the blunting of isotropic hardening is supplemented by the acceleration of kinematic hardening
in the state that the plastic strain lies inside the isotropic hardening surface. However, without resorting to such
a method, this defect is avoided, always predicting the smooth stress–strain curve in the present formulation
based on the notion of the sub-isotropic hardening surface.

29 Summary of constitutive equations

Summarizing the equations formulated in the foregoing, the set of constitutive equations required for the
calculation of the stress–strain relation are listed below.

Subloading surface:

f (σ̄) = RF(H). (a)
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Relations of stress, back stress, and similarity-center:

σ̄ ≡ σ − ᾱ = R(σy − α) = σ̃ + Rŝ
ŝ ≡ s − α, s̄ ≡ s − ᾱ = Rŝ
ᾱ = s − Rŝ
σ̃ ≡ σ − s = R(σy − s)

⎫⎪⎬
⎪⎭ . (b)

Stress loading function:

f (σ̄) =
√

3

2
‖σ̄′‖. (c)

Isotropic hardening function:

F = F0[1 + h1{1 − exp(−h2 H)}]. (d)

Stress rate versus strain rate relation:

◦
σ = E : D −

〈
N̄ : E : D

M p + N̄ : E : N̄

〉
E : N̄ − 2Gξ Rτ

1 + ξ Rτ
D′

t . (e)

Normalized outward-normal of subloading surface:

N̄ ≡ ∂ f (σ̄ )

∂σ̄

/∥∥∥∥∂ f (σ̄ )

∂σ̄

∥∥∥∥. (f)

Loading criterion:

Dp �= 0 : N̄:E:D
M p+N̄:E:N̄ > 0

Dp = 0 : otherwise

}
. (g)

Equation for the calculation of normal-yield ratio:

R =
σ̃′ : ŝ′ +

√
(σ̃

′ : ŝ′)2 + ( 2
3 F2 − ‖ŝ′‖2

) ‖σ̃′‖2

2
3 F2 − ‖ŝ′‖2

. (h)

Evolution rule of kinematic hardening:

◦
α = aα

(
rα F

σ̄′

‖σ̄′‖ −
√

2

3
α

)
‖Dp‖. (i)

Evolution rule of normal-yield ratio

•
R = ucot

(
π

2

〈R − Re〉
1 − Re

)
‖Dp‖ for Dp �= 0. (j)

Material function in evolution rule of normal-yield ratio:

u = ū exp(us�s Sσ ). (k)

Normal-yield similarity-center ratio:

�s =
√

3

2

‖ŝ′‖
F

. (l)

Measure of direction of deviatoric stress observed from similarity-center surface:

Sσ ≡ n̂s : σ̃′

‖σ̃′‖ (−1 ≤ Sσ ≤ 1). (m)
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Normalized outward-normal of similarity-center surface:

n̂s ≡ ∂ f (ŝ)
∂s

/∥∥∥∥∂ f (ŝ)
∂s

∥∥∥∥ (‖n̂s‖ = 1). (n)

Sub-isotropic hardening surface:

f
(

�
ε

p) = �

RK ,
�
ε

p ≡ εp − �
α. (o)

Stagnation function of plastic strain:

f
(

�
ε

p) =
√

2

3

∥∥∥�
ε

p
∥∥∥ . (p)

Evolution rule of size of normal-isotropic hardening surface:

•
K = C

�

R
ζ
〈

∂ f
(

�
ε

p)
∂

�
ε

p : N̄

〉
‖Dp‖. (q)

Evolution rule of center of normal-isotropic hardening surface:

�
α
◦ = (1 − C)

�

R
ζ 〈�

N : N̄〉‖Dp‖�

N. (r)

Normalized outward-normal of normal-isotropic hardening surface:

�

N ≡
∂ f

(
�
ε

p)
∂

�
ε

p

/∥∥∥∥∥∥
∂ f

(
�
ε

p)
∂

�
ε

p

∥∥∥∥∥∥ . (s)

Evolution of isotropic hardening:

•
H =

√
2

3

�

R
υ〈�

N : N̄〉‖Dp‖, h =
√

2

3

�

R
υ〈�

N : N̄〉. (t)

Evolution of similarity-center:

◦
s = ‖Dp‖

[
c

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}

+ a +
√

2

3

F ′

F

�

R
υ〈�

N : N̄〉ŝ
]

. (u)

Plastic modulus:

M p ≡ N̄ :
[√

2

3

F ′

F

�

R
υ〈�

N : N̄〉σ̂ + a + U

R
σ̃ + c(1 − R)

{
σ̃

R
−

(
1

χ
− 1

)
ŝ
}]

. (v)

30 Comparisons with test results

The capability of the present model for describing the deformation behavior of metals is verified through
comparisons with several basic test data in this Section. The capability of the unconventional plasticity model
aimed at describing the plastic strain rate induced by a rate of stress inside the yield surface must be evaluated
by a degree to which cyclic loading behavior can be described appropriately. Then, various cyclic loading
test data in uniaxial loading are first simulated, and thereafter, a circular strain path test datum is simulated to
verify the capability for describing non-proportional loading behavior.

The material parameters involved in the present model are shown collectively below, where 16 material
constants and five initial values are included to describe the cyclic loading behavior precisely.
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Material constants:

Elastic moduli: E, ν,

Hardening

{
isotropic : h1, h2,
kinematic : aα, rα,

Evolution of normal-yield ratio: Re (<1), ū, us,
Translation of similarity-center: c, χ (<1),
Tangential inelasticity: ξ, τ (>1),
Stagnation of isotropic hardening: C (0 ≤ C ≤ 1), ζ (>1), υ (>1).

Initial values:

Normal-yield surface

{
size : F0
center : α0

Similarity center: s0

Normal-isotropic hardening surface

{
size: K0

center:
�
α0.

The determination of these material parameters is explained below in brief.

1. Young’s modulus E and Poisson’s ratio ν are determined from the slope and the ratio of lateral to axial
strains in the initial part of the stress–strain curve.

2. h1, h2 and F0 for the isotropic hardening and aα, rα and α0 for the kinematic hardening are determined
from stress–strain curves in the initial and the inverse loadings.

3. Re, ū and us are determined from the stress–strain curve in the subyield state, i.e. the elastic-plastic
transitional state.

4. c, χ and s0 are determined from the stress–strain curves in cyclic loading.
5. ξ and τ are determined by the difference of the strain in the non-proportional loading from that in the

proportional loading.
6. C, ζ, υ, K0 and

�
α0 are determined from the stress–strain curves in cyclic loading with a constant strain

amplitude.

All of these material parameters except for ξ and τ for the tangential-inelastic strain rate can be determined only
by the stress–strain curves in the uniaxial loading for initial isotropic materials. One can put α0 = s0 = �

α0 = 0
for the initial isotropy, which is assumed in all the following simulations. Tangential inelasticity is not consid-
ered so that ξ and τ for the tangential inelasticity are ignored for the test data in the uniaxial loading.

The cyclic loading behavior under the stress amplitude to both positive and negative sides can be pre-
dicted to some extent by any models, including even the conventional plasticity model. On the other hand, the
prediction of the cyclic loading behavior under the stress amplitude in positive or negative one side, i.e., the
pulsating loading inducing the so-called mechanical ratcheting effect requires a high ability for the description
of plastic strain rate induced by the rate of stress inside the yield surface. Furthermore, it is noteworthy that
we often encounter the pulsating loading phenomena in the boundary value problems in engineering practice,
e.g., railways and gears. The comparison with the test data for the 1070 steel under the cyclic loading of axial
stress between 0 and +830 MPa after [37] is depicted in Fig. 5, where the material parameters are selected as
follows:

Material constants:

Elastic moduli: E = 170,000 MPa, ν = 0.3,

Hardening

{
isotropic: h1 = 0.59, h2 = 82,
kinematic: aα = 47, rα = 0.5,

Evolution of normal-yield ratio: Re = 0.5, ū = 200, us = 5,
Translation of similarity-center: c = 700, χ = 0.7,
Stagnation of isotropic hardening: C = 0.5, ζ = 15, υ = 0.001.

Initial values:

Isotropic hardening function: F0 = 496 MPa,
Isotropic hardening-stagnation function: K0 = 0.001.
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Fig. 5 Uniaxial cyclic loading behavior under the pulsating loading between 0 and 830 MPa of 1070 steel (test data after [37]:
a test result and simulation and b variations of normal-yield ratio and normal-isotropic hardening ratio

The relation of the axial stress and the axial components of back stress and similarity-center versus the axial
strain and the relation of the axial strain versus the number of cycles are depicted in Fig. 5a, where the
axial components are designated by ()a . The accumulation of axial strain is simulated closely by the present
model. The calculation is controlled automatically such that the stress and the plastic strain are attracted to the
normal-yield and the normal-isotropic hardening surfaces, respectively, as known from the variations of the

normal-yield ratio R and the normal-isotropic hardening ratio
�

R depicted in Fig. 5b. Accumulation of axial
strain is overestimated as depicted in Fig. 5c if the reloading behavior is not improved setting us = 0. Despite
the improvement for reloading behavior, however, hysteresis loops are simulated as narrower than those in the
test result in order to fit the strain accumulation in the test result. A further improvement is desirable for this
insufficiency.

Next, examine the uniaxial cyclic loading behavior under the constant stress amplitude to both positive
and negative sides with different magnitudes. Comparison with the test data for the 304L steel under the
cyclic loading of axial stress between +250 and −150 MPa after [33] is depicted in Fig. 6 where the material
parameters are selected as shown below.
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Fig. 6 Uniaxial cyclic loading behavior under the constant stress amplitude between −150 and 250 MPa of 304L steel (test data
after [33]): a test result and simulation, b variations of normal-yield ratio and normal-isotropic hardening ratio and c simulation
by modified Chaboche model (cf. [33])

Material constants:

Elastic moduli: E = 200,000 MPa, ν = 0.3,

Hardening

{
isotropic: h1 = 0.55, h2 = 30,
kinematic: aα = 3.8, rα = 1.8,

Evolution of normal-yield ratio: Re = 0.4, ū = 250, us = 1,
Translation of similarity-center: c = 100, χ = 0.7,
Stagnation of isotropic hardening: C = 0.5, ζ = 15, υ = 3.

Initial values:

Isotropic hardening function: F0 = 207 MPa,

Isotropic hardening-stagnation function: K0 = 0.001.

The relation of the axial stress and the axial components of back stress and similarity-center versus the axial
strain and the relation of the axial strain versus the number of cycles are depicted in Fig. 6a. Both the accu-
mulation of strain and the hysteresis loops are simulated closely by the present model. The calculation is
controlled automatically such that the stress and the plastic strain are attracted to the normal-yield and the
normal-isotropic hardening surfaces, respectively, as known from the variations of the normal-yield ratio R
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Fig. 7 Uniaxial cyclic loading behavior under the constant stress amplitude between −182 and +182 MPa of 304L steel (test data
after [50]): a test result and simulation, b variations of normal-yield ratio and normal-isotropic hardening ratio and c simulation
by Chaboche model

and the normal-isotropic hardening ratio
�

R depicted in Fig. 6b. The relation of the axial stress versus the axial
strain and the relation of the axial strain versus the number of cycles simulated using the modified Chaboche
model [4] are also depicted in Fig. 6c in which the strain is simulated as larger than the test result, and the
hysteresis loops are simulated as narrower than the test data. The prediction of this steel deformation behavior
will be improved by incorporating the rate-dependence.

Further, we examine the uniaxial cyclic loading behavior for constant symmetric stress amplitude to both
positive and negative sides. Comparison with test data of the 304 steel under the cyclic loading of axial stress
between +182 and −182 MPa under the constant hoop stress 80 MPa after [50] is depicted in Fig. 7 where the
material parameters are selected as follows:

Material constants:

Elastic moduli: E = 200,000 MPa, ν = 0.25,

Hardening

{
isotropic: h1 = 0.2, h2 = 100,
kinematic: aα = 25, rα = 0.9,

Evolution of normal-yield ratio: Re = 0.4, ū = 200, us = 5,
Translation of similarity-center: c = 1000, χ = 0.6,
Stagnation of isotropic hardening: C = 0.5, ζ = 15, υ = 1.
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Initial values:

Isotropic hardening function: F0 = 225 MPa,

Isotropic hardening-stagnation function: K0 = 0.001.

The relation of the axial stress and the axial components of back stress and similarity-center versus the axial
strain and the circumferential strain εl with the number of cycles are shown in Fig. 7a, while the back stress
is induced quite slightly so that it is invisible in this figure. The simulations for the accumulation of axial
strain and the hysteresis loops agree well with the test result, except for the prediction of hysteresis loops as
narrower than the test result in the initial stage. Here, the axial strain and the lateral strain are accumulated to
the compression side and the extension side, respectively, by the application of the hoop stress 80 MPa. The
calculation is automatically controlled such that the stress and the plastic strain are attracted to the normal-yield
and the normal-isotropic hardening surfaces, respectively, as known from the variations of the normal-yield

ratio R and the normal-isotropic hardening ratio
�

R depicted in Fig. 7b. The relations of the axial stress ver-
sus the axial and lateral strains and the relation with the number of cycles simulated by Xia and Ellyin [50]
(cf. also [11]) are also depicted in Fig. 7c where both the axial and the circumferential strains are overestimated.

Furthermore, examine the uniaxial cyclic loading behavior under the constant symmetric strain amplitudes
to both positive and negative sides. Comparison with the test data of the 316 steel under the cyclic loading
with the increasing axial strain amplitudes ±1.0, ± 1.5, ± 2.0, ± 2.5, ± 3.0% after [3] is depicted in Fig. 8
where the material parameters are selected as follows:

Material constants:
Elastic moduli: E = 170,000 MPa, ν = 0.3,

Hardening

{
isotropic: h1 = 1, h2 = 8,
kinematic: aα = 30, rα = 0.2,

Evolution of normal-yield ratio: Re = 0.4, ū = 100, us = 3,
Translation of similarity-center: c = 200, χ = 0.7,
Stagnation of isotropic hardening: C = 0.5, ζ = 15, υ = 3.5.

Initial values:
Isotropic hardening function: F0 = 298 MPa,
Isotropic hardening-stagnation function: K0 = 0.001.

The relation of the axial stress and the axial components of back stress and similarity-center versus the axial
strain is shown in Fig. 8a. The hysteresis loops and the stagnation of isotropic hardening are simulated closely
by the present model. On the other hand, the calculated result without the cyclic stagnation of isotropic hard-
ening overestimates the hardening behavior as shown in Fig. 8b. The calculation is controlled automatically
such that the stress and the plastic strain are attracted to the normal-yield and the normal-isotropic hardening
surfaces, respectively, as known from the variations of the normal-yield ratio R and the normal-isotropic hard-

ening ratio
�

R depicted in Fig. 8c. The relations of the axial stress and the axial strain simulated by Chaboche
[4] and Ellyin and Xia [10] are depicted in Fig. 8d and e, respectively. The strain in the initial stage is simulated
as larger than the test result by the former, and the curves predicted by the latter are not smooth but piecewise
linear.

Finally, we examine the non-proportional loading behavior. Comparison with the test data of the austenitic
17–12 Mo SPH carbon stainless steel for the circular strain path εa = 0.004 cos α and γaθ = 0.0036 sin α

under σθ = 50 MPa during 40 cycles after the uniaxial loading to εa = 0.004 after [8] is depicted in Fig. 9,
where σθ is the circumferential normal strain, and γaθ is the axial-circumferential engineering shear strain, and
α is the angle measured from the axis of εa in the strain plane (εa, γaθ ). The material parameters are selected
as follows:

Material constants:
Elastic moduli: E = 180,000 MPa, ν = 0.3,

Hardening

{
isotropic: h1 = 3.5, h2 = 130,
kinematic: aα = 50, rα = 0.25,

Evolution of normal-yield ratio: Re = 0.6, ū = 200, us = 2,
Translation of similarity-center: c = 200, χ = 0.8,
Tangential inelasticity: ξ = 0.012, n = 3,
Stagnation of isotropic hardening: C = 0.5, ζ = 15, υ = 0.1.
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Fig. 8 Uniaxial cyclic loading with the increasing axial strain amplitudes ±1.0, ±1.5, ±2.0, ±2.5, ±3.0% of 316 steel (test data
after [3]): a test result and simulation by present model, b test result and simulation without stagnation of isotropic hardening, c
variations of normal-yield ratio and normal-isotropic hardening ratio, d simulation by Chaboche [4] and e simulation by Ellyin
and Xia [10]
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(a)

(b)

)

Fig. 9 Circular strain path of the axial strain εa = 0.004 cos α and the axial-circumferential shear strain γaθ = 0.0036 sin θ for 40
cycles after the uniaxial loading of austenitic 17–12 Mo SPH carbon stainless steel (test data after [8]): a test result, b simulation

Initial values:

Isotropic hardening function: F0 = 122 MPa,
Isotropic hardening-stagnation function: K0 = 0.001.
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(a)

(b)

)

Fig. 10 Circular strain path of the axial strain εa = 0.004 cos α and the axial-circumferential shear strain γaθ = 0.0036 sin θ
for 40 cycles after the uniaxial loading of austenitic 17–12 Mo SPH carbon stainless steel (test data after [8]): a test result,
b simulation without tangential-inelasticity

The strain path (εa, εθ ) (εθ : circumferential normal strain) and the stress path (σa,
√

3σaθ ) (σaθ : axial-cir-
cumferential shear stress) are shown for the test result and the model simulation in Fig. 9a and b, respectively.
The simulation of the stress path and the accumulation of lateral strain are in good agreement with the test
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result. However, the initial stress loop is simulated as a spiral. This point will have to be improved hereinafter.
The stress and the plastic strain are attracted to the normal-yield and the normal-isotropic hardening surfaces,
respectively, as known from the variations of the normal-yield ratio R and the normal-isotropic hardening

ratio
�

R depicted in Fig. 9b. On the other hand, the accuracy of simulation decreases if the tangential-inelastic
strain rate is not incorporated by setting ξ = 0 as depicted in Fig. 10. The axial component (Dt )a and the
axial-circumferential component (Dt )aθ of the tangential-inelastic strain rate are induced considerably, but

the circumferential component (Dt )θ is not induced to a marked degree because of (
◦
σ

′
t )θ

∼= 0 in this test.
Therefore, Da/Dθ is calculated as smaller and thus εθ/εa is calculated as larger if we put ξ = 0.

31 Concluding remarks

The constitutive equation of metals is formulated refining the past formulation of the subloading surface model
by avoiding the indetermination of the subloading surface, by inducing the reloading curve to recover promptly
to the preceding loading curve and by introducing the cyclic stagnation of isotropic hardening [3,44] with the
important modification by the concept of subloading surface. The applicability of the present model to the
description of real deformation behavior of metals is verified through the comparisons with various test data
for cyclic loadings. It is attained by virtue of the following distinguished capabilities of the present model.

i. The smoothness condition [15,16,18,21] is fulfilled. Therefore, a continuous variation of tangent mod-
ulus for the continuous change of stress state leading to smooth stress–strain curve is predicted always
by the present model.

ii. The plastic strain rate develops continuously as the stress approaches the normal-yield surface in the
present model.

iii. The stress always lies on the subloading surface which plays the role of the loading surface. Therefore,
only the judgment for the sign of the proportionality factor � is necessary for the loading criterion in
the present model.

iv. The calculation is controlled to fulfill the consistency condition. Therefore, the stress is attracted auto-
matically to the normal-yield surface in the plastic loading process even if it goes out from that surface

by virtue of the inclusion of the inequality
•
R < 0 for R > 1 in Eq. (24) with Eq. (25). Then, it is not

necessary to incorporate a computer algorithm for pulling back the stress to the normal-yield surface.
Therefore, a stable and robust calculation can be executed even by rather large loading steps in the
present model.

v. The formulation of the subloading surface model is refined such that the plastic modulus increases in the
reloading process, but it decreases in the inverse loading process. Therefore, the cyclic loading behavior
is described pertinently suppressing the strain accumulation.

vi. The tangential-inelastic strain rate induced by the stress rate tangential to the subloading surface [19,27]
is incorporated fulfilling the continuity and the smoothness conditions, which cannot be ignored in the
non-proportional loading process.

vii. The pertinent formulation of the cyclic stagnation of isotropic hardening is obtained by modifying the
formulations by Ohno [44] and Chaboche et al. [3]. First, the rigorous calculation method of the basic
variable, called the accumulation of plastic strain and abbreviated as plastic strain, for the cyclic iso-
tropic hardening is given in Eq. (61). Therefore, the formulation for the cyclic stagnation of isotropic
hardening becomes applicable to the deformation process subjected to the finite rigid-body rotation.
Furthermore, the cyclic stagnation of isotropic hardening is formulated pertinently introducing the con-
cept of a subloading surface.

viii. The plastic strain always lies on the sub-isotropic hardening surface. Therefore, only a judgment based

on the sign of the quantity tr(
�

NDp) is necessary in relation to the generation of isotropic hardening in
the present model. Then, the judgment of whether or not the plastic strain reaches the normal-isotro-
pic hardening surface is possible. Furthermore, the calculation is controlled automatically to fulfill the
consistency condition. Therefore, the plastic strain is attracted to that surface even if it goes out from

that surface by virtue of the formulation
�

R
•

< 0 for
�

R > 1 in Eq. (75). Therefore, a stable and robust
calculation can be executed even by rather large loading steps in the present model.
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Eventually, it may be concluded that the elastoplastic constitutive equation of metals formulated in this article
provides a pertinence in both aspects of the pertinence in the description of plastic deformation and high
efficiency and robustness in numerical calculations.

Each particular experimental situation is represented by a different special set of material constants in
this paper. Simulations of test data under various loading conditions by means of one single set of material
constants would be more difficult. They will be shown in a future paper by finding a pertinent set of test data.
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