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Abstract This paper presents a method for optimisation of the material composition of functionally graded
materials (FGMs) for thermal stress relaxation. This method consists of a multiscale thermoelastic analysis and
a genetic algorithm. In the presented method, location-dependent unit cells representing the microstructures
of two-phase FGMs are created using morphology description functions, and the homogenised material prop-
erties and microscale thermal stresses are computed using the asymptotic expansion homogenisation method.
Thermal stress relaxation effects at the microscale in the FGMs are quantitatively evaluated, being reflected
for the optimisation computation of the material composition. Numerical calculations are performed for a
functionally graded infinite plate subjected to prescribed surface temperatures, and it is demonstrated that the
optimisation with the knowledge of specific microstresses in FGMs results in not only a different trend of
material composition distribution but also a different critical location for material failure from those obtained
by conventional optimisation without the knowledge of the microstresses.

1 Introduction

Functionally graded materials (FGMs) are advanced composite materials formed of two or more constituents
with a continuously variable composition. The varying material composition produces useful functions such
as thermal stress relaxation, biological compatibility and refractive index control [1]. FGMs were originally
developed to serve as high-performance heat resistant materials that can withstand large temperature gradients.
Generally, this type of FGM is composed of a ceramic and a metal. In the present paper, we refer to this type
of FGM as a ‘FGM for thermal stress relaxation’.

The microstructure of a typical FGM for thermal stress relaxation is shown in Fig. 1 [2]. As shown in
this figure, FGMs for thermal stress relaxation are both macroscopically and microscopically heterogeneous.
Such two-phase FGMs make a transition from a particle-matrix microstructure, in which isolated particles
are scattered within a matrix phase, to another particle-matrix microstructure via an interpenetrating network
(or skeletal) structure, in which the two phases intertwine with each other, as the content of the second phase
increases [1].

FGMs are referred to as ‘designable materials’. In order to exploit the full potential of FGMs, they need to
be fabricated according to the optimal material composition distribution that is predetermined in response to the
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Fig. 1 Schematic illustration of the microstructural transition in a ceramic/metal FGM

environment in which they are used. In the case of FGMs for thermal stress relaxation, there are two prerequi-
sites to the determination of their optimum material composition distribution: (i) accurate estimation methods
for the effective thermomechanical properties and (ii) analytical techniques for solving heat conduction and
thermoelastic problems of heterogeneous bodies with an arbitrary heterogeneity.

For an accurate estimation of the effective (or homogenised) material properties, information about the
material composition and the microstructural morphology, which can greatly influence the material properties,
must be taken into account. Higher-order techniques for the theoretical prediction of effective physical prop-
erties are continually being developed and a related review article has been published [3]. In existing studies
focusing on the optimisation of the material composition distribution of FGMs, however, mean-field homog-
enisation techniques that assume simple microstructures (e.g. spherical inclusions dispersed in a matrix) have
been employed [4–7] to estimate the effective material properties of FGMs. In other words, specific information
regarding the microstructural morphology was neglected during these homogenisation calculations. Thus, the
validity of the resultant optimum material composition distribution is disputable.

In the material design of FGMs for thermal stress relaxation, the objective of heat conduction and ther-
moelastic analyses is to quantitatively predict the distribution of thermal stresses in a functionally graded
component under a given thermal loading condition. This allows us to assess the safeness of the component in
the context of failure criteria for the FGMs. However, the relationship between the effective failure criteria (i.e.
homogenised strength properties) at the macroscale in the FGMs and material composition (or microstructure)
is not simple; this relationship is known to show a complicated variation in the transition zone (see Fig. 1) [2].
Moreover, coupled with the fact that an FGM for thermal stress relaxation is a composite material composed
generally of a ductile material and a brittle material, micromechanics models that can estimate the effective
failure criteria from the material composition and microstructure have not yet been established. For these
reasons, reliable failure criteria based on the macroscopic stress state of FGMs have yet to be reported. Hence,
the knowledge of macroscopic stress states obtained from conventional (macroscale) thermoelastic analyses
alone is not sufficient to assess the safeness of functionally graded components. A solution to this issue is to
evaluate the stress state at the microscale (i.e. microstress field), at which respective constituent materials are
in a mixed state. With knowledge of the microstresses, one can apply material phase-specific failure criteria
to better assess the failure of the heterogeneous material of the functionally graded component [8].

Existing studies on the microscale thermoelastic analysis of FGMs are limited. Pindera et al. [9] investigated
the effects of microstructural architectures in graded thermal barrier coatings on thermal stress distributions
using artificial material models with different levels of functionally graded microstructural refinement and dif-
ferent arrangements. Dao et al. [10] developed a computational micromechanics model to study the influences
of discrete microstructure on residual stress distributions at the grain size level in FGMs. Tsukamoto [11]
analysed microstresses in FGMs on the basis of Eshelby’s equivalent inclusion method and Mori-Tanaka’s
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mean-field approximation; however, because this analysis evaluates volumetric average stresses in the matrix
and dispersion phases, it cannot evaluate specific microstress distributions. Khan et al. [12] performed coupled
heat conduction and deformation analyses of viscoelastic FGMs using a simplified micromechanical model for
particle reinforced composites; unfortunately, their micromechanical model also failed to incorporate the effect
of stress concentration at the microscale. Note that these four studies did not consider the FGM microstructural
morphology. In contrast, Cannillo et al. [13] mapped SEM images of real FGM microstructures onto finite
element meshes and numerically predicted the microscale thermal residual stresses that may arise during an
FGM fabrication process. Similarly, Vena [14] analysed thermal residual stresses at the microscale in an FGM
using a hybrid finite element approach, which takes account of the shape of the constituent material grains.
However, analyses with full microscale models such as these are extremely time-consuming, and therefore, it
is impractical to incorporate them into the computation of the optimal material composition.

The asymptotic expansion homogenisation (AEH) method is one of the multiscale analysis methods that
can efficiently predict the microscopic stress state. It is a mathematically rigorous theory that includes the
coupling between the macroscale and microscale and has received much attention in recent years [15]. The
AEH method has the advantages that the equivalent macroscopic material properties for composite materials
with an arbitrary complicated microstructure can be calculated exactly and the distribution of stresses in the
microstructure can also be evaluated. The former advantage enables us to investigate the effects of microstruc-
tural morphology on the effective material properties in FGMs. In relation to this, a design methodology based
on the AEH method for graded microstructures of functional materials has been proposed by Takano et al.
[16]. Goupee et al. [8] first succeeded in applying the AEH method coupled with the finite element method
(FEM) to the multiscale thermoelastic analysis of two-phase FGMs. They conducted a direct micromechan-
ical failure analysis based on microstresses obtained from the multiscale analysis using numerically created
microstructure models.

In the present study, an optimisation methodology is presented for the material composition distribution
of FGMs for thermal stress relaxation. The methodology consists of a multiscale thermoelastic analysis by
the AEH method and a genetic algorithm (GA). In the multiscale thermoelastic analysis, we use numerically
created morphology models that describe the microstructures of the FGMs and the AEH method quantitatively
evaluates local thermal stress concentrations induced by the microstructural heterogeneities. The quantified
thermal stress relaxation effects at the microscale level are reflected for the optimisation computation of the
material composition. For comparison purposes, we have also performed the conventional optimisation of
material composition using simple mean-field homogenisation techniques [17], which does not require the
computation of the microscopic stress states. The effects of the presence or absence of information about
microstructural morphology and microstresses on the obtained optimum material composition distribution are
investigated through a model problem for a functionally graded infinite plate subjected to prescribed surface
temperatures.

2 Multiscale analysis of heat conduction and thermoelastic problems

This section contains a brief outline of the multiscale formulation of the steady heat conduction and ther-
moelastic problems using the AEH method. For more details, see [8], [15], and [16]. Note that the Einstein
summation convention is used in the following formulation.

2.1 Heat conduction problem

Consider a two-phase functionally graded body with spatially varying microstructure, as shown in Fig. 2.
A micro region in the macroscopic domain � is assumed to consist of a large number of microstructures that
correspond to the macroscopic location, and the unit microstructure is referred to as a representative material
element (RME), which occupies the domain Y . We assume a macroscale x ∈ � and microscale y ∈ Y as shown
in Fig. 2. Given that the characteristic lengths of the macroscopic body and RME are L and l, respectively, the
ratio of the length scales is ε = l/L � 1 and the relationship between both scales is given by

y = x
ε
. (1)

For the steady heat conduction problem, the weak form of the governing equation is obtained by considering
the effects of the microstructure as



894 R. Chiba, Y. Sugano

x1

x3
x2

Γh

h

q

b

Ω
t

Γt

Γ

L

y1

y3
y2

RME

RME

RME

Y

Y

Y

l

l

l

l

l

l

1

ε
×

1

ε
×

1

ε
×

Fig. 2 Schematic of a two-phase functionally graded body with a microscale (yi ) and macroscale (xi ) coordinate system

∫

�

Ki j
∂T

∂x j

∂w

∂xi
d� =

∫

�

qwd�+
∫

�h

hwd� ∀w(x, y), (2)

where Ki j is the thermal conductivity tensor, w is a test function, and q and h denote the internal heat gen-
eration and the heat flux prescribed normal to the boundary �h , respectively. Ki j reflects the microscopic
heterogeneity represented by periodic functions.

The temperature is approximated with an asymptotic series representation in ε given by

T (x, y) = T 0(x)+ εT 1(x, y)+ ε2T 2(x, y)+ · · · , (3)

where T 0 is the macroscopic (or homogenised) temperature and T n(n > 0) are the periodic temperatures
in more refined scales. It has already been proven that macroscopic quantities such as T 0 are functions of
macroscopic coordinates x only. We substitute Eq. (3) into Eq. (2) and neglect high-order terms (O(ε2)).
Subsequently, by using the following averaging principle for a periodic function �(y)

lim
ε→0

∫

�

�
(x
ε

)
d� =

∫

�

1

|Y |
∫

Y

�(y)dY d�, (4)

the coupled micro-macro problem can be decoupled into separate microscopic and macroscopic problems. Note
that |Y | represents the volume of the RME. The weak forms of the microscopic and macroscopic governing
equations are, respectively:

∫

Y

Kip
∂ϕ j

∂yp

∂w

∂yi
dY =

∫

Y

Ki j
∂w

∂yi
dY ∀w(y), (5)

∫

�

K H
i j
∂T 0

∂x j

∂w

∂xi
d� =

∫

�

qHwd�+
∫

�h

hwd� ∀w(x). (6)

By solving the microscopic equation, Eq. (5), under periodic boundary conditions over the RME domain Y , we
can obtain the characteristic temperature functions ϕ j ( j = 1, 2, 3),which depend only on the heterogeneity in
the RME and the thermal conductivity tensors of the constituents. In Eq. (6), K H

i j is the homogenised thermal

conductivity tensor and qH is the homogenised internal heat generation; these homogenised quantities are
defined as
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K H
i j = 1

|Y |
∫

Y

(
Ki j − Kip

∂ϕ j

∂yp

)
dY , (7)

qH = 1

|Y |
∫

Y

f dY . (8)

2.2 Thermoelastic problem

For the thermoelastic problem, the weak form of the governing equation can be described by
∫

�

Ci jkl
∂uk

∂xl

∂vi

∂x j
d� =

∫

�

bivi d�+
∫

�t

tivi d� +
∫

�

Ci jklαkl(T − T0)
∂vi

∂x j
d� ∀vi (x, y), (9)

where Ci jkl is the elastic tensor, uk is the displacement, vi is a test vector (or an arbitrary virtual displace-
ment), bi and ti denote the body force and the traction applied on the boundary �t , respectively, and αkl is the
coefficient of thermal expansion (CTE). Ci jkl reflects the microscopic heterogeneity represented by periodic
functions. T0 is the initial temperature.

In the same way as the temperature field in the heat conduction problem, the displacement is expressed
using the asymptotic expansion method as

ui (x, y) = u0
i (x)+ εu1

i (x, y)+ ε2u2
i (x, y)+ · · · , (10)

where u0
i is the macroscopic (or homogenised) displacement and un

i (n > 0) are the periodic displacements
in more refined scales. By substituting Eqs. (3) and (10) into the governing equation, Eq. (9), and using the
averaging principle given by Eq. (4), the coupled micro-macro problem can be decoupled into separate micro-
scopic and macroscopic problems. The weak forms of the microscopic and macroscopic governing equations
are:

∫

Y

Ci jmn
∂χkl

m

∂yn

∂vi

∂y j
dY =

∫

Y

Ci jkl
∂vi

∂y j
dY ∀vi (y), (11)

∫

Y

Ci jkl
∂ψk

∂yl

∂vi

∂y j
dY =

∫

Y

Ci jklαkl
∂vi

∂y j
dY ∀vi (y), (12)

∫

�

CH
i jkl

∂u0
k

∂xl

∂vi

∂x j
d� =

∫

�

bH
i vi d�+

∫

�t

tivi d� +
∫

�

CH
i jklα

H
kl(T

0 − T0)
∂vi

∂x j
d� ∀vi (x). (13)

One of the microscopic equations, Eq. (11), provides the characteristic displacement functions χkl
m , which

depend on the heterogeneity in the RME and the elastic tensors of the constituents. The other microscopic
equation, Eq. (12), provides the characteristic displacement functions ψk associated with the heterogeneity
and the CTEs of the constituents. In Eq. (13), CH

i jkl is the homogenised elastic tensor, αH
i j is the homogenised

CTE and bH
i is the homogenised body force. These are expressed as follows:

CH
i jkl = 1

|Y |
∫

Y

(
Ci jkl − Ci jmn

∂χkl
m

∂yn

)
dY , (14)

αH
i j = DH

i j pq

|Y |
∫

Y

C pqkl

(
αkl − ∂ψk

∂yl

)
dY , (15)

bH
i = 1

|Y |
∫

Y

bi dY , (16)



896 R. Chiba, Y. Sugano

where DH
i j pq denotes the homogenised compliance tensor, which is the inverse of the homogenised elastic

tensor. The microscopic equations, Eqs. (11) and (12), are solved under periodic boundary conditions over the
RME domain Y . To solve these equations for complex microstructures, a numerical method, e.g. the FEM, is
generally required.

Once the macroscopic strains (=(∂u0
k/∂xl +∂u0

l /∂xk)/2) and macroscopic temperature T 0 are known, with
the knowledge of χkl

m and ψk , the microstress components can be calculated as

σi j =
(

Ci jkl − Ci jmn
∂χkl

m

∂yn

)
∂u0

k

∂xl
− Ci jkl

(
αkl − ∂ψk

∂yl

)
(T 0 − T0). (17)

Obtaining homogenised quantities on the basis of microstructural information, as shown in Eqs. (7), (8) and
(14–16), is referred to as a ‘homogenisation process’, whereas investigating the stress response of microstruc-
tures, as shown in Eq. (17), is referred to as a ‘localisation process’.

3 Material structure modelling of FGMs

3.1 Macrostructure

For the optimisation of the material composition of FGMs for thermal stress relaxation, we consider a two-
phase (ceramic/metal) FGM whose material properties vary only in one direction. The optimisation of the
material composition distribution of a two-phase FGM is equivalent to the optimisation of the volume fraction
distribution of one of its constituent phases. In order to facilitate the optimisation process with AEH-based
multiscale analysis, we approximate the continuous volume fraction distribution function of the original FGM
with a step function. The reason for this is that a direct point-wise optimisation of the volume fraction at every
location along the graded direction is computationally expensive and therefore intractable. As a result, we
have used a multi-layer description of the FGM, in which the microstructural morphology is uniform in each
layer but is different from the microstructural morphology in neighbouring layers. Because of the multi-layer
approximation, the overall FGM responses show zigzag variations (discontinuities) along the graded direction.
However, the discontinuities in the FGM can be reduced by increasing the number of the fictitious layers, n,
along the graded direction. Of course, this approximation is unnecessary for FGMs originally made of a series
of layers with different material compositions.

3.2 Microstructure

The microstructural morphology for each fictitious layer is defined using a morphology description function
(MDF). This approach was employed to design microstructures for functional porous materials [18] and to
create realistic computational models of microstructures for FGMs [8,19,20]. In the latter case, depending
on the choice of MDF, a wide variety of microstructural morphologies with desired phase volume fractions
can be created. The variation in the microstructural morphologies along the graded direction over the macro-
scopic domain� is specified on the basis of the spatial variation in the phase volume fractions along the same
direction; these variations are both stepwise in the present study.

4 Volume fraction optimisation using a genetic algorithm

4.1 Formulation of the optimisation problem

The optimisation of the material composition distribution of a two-phase FGM now reduces to determining
the optimal volume fraction of one of the constituent phases in each layer of a multi-layer system. In this case,
the optimisation problem with the necessary constraint conditions can be written in the following form:

Design variables V,
Minimise f (V),
Subject to 0 ≤ Vi ≤ 1, i = 1, 2, . . ., n,

Vi ≤ Vi+1, i = 1, 2, . . ., n − 1,

(18)
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where V = [V1, V2, . . ., Vn] is the vector of volume fractions in the respective layers and f (V) is the objective
function to be minimised. The specific form of f (V) is discussed in the next subsection. The above optimisation
problem includes n design variables.

4.2 Objective function

To construct an objective function for optimising the material composition distribution of FGMs for thermal
stress relaxation, we consider a macroscopic safety index g(x) based on a direct micromechanical failure anal-
ysis. A detailed description of the safety index is given in Appendix A. This safety index indicates how safe
a composite material is at a point x and is determined by the relationship between the microstress field in the
material and phase-specific failure criteria. This concept was first used for a direct micromechanical failure
analysis of FGMs by Goupee et al. [8,19]; they introduced a ‘factor of safety’ therein. The safety index g used
in the present study is equivalent to the inverse of the ‘factor of safety’. In the present study, the maximum of
the safety index g evaluated over the entire macroscopic domain� is considered as the objective function, i.e.

f (V) = max
x∈� g(x). (19)

4.3 Genetic algorithm

In order to solve the optimisation problem, we use a GA, which has the advantage of a rapid and efficient global
searching ability, and can be applied to optimisation problems in which the gradient information is not avail-
able. GA is a biologically inspired optimisation method in which the population of candidate solutions evolves
towards an optimal solution using genetic concepts. GAs were originally developed using binary-coded genetic
strings. Subsequently, extended GAs coded using real valued parameters instead of binary strings (namely,
real-coded GAs) have been proposed, being employed for optimisation in a continuous search space. In the
present study, however, the former type (a discrete-coded type) of GA [21] is employed for conceptual simplic-
ity. Since a number of books on GAs have been published, detailed descriptions of each stage (e.g. selection,
crossover, mutation and scaling) of the GA procedure are omitted here.

The value of Vi in each layer is incorporated in a chromosome as a gene that comprises a 6-bit binary num-
ber (see Fig. 3). It should be noted that whenever new chromosomes are created during the evolution process,
the volume fraction values in the layers are sorted in ascending order with increasing the layer numbers to
meet the constraint conditions shown in Eq. (18). Each individual inherits one chromosome, which consists
of n genes. In this case, each Vi can take 26 discrete values and therefore the size of the solution space is
26 · (26 + 1) . . . (26 + n − 1)/n! under the constraint conditions. Table 1 shows the specifications of the GA
used for the optimisation. The fitness rating F to be used as a selection criterion for individuals to survive into
the next generation is defined by

F = 1

f (V)
. (20)

001010 011100 101100 001011 

1         2     n–1        n

Information on volume fractions

Layer No. 

A stepwise FGM 

A gene 

Fig. 3 Binary coding of volume fraction values of respective layers for an individual
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Table 1 Specifications for GA optimisation procedure

Item Adopted rule/value

Length of bit strings of an individual 60
Population size 40
Selection Roulette wheel selection and elitism
Crossover/probability Uniform crossover/0.75
Mutation/probability One-point mutation/0.01
Scaling power law scaling

Start 

End

Creation of individuals 

Calculation of fitness rating 

Evaluation 

Selection 

Mutation 

Crossover 

Reproduction 

Is the termination 
condition fulfilled? 

Yes 

No 

Start

Creation of microstructures using MDF 

FE modelling of microstructures 

Homogenization analysis 

Calculation of temperature and thermal 
strain distributions at the macroscale 

Calculation of characteristic functions 
and homogenized material properties 

Localization analysis 

Created FE mesh 
and obtained 
characteristic 
functions 

Memory 

Return

Preparation of MDF 

AEH-based multiscale analysis part GA-based optimisation part 

Calculation of macroscopic safety 
index distribution

Fig. 4 Flow chart of GA optimisation procedure

The evolution process is iterated until the evolution for 10 generations does not change the best individual
after the power-law scaling coefficient reaches 10. Figure 4 shows a flow chart of the optimisation process.

5 Validation of multiscale analysis

Prior to optimising the volume fraction distribution of FGMs for thermal stress relaxation, the multiscale
analysis code that we developed was verified by comparing the results for the homogenised material properties
obtained from our computation with the results presented in a previous study [8] for a Ti/ZrO2 FGM plane-
stress body with a realistic variation in the microstructure. The temperature-dependent material properties for
the titanium and zirconia phases are given in Table 2 [8]. The microstructures of the Ti/ZrO2 FGM across the
entire range of volume fraction variations have been created using a MDF as follows [20]:

p(y) =
N∑

i=1

ci exp

⎧⎪⎨
⎪⎩−N

⎡
⎢⎣

(
y1 − y(i)1

)2 +
(

y2 − y(i)2

)2

l2

⎤
⎥⎦

⎫⎪⎬
⎪⎭, (21)

where the coefficients ci ∈ [−1, 1] and (y(i)1 , y(i)2 ) ∈ Y are randomly chosen. Following Goupee et al. [8],
N = 800 is adopted here to create the microstructures. The microscale analyses (to be exact, the homogenisation
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Table 2 Temperature-dependent material properties of Titanium and Zirconia, T in Kelvin

Material property Ti ZrO2

K (W/mK) 1.1 + 0.017T 1.71 + 0.21 × 10−3T + 0.116 × 10−6T 2

E (GPa) 122.7 − 0.0565T 132.2 − 50.3 × 10−3T − 8.1 × 10−6T 2

ν 0.2888 + 32 × 10−6T 0.333
α (l/K) 7.43 × 10−6 + 5.56 × 10−9T − 2.69 × 10−12T 2 13.31 × 10−6 − 18.9 × 10−9T + 12.7 × 10−12T 2

σy ( MPa) 1252.0 − 0.8486T –
σut ( MPa) – 148.1 + 1.184 × 10−3T − 31.4 × 10−6T 2

σuc (MPa) – 3181.2 + 25.43 × 10−3T − 0.675 × 10−3T 2
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(c) (d)
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Fig. 5 Homogenised material properties at different volume fractions and temperatures: a thermal conductivity, b Young’s
modulus, c Poisson’s ratio and d coefficient of thermal expansion

processes) are performed by the FEM. The FE mesh used was a regular mesh of 2,500 four-noded isoparametric
quadrilateral elements.

The homogenised material properties for the Ti/ZrO2 FGM with microstructures obtained from the MDF,
Eq. (21), at three different temperatures are plotted in Fig. 5 as a function of the ZrO2 volume fraction. There is
a good agreement between our numerical results and the results of Goupee et al. [8] at all three temperatures.
Hence, it has been demonstrated that the characteristic temperature functions (see Eq. (7)) and characteristic
displacement functions (see Eqs. (14) and (15)), which are necessary to calculate the homogenised material
properties, are correctly obtained thorough our multiscale analysis code. This implies that the microstresses
computed via Eq. (17) including the characteristic functions are also correctly obtained through the multiscale
analysis code.
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Fig. 6 Schematic of thermal loading, boundary conditions and volume fraction distribution for a Ti/ZrO2 10-layered functionally
graded infinite plate

6 Volume fraction optimisation of a functionally graded infinite plate

In this section, the proposed optimisation approach for the material composition distribution of FGMs for
thermal stress relaxation is demonstrated via a model problem that necessitates a two-dimensional multiscale
analysis. Consider a Ti/ZrO2 functionally graded infinite plate with thickness τ in which the material compo-
sition varies only along the thickness direction. The functionally graded plate is approximated as an assembly
of 10 layers with identical thickness, as shown schematically in Fig. 6. We define x1 as the relative distance
from the pure metal (Ti), i.e. x1 = 0 stands for the pure Ti and x1 = τ stands for the pure ceramic (ZrO2).
In order to simplify the multiscale analysis, the functionally graded plate is considered to be macroscopically
transversely isotropic in the x1–x2 plane, similar to Shabana et al. [22]. In other words, the microstructures
of the functionally graded plate do not vary along the x3-direction in this model problem. For simplicity, it is
assumed that the dependence of material properties on temperature is negligible and no heat is generated in
the plate. The top and bottom surfaces of the plate are kept at Ttop = 500 K and Tbottom = 300 K, respectively,
and the heat is considered to flow along the x1-direction only. Moreover, a plane-stress state in the thickness
direction is assumed, and both in-plane and out-of-plane deformations of the plate are restricted. In this case,
the macroscopic steady-state temperature, macroscopic stresses and strains (denoted by symbols with a bar)
are obtained as follows:

T 0(x1) = Ttop − Tbottom∫ τ
0

1
K H

11(ξ)
dξ

x1∫

0

1

K H
11(ξ)

dξ + Tbottom, (22)

σ̄11 = 0, σ̄22(x1) = − EH
22(x1)�T (x1)

1 − νH
32(x1)ν

H
23(x1)

[
αH

22(x1)+ νH
23(x1)α

H
33(x1)

]
,

σ̄33(x1) = − EH
33(x1)�T (x1)

1 − νH
23(x1)ν

H
32(x1)

[
αH

22(x1)ν
H
32(x1)+ αH

33(x1)
]
, (23)

ε̄11(x1) = �T (x1)

1 − νH
32(x1)ν

H
23(x1)

{
νH

12(x1)
[
αH

22(x1)+ νH
23(x1)α

H
33(x1)

]

+ νH
13(x1)

[
νH

32(x1)α
H
22(x1)+ αH

33(x1)
]} + αH

11(x1)�T (x1),

ε̄22 = ε̄33 = 0, (24)

where EH
i j is the homogenised Young’s modulus, νH

i j is the homogenised Poisson’s ratio,�T is the temperature

rise from stress-free state (=T 0 − Tbottom), and the macroscopic shear stresses and shear strains are all zero.
Because the homogenised properties EH

33, α
H
33, ν

H
23, ν

H
32, and νH

13 in Eqs. (22)–(24) cannot be obtained from
the homogenisation process by the two-dimensional AEH method, αH

33 is estimated by a combination of Scha-
pery’s axial CTE model [23] and fuzzy inference [24], and the remainder by the linear rule of mixtures. It is
known that the longitudinal elastic properties of unidirectional fibrous composites follow the rule of mixtures
very closely. The material properties of Ti and ZrO2 at 400 K (see Table 2) are used in this computation.

Two types of microstructural morphology expressions are employed to create the microstructures of
the functionally graded plate to be used for the model problem. One of the types of expressions describes
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Fig. 7 Microstructural morphologies with finite element mesh for ZrO2 volume fractions of a 0.05, b 0.35, c 0.50 and d 0.75

microstructural morphologies such that isolated inclusions are distributed in a matrix in a staggered arrange-
ment; the following MDF has been employed to create these morphologies:

p(y) = 1

4

[
2 − cos

(
2π · y1 + y2

l

)
− cos

(
2π · y1 − y2

l

)]
. (25)

The created microstructural morphologies corresponding to zirconia volume fractions of VZrO2 = 0.05, 0.35,
0.50, and 0.75 are displayed in a tiled 2 × 2 format in Fig. 7a–d, respectively. The staggered arrangement is
known to be more representative of FGM microstructures that exhibit random inclusion distributions than a
square array arrangement [9,25].

The other type of microstructural morphology expression describes realistic microstructural morphologies
of FGMs for thermal stress relaxation; the microstructures of the functionally graded plate across the entire
range of volume fraction variations have been created using Eq. (21) with N = 800. The representative micro-
structural morphologies created for several values of the volume fraction can be found in [8,20] and hence
their presentation is omitted here. Because the microstructures generated by the random MDF, Eq. (21), for a
sufficiently large value of N have been confirmed to be isotropic, the assumption that the functionally graded
plate is macroscopically transversely isotropic is not violated. For both types of microstructural morphology
expressions, the plane strain state is assumed at the microscale, and the microscopic problems are solved by
the FEM with the aforementioned regular mesh.

Vel et al. [20] investigated the relationship between the fineness of the finite element mesh (comprised
of six-noded triangular elements) and the resultant homogenised material properties for a composite material
with an interpenetrating network-like microstructure (or skeletal microstructure) created by the random MDF,
Eq. (21), with N = 800. They observed that the use of more than 3,200 elements provides calculated val-
ues for the homogenised material properties that have converged sufficiently. In addition, Goupee et al. [19]
investigated the relationship between the mesh fineness and the calculated maximum microstress in the same
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composite material, showing that more than 8,000 elements are needed to result in a sufficiently converged
value for the microstress. Thus, the present finite element computation, which uses a regular mesh comprising
2,500 simple four-noded quadrilateral elements, may not yield highly accurate homogenised material proper-
ties and microstresses. However, considering the trade-off between the accuracy and the computational burden
of the optimisation computation, we decided to use 2,500-elements.

In the optimisation process using the GA, we set V1 = 0 and V10 = 1 and hence the volume fractions
of only eight intermediate layers are design variables. Moreover, the value of g in Eq. (19) is evaluated at
11 discrete points along the graded direction with equal intervals in each layer, and the maximum of those
evaluated in all the layers is taken as the value of f .

For comparison purposes, we also perform the conventional optimisation of the material composition using
simple mean-field homogenisation techniques [17], which does not require the computation of the stress state
at the microscale. ‘Appendix B’ describes our method of estimating the effective material properties of the
FGM and also the objective function that was used for this optimisation.

7 Results and discussion

Figure 8 shows the optimised material composition distribution and the corresponding macroscopic/micro-
scopic analysis results for the functionally graded plate with microstructures such that isolated inclusions are
distributed in a matrix in a staggered arrangement. The through-the-thickness profile of a ZrO2 volume fraction
is given in Fig. 8a. As shown in the figure, this optimal volume fraction distribution is obtained by the GA
evolution for 144 generations, and the final fitness rating, given by Eq. (20), is 4.8450. Note that the correspond-
ing objective function value is the inverse of the fitness rating. A feature that the volume fraction increases
rapidly on the heating side of the plate is observed. The through-the-thickness variations in the macroscopic
temperature and thermal stresses are shown in Fig. 8b. There is no clear difference between σ̄22 and σ̄33 on
this graph; the maximum difference is approximately 0.1%. Therefore, in the present numerical example, the
functionally graded plate can be considered to be macroscopically isotropic. The macroscopic thermal stresses
in the plate are compressive throughout the thickness, and their absolute values increase monotonically towards
the heating surface of the plate. Figure 8c illustrates the distribution of a microstress in the RME at x1/τ = 0.9
belonging to the 9th layer, at which the largest value of the macroscopic safety index g (see Eq. (A1)) within
the entire macroscopic domain of the functionally graded plate is observed. In this figure, element solutions
obtained from the microscale analysis by the FEM are shown as a contour plot. Compared with the structure
of the corresponding RME shown in Fig. 8e, it can be seen that large compressive stresses arise in the metal
phase. Note that the areal mean of the stress value over the RME agrees with the value of σ̄22 at x1/τ = 0.9 (in
the 9th layer) in Fig. 8b. Figure 8d is a contour plot of the microscopic safety index (see Eq. (A2)) in the same
RME. Because of the symmetry of the microstructure, there are eight locations where the maximum value is
observed. These locations are critical locations for material failure in the domain and all correspond to metal
phase elements located at the boundaries between the metal phase and ceramic phases.

Figure 9 contains the optimised material composition distribution and corresponding macroscopic/micro-
scopic analysis results for the functionally graded plate with realistic microstructures of FGMs for thermal
stress relaxation. Compared with the through-the-thickness profile of the ZrO2 volume fraction shown in
Fig. 8a, while there is a discernible difference in the volume fraction of the 9th layer, it is similar in that the
volume fraction increases rapidly on the heating side of the plate. Moreover, the fitness rating of this optimal
volume fraction distribution is smaller than that shown in Fig. 8a. This indicates that the optimally designed
FGM with realistic microstructures is more likely to cause material failure than its counterpart with simple
microstructures. Furthermore, on optimising the material composition distribution of FGMs for thermal stress
relaxation, which actually have complicated microstructures as shown in Fig. 1, assuming their microstructures
as simple geometric (e.g. spherical) inclusions embedded in a matrix leads to a significant error: although the
obtained material composition distribution may be close to that obtained from the optimisation without the
assumption, the safety allowance of the FGM with the resultant optimised material composition distribution
against thermal loading is overestimated. Figure 9b shows the corresponding through-the-thickness variations
in the macroscopic temperature and thermal stresses. There is no significant difference between σ̄22 and σ̄33 in
the case of the realistic microstructures either, and therefore, the functionally graded plate can be considered to
be macroscopically isotropic. The macroscopic thermal stresses are also compressive throughout the thickness.
Figure 9c is a contour plot of a microstress in the RME at x1/τ = 0.9 in the 9th layer, at which the largest
value of the macroscopic safety index within the entire macroscopic domain of the functionally graded plate is
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Fig. 8 a Optimised volume fraction distribution, b corresponding temperature and macrostress distributions, contour plots of
c microstress σ22 in MPa and d microscopic safety index, G, over the microstructure at the critical location x1/τ = 0.9 in the
9th layer, and e microstructural morphology of the 9th layer, for a functionally graded plate with simple microstructures

observed, that is, the critical location for material failure. Compared with the microstructure shown in Fig. 9e,
it is observed that the compressive stresses are large especially in the metal phases. The distribution of the
microscopic safety index in the same RME is shown in Fig. 9d. One can see that the value tends to be high in
metal phases and the maximum value is found at a metal phase element at a boundary between the metal and
ceramic phases.

Figure 10 illustrates the material composition distribution of the functionally graded plate obtained from the
conventional optimisation method using the simple mean-field homogenisation techniques and the correspond-
ing macroscopic responses. In the obtained design proposal, the ZrO2 volume fraction increases exponentially
towards the heating surface, as shown in Fig. 10a. This is a different trend from the volume fraction distribu-
tion obtained through the optimisation computation based on the multiscale analysis (Figs. 8a, 9a). Owing
to the difference in the objective functions used for the GA optimisations, the fitness rating for the obtained
volume fraction distribution is considerably higher than those shown in Figs. 8a and 9a. Figure 10b shows
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Fig. 9 a Optimised volume fraction distribution, b corresponding temperature and macrostress distributions, contour plots of
c microstress σ22 in MPa and d microscopic safety index, G, over the microstructure at the critical location x1/τ = 0.9 in the
9th layer, and e microstructural morphology of the 9th layer, for a functionally graded plate with realistic microstructures

the through-the-thickness variations in the corresponding macroscopic temperature and thermal stresses. The
functionally graded plate undergoes an equibiaxial compression in the x2–x3 plane, similarly to that shown
in Figs. 8b and 9b. The through-the-thickness variation in the local safety factor calculated from Eq. (B2) is
shown in Fig. 10c. The maximum value is observed at x1/τ = 1; this means that the material failure is most
likely to occur at the heating surface. In summary, it has been demonstrated that optimisation with the knowl-
edge of specific microstresses in FGMs results in not only a different trend of optimised material composition
distribution but also a different critical location in terms of material failure from those obtained by optimisation
without the knowledge of microstresses.

For confirmation, the multiscale analysis by the AEH method was conducted to investigate microstresses
appearing in the functionally graded plate with the ZrO2 volume fraction distribution shown in Fig. 10a, which
contains realistic microstructures. Figure 11a, b shows microscopic thermal stress distributions within the
RME at x1/τ = 0.9 in the 9th layer, at which the largest value of the macroscopic safety index throughout the
entire macroscopic domain of the plate is observed. Since the RME exhibits an interpenetrating network struc-
ture (Fig. 11d), the stress distributions are rather complicated. However, it can be seen that large compressive
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Fig. 10 a Volume fraction distribution obtained from the conventional optimisation procedure without the computation of micro-
stresses, b corresponding temperature and macrostress distributions and c distribution of local safety factor, s, over the macroscopic
domain of the functionally graded plate

stresses tend to occur in metal phases. Figure 11c is a contour plot of the microscopic safety index in the
same RME. The maximum value of 0.224 is higher than that (0.212) for the functionally graded plate with
the volume fraction distribution shown in Fig. 9a. Consequently, it has been confirmed that the volume frac-
tion distribution shown in Fig. 10a (i.e. the material composition distribution obtained from the conventional
optimisation method) is not optimum in terms of material failure at the microscale.

Finally, several computation runs were performed with different seeds to generate the random parame-
ters ci , y(i)1 , and y(i)2 (i = 1, 2, . . ., N ) in Eq. (21), which are needed to create realistic FGM microstructural
morphologies. We have verified that in all of the runs, the optimised ZrO2 volume fraction distribution of the
functionally graded plate with realistic microstructures is identical to the distribution shown in Fig. 9a and the
volume fraction distribution shown in Fig. 10a never agrees with the optimum distribution in terms of material
failure at the microscale.

8 Conclusions

In this study, an optimisation methodology has been presented for the material composition distribution of
FGMs for thermal stress relaxation. The methodology consists of a multiscale thermoelastic analysis by the
asymptotic expansion homogenisation method and a genetic algorithm. For FGMs with microstructures created
using morphology description functions, the multiscale analysis including the homogenisation and localisation
processes is conducted by the asymptotic expansion homogenisation method coupled with a finite element
technique. Thermal stress relaxation effects at the microscale in FGMs are quantitatively evaluated, being
reflected for the optimisation computation of the material composition. The functionally graded component
under consideration is approximated as a multilayered body, and the volume fraction values of one of the



906 R. Chiba, Y. Sugano

(a) (b)

(c) (d)

0

0.5

1

0 0.5 1

y 2 /l

y
1
 /l

0

0.5

1

0 0.5 1

y 2 /l

y
1
 /l

0

0.5

1

0 0.5 1

y 2 /l

y
1
 /l

0

0.5

1

0 0.5 1

y 2 /l

y
1
 /l

ZrO2 Ti
Max. 0.224

Fig. 11 Contour plots of a microstress σ22 in MPa, b microstress σ33 in MPa, c microscopic safety index, G, over the microstruc-
ture at the critical location x1/τ = 0.9 in the 9th layer, and d microstructural morphology for the 9th layer, for a functionally
graded plate with realistic microstructures

constituent materials at the respective layers are chosen as design variables. The objective function is based
on phase-specific failure criteria applied to an existing direct micromechanical failure analysis of FGMs.

Numerical calculations are performed for a functionally graded titanium/zirconia infinite plate that can be
considered to be transversely isotropic at the macroscopic level, which is subjected to a constant temperature
load on its surfaces. The functionally graded plate is assumed to possess fairly simple microstructural mor-
phologies or random two-phase microstructures that resemble morphologies of actual FGMs for thermal stress
relaxation. For comparison purposes, we also performed the conventional optimisation of the material compo-
sition distribution using simple mean-field homogenisation techniques, which does not require the computation
of the microscopic stress state. The effects of the presence or absence of information about the microstructural
morphology and microstresses of FGMs on the obtained optimum material composition distribution have been
investigated. Numerical results demonstrate that optimisation with the knowledge of specific microstresses
in FGMs results in not only a different trend of material composition distribution but also a different critical
location for material failure from those obtained by optimisation without the knowledge of microstresses.

Acknowledgments This work was financially supported by KAKENHI (20923010: Grant-in-Aid for Encouragement of Scien-
tists).

Appendix A

The macroscopic safety index g(x) is defined as the maximum value of a stress ratio, which indicates a phase-
specific failure criterion, computed over the entire domain of the RME corresponding to a macroscopic location
of interest x; with the microscopic safety index G(x,y), it is expressed as follows [8,19]:



Optimisation of material composition 907

g(x) = max
y∈Y

G(x, y), (A1)

in which

G(x, y) =
{
σeq(x,y)
σy

if y ∈ Ym
σ̃ (x,y)
σut

if y ∈ Yc
, (A2)

σ̃ (x, y) = max(C1,C2,C3, σ1, σ2, σ3), (A3)

C1(x, y) = 1

2

[
|σ1 − σ2| + |σuc| − 2σut

|σuc| (σ1 + σ2)

]
, (A4)

C2(x, y) = 1

2

[
|σ2 − σ3| + |σuc| − 2σut

|σuc| (σ2 + σ3)

]
, (A5)

C3(x, y) = 1

2

[
|σ3 − σ1| + |σuc| − 2σut

|σuc| (σ3 + σ1)

]
. (A6)

In the above equations, σeq is the Mises equivalent stress at the microscale, σy is the yield strength of the
metal phase, Ym and Yc denote the regions in the RME, which are composed of metal or ceramic phases,
respectively; σut and σuc are the ultimate tensile and compressive strengths of the ceramic phase, respectively;
and σi (i = 1, 2, 3) are the principal stresses obtained from the microstresses. Equation (A2) represents the
usage of the Mises failure criterion for the metal phases and a modified-Mohr criterion for the ceramic phases.

Appendix B

An optimisation of the material composition of the functionally graded plate that does not include information
on the specific microstructure is explained here. In this framework, the effective material properties of the
transversely isotropic functionally graded plate are estimated by the various methods listed in Table 3. All the
methods listed are mean-field homogenisation schemes for unidirectional fibrous composite materials.

For the objective function f to be minimised in the optimisation computation, the maximum value of a
local safety factor s proposed by Ootao et al. [17], i.e.

f (V) = max
x∈� s(x), (B1)

s(x) =
⎧⎨
⎩

σ̄eq(x)
σBt(x)

if σ̄m(x) ≥ 0,

σ̄eq(x)
σBc(x)

if σ̄m(x) < 0,
(B2)

is used from the viewpoint of macroscopic material failure, where σ̄eq and σ̄m are the Mises equivalent stress
and mean normal stress at the macroscale, respectively. For the present model problem, they are expressed as
follows:

σ̄eq =
√
σ̄ 2

22 − σ̄22σ̄33 + σ̄ 2
33, σ̄m = σ̄22 + σ̄33

3
, (B3)

Table 3 Mean-field homogenisation schemes used for estimating the effective material properties of FGMs

Material property Adopted scheme

K11 Hasselman–Johnsona [27] and fuzzy inference[24]
E22 Halpin–Tsaib [28] and fuzzy inference [24]
E33 Linear rule of mixtures
ν23, ν32 Linear rule of mixtures
α22 Schapery’s transverse CTE model [23] and fuzzy inference [24]
α33 Schapery’s axial CTE model [23] and fuzzy inference [24]
a Infinite interfacial conductance is assumed
b A reinforcement parameter of ζ = 2 has been used
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where σ̄22 and σ̄33 are given by Eq. (23). Moreover, σBt and σBc are the effective strengths of the functionally
graded plate to tensile and compressive stresses, respectively. After Ootao et al. [17] and Na et al. [26], the
effective strengths are simply estimated by the linear rule of mixtures as

σBt(x) = σyVMetal(x)+ σutVCeramic(x), σBc(x) = σyVMetal(x)+ |σuc|VCeramic(x). (B4)

In the implementation, the values of s are calculated at 11 discrete locations with equal intervals in each
layer of the 10-layer system into which the original functionally graded plate is converted, and the maximum
of those values calculated in all the layers is regarded as the value of the objective function f .
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