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Abstract A boundary-only BEM procedure is employed to solve the transient dynamic analysis of nonho-
mogeneous anisotropic plane elastic bodies. The response of such bodies is governed by two coupled linear,
second-order hyperbolic PDEs with spatially dependent coefficients. The lack of a reliable 2D time-domain
elastodynamic fundamental solution is overcome using the principle of the Analog Equation, a method by
which the equations of motion of the problem are substituted by two coupled quasi-static Poisson-type equa-
tions having as nonhomogeneous terms the components of a fictitious time-dependent load distribution in the
specified domain. The standard BEM is employed for the solution of the substitute equations. To avoid the
appearance of the domain integral in the integral representation of the solution, the fictitious load distribution
is approximated by multiquadrics with unknown time-dependent expansion coefficients, which are calculated
at discrete timepoints by collocating the equations of motion at a predefined set of domain interpolation nodes.
The obtained numerical results by the proposed method demonstrate its stability and accuracy over other
numerical methods.

1 Introduction

The current paper presents a BEM-based solution for the transient dynamic analysis of 2D nonhomogeneous
anisotropic elastic solids. Engineering applications using materials such as the functionally graded materials
were developed over the past years, since they offered attractive properties of strength and stiffness. This
continuously increasing field of applications requires accurate computational methods for the calculation of
stress and strain fields. The inhomogeneity and anisotropy of such plane bodies result from the position and
directional dependence of the material elastic parameters. Their response is described by an initial-boundary
value problem involving second-order partial differential equations of hyperbolic type with spatially dependent
coefficients. Due to the importance of obtaining a solution for such problems, several techniques have been
developed. With regard to boundary integral equation methods, though extended literature is available for the
dynamic problem of isotropic bodies [1], few works are found for analyzing dynamic anisotropic problems
[2,3]. The reason is that the conventional BEM exhibits a major drawback for this type of problems due to the
absence of well-established fundamental solutions. Most anisotropic fundamental solutions for elastodynamics
require numerical integration [4,5]. An alternative approach is the application of static fundamental solutions
by considering inertia terms as body forces. In this case, the most suitable fundamental solutions are those
proposed by Cruse and Swedlow [6], which require no numerical integration. The fact that domain integrals
appear in the boundary element formulation due to inertia terms is worth noting. These domain integrals can
be transformed into boundary integrals using appropriate techniques. Albuquerque et al. [7,8] used the dual
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Fig. 1 Domain occupied by the body and notation

reciprocity BEM (DR/BEM) to solve problems of anisotropic media. During the last years, more advanced
methods have been developed for the solution of initial-boundary value problems on complex domains. These
so called meshless methods based on local weak-form formulations on global or on a set of local subdomains
were successfully applied to isotropic homogeneous and continuously inhomogeneous bodies under static
(Atluri et al. [9]; Sladek et al. [10,11]) and dynamic loads (Sladek et al. [12]). Also, Sladek et al. [13,14]
presented a meshless method based on the local Petrov–Galerkin approach for the solution of static and
elastodynamics problems in a homogeneous anisotropic medium. In the presented new formulation, a domain
meshless boundary element technique is introduced for the dynamic analysis of this particular type of problems
using the principle of the Analog Equation Method [15–19]. The method substitutes the equations of motion
by two equivalent quasi-static Poisson-type equations with fictitious domain loads, under the same boundary
and initial conditions. The introduced unknown field load functions are approximated by a radial basis func-
tions series (RBF) of multiquadric type in which the time-dependent expansion coefficients are evaluated by
collocating the problem equations [20]. The procedure results in a discretized form of equations in terms of
the expansion coefficients, on a selected number of collocation points which are solved in the time domain of
interest using a direct time integration scheme. The presented method maintains the pure boundary character
of the BEM, since the discretization into elements and the integrations are limited only to the boundary of the
domain. Several example problems are studied to demonstrate the accuracy of the method.

2 Governing equations and problem statement

We consider a nonhomogeneous, anisotropic, linear elastic body with mass density distribution ρ(x), occu-
pying a bounded region � ⊆ R

3 (Fig. 1). The boundary � of � is divided into the part �u ⊆ �, where the
displacement vector ũ(x, t) is specified and into �t (= � − �u), where the boundary traction vector t̃(x, t)
is specified. Furthermore, the body may be subjected to a distribution of time-dependent body forces b(x, t).
Referred to a selected Cartesian frame Ox1x2x3, the dynamic response of the body within the time domain of
interest [0, T ] is governed by the following differential equations of linearized elastodynamics:

σi j, j (x, t) + bi (x, t) = ρ(x)üi (x, t) in � × [0, T ], (1)

with boundary conditions

ui (x, t) = ũi (x, t) on �u × [0, T ], (2.1)

σi j (x, t)n j (x) = t̃i (x, t) on �t × [0, T ], (2.2)

and initial conditions

ui (x, 0) = ũi (x, 0), (3.1)

u̇i (x, 0) = ˙̃ui (x, 0), (3.2)
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where n(x) = (n1, n2) is the unit vector along the outer normal to the boundary at x, σi j = σi j (x, t) are the
components of the Cauchy stress tensor with respect to the selected coordinate system determined in terms of
displacements by the generalized Hooke’s law,

σi j (x, t) = Ci jkl(x)uk,l(x, t), (4)

where summation over repeated indices is implied; Ci jkl(x) are the components of the fourth-order elasticity
modulus tensor C, which are assumed to satisfy the major and minor conditions for symmetry. Throughout this
work, the superposed dot over a quantity indicates partial differentiation with respect to time, and the comma
denotes differentiation with respect to spatial variables.

The tractions ti (x, t) are related to displacements by Cauchy’s formula for the strain,

ti (x, t) = Ci jkl(x)uk,l(x, t)n j (x). (5)

On substituting Eqs. (4) into (1) and carrying out the differentiations, the following field equations of motion
in terms of displacements are obtained:

Ci jkl, j (x)uk,l(x, t) + Ci jkl(x)uk, jl(x, t) + bi (x, t) = ρ(x)üi (x, t). (6)

The most general anisotropic elastic solid requires for its description 21 elastic constants. However, for 2D
cases, the number of independent constants is reduced to six. In this case, the indices of the components for C
are simplified, and Eqs. (6) can be written in the following contracted form:

L11(u1) + L12(u2) + b1 = ρü1, (7.1)

L21(u1) + L22(u2) + b2 = ρü2. (7.2)

Moreover, if the spatial derivatives in Eqs. (2.1) are replaced in terms of the derivatives in the normal and
tangential direction along the boundary, the following relations are valid:

T11(u1) + T12(u2) = t̃1(x, t), (8.1)

T21(u1) + T22(u2) = t̃2(x, t). (8.2)

The linear differential operators Li j and Ti j (i, j = 1, 2) involved in Eqs. (7.1) and (8.1) are given by the
expressions

L11(·) = c11(·),11 +c16(·),12 +c11,1(·),1 +c16,1(·),2 +c16(·),12

+ c66(·),22 +c16,2(·),1 +c66,2(·),2, (9.1)

L12(·) = c16(·),11 +c12(·),12 +c16,1(·),1 +c12,1(·),2 +c66(·),12

+ c26(·),22 +c66,2(·),1 +c26,2(·),2, (9.2)

L21(·) = c16(·),11 +c12(·),12 +c16,1(·),1 +c12,2(·),1 +c66(·),12

+ c26(·),22 +c66,1(·),2 +c26,2(·),2, (9.3)

L22(·) = c66(·),11 +c26(·),12 +c66,1(·),1 +c26,1(·),2 +c26(·),12

+ c22(·),22 +c26,2(·),1 +c22,2(·),2 (9.4)

and

T11(·) = [c16(n
2
1 − n2

2) + (c66 − c11)n1n2](·),s +[c11n2
1 + c66n2

2

+ 2c16n1n2](·),n, (10.1)

T12(·) = [c12n2
1 + (c26 − c16)n1n2 − c66n2

2](·),s +[(c12 + c66)n1n2

+ c16n2
1 + c26n2

2](·),n, (10.2)

T21(·) = [−c12n2
2 + (c26 − c16)n1n2 + c66n2

1](·),s +[(c12 + c66)n1n2

+ c16n2
1 + c26n2

2](·),n, (10.3)

T22(·) = [c26(n
2
1 − n2

2) + (c22 − c66)n1n2](·),s +[c66n2
1 + 2c26n1n2

+ c22n2
2](·),n (10.4)
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where (.),s and (.),n denote differentiation with respect to the arc length s of the boundary and the outward
normal n to it, respectively.

For orthotropic materials, the number of independent material constants is reduced to four, and the related
differential operators are extracted from expressions (9.1) and (10.1), setting c16 = c26 = 0. Equations (7.1)
in the domain and (2.1), (8.1) on the boundary together with the initial conditions given by (3.1) formulate in
terms of displacements a well-posed, second-order initial-boundary value problem for the spatially dependent
hyperbolic equations of motion.

3 The AEM for the transient dynamic analysis of anisotropic 2D problems

The initial-boundary value problem, as stated above, is solved by implementing a boundary-only method based
on the concept of Analog Equation [15–19], which is explained as follows.

Let ui (x, t), (i = 1, 2) be the components of the sought solution u(x) of the problem, twice continuously
differentiable in � ×[0, T ] and once on the boundary � ×[0, T ]. If we apply the 2D Laplacian operator on ui ,
the following quasi-static Poisson-type equations:

∇2ui (x, t) = qi (x, t), (11)

with unknown in the first instance fictitious time-dependent domain source densities are constructed.
The method suggests that the solution to the original problem could be obtained from the solution of

the substitute Eq. (11) under the same boundary and initial conditions, if the source densities are properly
calculated.

The transformation of Eq. (11), which will be called the analog equations, into integral equations is
accomplished by employing the method of weighted residuals using as weighting function the well-known
fundamental solution of the substitute equations. After employing Green’s second identity, the displacements
at x ∈ � ∪ � are given by the following integral equation:

εui (x, t) =
∫

�

u∗(x, y)qi (y, t)d�y −
∫

�

[u∗(x, ξ)ui,n(ξ , t) − ui (ξ , t)u,∗n (x, ξ)]d�ξ , (12)

where y ∈ � and ξ ∈ �; u∗(x, y) = ln r(x, y)/2π is the fundamental solution of the Laplace equation and
u,∗n (x, ξ) its derivative in the normal direction to the boundary at ξ ; ε is a constant (ε = 1 for x ∈ �, ε = β/2π
for x ∈ �, with β the internal angle between the tangents of the boundary at x).

The approximation of the domain integral in (12) requires a predefined domain discretization into a number
of internal cells. Even though this integral treatment has been shown to produce accurate results, it reduces the
attraction of the BEM method over the domain-based numerical methods. In order to preserve the pure bound-
ary character of the method, the fictitious source density functions are represented as a linear interpolation on
a predefined pattern of nodes in the domain using the finite series representation

qi (x, t) =
M∑

j=1

α
(i)
j (t) f j (x, x j ), (13)

where f j (x, x j ) belongs to a selected set { f j }M
j=1 of radial basis interpolation functions, and α

(i)
j (t) is the

unknown expansion coefficient for the RBF f j at the xi direction, corresponding to the given point x j .
At any time t , the solution of the analog equations can be represented as the superposition of the homoge-

neous solution, ūi (x, t), and a particular one, u p
i (x, t). The latter can be approximated from a set of particular

solutions {û j }M
j=1 to the equations

∇2û j (x) = f j (x, x j ), (14)

according to the following scheme:

u p
i (x, t) =

M∑
j=1

α
(i)
j (t)û j (x), (15)

where û j can always be determined by analytical integration when the RBFs f j (x, x j ) are selected.
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On the other hand, the homogenous solution ūi (x, t) can be approximated in terms of the expansion
coefficients of the interpolation from the solution of the following boundary value problem:

∇2ūi (x, t) = 0 in � × [0, T ] (16)

with

ūi (x, t) = ũi (x, t) −
M∑

j=1

α
(i)
j (t)û j (x) (17)

for x ∈ �u × [0, T ] and

T11(ū1) + T12(ū2) = t̃1(x, t) −
M∑

j=1

[
α

(1)
j (t)T11(û j ) + α

(2)
j (t)T12(û j )

]
, (18.1)

T21(ū1) + T22(ū2) = t̃2(x, t) −
M∑

j=1

[
α

(1)
j (t)T21(û j ) + α

(2)
j (t)T22(û j )

]
(18.2)

for x ∈ �t × [0, T ].
Therefore, the solution ūi (x, t) to the homogeneous Eq. (16) can be written in an integral form as

εūi (x, t) =
∫

�

[ūi (ξ , t)u,∗n (x, ξ) − u∗(x, ξ)ūi,n(ξ , t)]d�ξ . (19)

On the basis of Eqs. (15) and (19), the solution to Eq. (11) for points x ∈ �, setting ε = 1, is given by

ui (x, t) =
M∑

j=1

α
(i)
j (t)û j (x) +

∫

�

[ūi (ξ , t)u,∗n (x, ξ) − u∗(x, ξ)ūi,n(ξ , t)]d�ξ (20)

and for points on the boundary by

β

2π
ui (x, t) =

M∑
j=1

α
(i)
j (t)û j (x) +

∫

�

[ūi (ξ , t)u,∗n (x, ξ) − u∗(x, ξ)ūi,n(ξ , t)]d�ξ . (21)

The spatial and time derivatives of the displacements are obtained from Eq. (20) dy direct differentiation,
namely,

ui,pq(x, t) =
M∑

j=1

α
(i)
j (t)û j,pq(x) +

∫

�

[ūi (ξ , t)u,∗npq (x, ξ) − u,∗pq (x, ξ)ūi,n(ξ , t)]d�ξ , (22)

u̇i (x, t) =
M∑

j=1

α̇
(i)
j (t)û j (x) +

∫

�

[ ˙̄ui (ξ , t)u,∗n (x, ξ) − u∗(x, ξ) ˙̄ui,n(ξ , t)]d�ξ , (23)

üi (x, t) =
M∑

j=1

α̈
(i)
j (t)û j (x) +

∫

�

[ ¨̄ui (ξ , t)u,∗n (x, ξ) − u∗(x, ξ) ¨̄ui,n(ξ , t)]d�ξ . (24)

Application of the differential operators Lpq(p, q = 1, 2) on Eq. (20) leads to

Lpq(ui ) =
M∑

j=1

α
(i)
j Lpq(û j ) +

∫

�

[ūiLpq(u,∗n ) − Lpq(u∗)ūi,n]d�. (25)
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The next step of the method is the satisfaction of Eqs. (7.1) at the M collocation points inside �. Therefore,
at each collocation point m, the equations of motion after substituting Eq. (25) become

M∑
j=1

[
α

(1)
j L(m)

11 (û j ) + α
(2)
j L(m)

12 (û j )
]

+
∫

�

[
ū1L(m)

11 (u,∗n ) + ū2L(m)
12 (u,∗n )

]
d�

−
∫

�

[
ū1,nL(m)

11 (u∗) + ū2,nL(m)
12 (u∗)

]
d� + b(m)

1

= ρ

⎧⎨
⎩

M∑
j=1

α̈
(1)
j û(m)

j +
∫

�

[ ¨̄u1(u,∗n )(m) − ¨̄u1,n(u∗)(m)
]

d�

⎫⎬
⎭ , (26.1)

M∑
j=1

[
α

(1)
j L(m)

21 (û j ) + α
(2)
j L(m)

22 (û j )
]

+
∫

�

[
ū1L(m)

21 (u,∗n ) + ū2L(m)
22 (u,∗n )

]
d�

−
∫

�

[
ū1,nL(m)

21 (u∗) + ū2,nL(m)
22 (u∗)

]
d� + b(m)

2

= ρ

⎧⎨
⎩

M∑
j=1

α̈
(2)
j û(m)

j +
∫

�

[ ¨̄u2(u,∗n )(m) − ¨̄u2,n(u∗)(m)
]

d�

⎫⎬
⎭ . (26.2)

The boundary quantities ūi , ūi,n can be eliminated from Eqs. (26.1) using a set of discretized relations
obtained by collocating the BIE (21) and the boundary conditions (17) and (18.1) at a selected number of
boundary nodes, using the standard BEM. In addition, numerical differentiation is employed to approximate
ūi,s in terms of the boundary nodal values ūi . After the elimination, the following 2M discretized system of
equations in terms of the unknown expansion coefficients

F (m)
1 (α

(1)
j , α

(2)
j , α̈

(1)
j ) + b(m)

1 = 0, (27.1)

F (m)
2 (α

(1)
j , α

(2)
j , α̈

(2)
j ) + b(m)

2 = 0 (27.2)

is formulated, which is solved numerically using an implicit time integration method preserving the initial
conditions of the original problem. In this work, the approximating radial basis functions f j (x, x j ) are selected
to be the multiquadrics [20] defined from

f j (x, x j ) =
√

r2 + c2 (28)

where r = r(x, x j ) is the Euclidean distance between the source x and the field point x j and c an arbitrary
constant defined as the shape parameter. In this work, an empirical-based selection of the shape parameter
is avoided and the accuracy of the approximation is considerably improved by minimizing the potential that
yields the domain equations of the static problem. Moreover, the number and the distribution of the collocation
points are selected to best capture the nonhomogeneity and anisotropy of the material. Using the proposed f j ,
the expressions of the particular solutions û j are given by

û j = −c3

3

[
ln(2c2) − 4

3

]
for r = 0, (29.1)

û j = −c3

3

(
c
√

r2 + c2 + c2
)

+ 1

9
(r2 + 4c2)

√
r2 + c2 for r �= 0, (29.2)
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and the first and second derivatives with respect to xi from

û j,k = 1

3
√

r2 + c2

[
r2 + 2c2 − c3

√
r2 + c2 + c

]
[xk − (xk) j ], (30.1)

û j,kk = 1

3(r2 + c2)3/2

⎡
⎢⎣r2 + c3 2

√
r2 + c2 + c(√

r2 + c2 + c
)2

⎤
⎥⎦ [xk − (xk) j ]

+ 1

3
√

r2 + c2

[
r2 + 2c2 − c3

√
r2 + c2 + c

]
, (30.2)

û j,kl = 1

3(r2 + c2)3/2

⎡
⎢⎣r2 + c3 2

√
r2 + c2 + c(√

r2 + c2 + c
)2

⎤
⎥⎦ [xk − (xk) j ]

×[xl − (xl) j ] (30.3)

with limit values

lim
r→0

û j,l = 0 lim
r→0

û j,ll = c

2
lim
r→0

û j,kl = 0. (31)

4 Numerical implementation of the method

The method handles the formulated integral equations of the homogeneous solution using the standard BEM.
The boundary is divided into N constant elements, and a set of M collocation points is selected within the
domain (Fig. 2). Also, the time domain of interest [0, T ] is discretized into n small time intervals of size �t .

To eliminate the boundary quantities ūi , ūi,n from the equations of motion, the following matrix relation:
[

Hb Gb

Tb
i Sb

i

] [
ūi

ūi,n

]
=

[
0
d̃i

]
+

[
0

Ûb

]
α(i) (32)

is formulated at each material direction xi (i = 1, 2) from the discretized counterparts of BIE (21) and
Eqs. (17), (18.1), when applied to each boundary node in turn. Here, ūi , ūi,n are N × 1 arrays including the
nodal values of the boundary components of the homogeneous solution and its normal derivative, respectively;

Fig. 2 Boundary discretization and distribution of collocation points
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α(i) is an M × 1 array composed from the values of the unknown time-dependent expansion coefficients at the
collocation points inside �. Hb and Gb are N × N known coefficient matrices with elements resulting from
the integration of u,∗n and u∗ on the boundary elements; d̃i is an N × 1 array, which contains the prescribed
boundary tractions and displacements; Ûb is an N × M matrix with elements Û b

i j = û j (xi , x j ) at nodes where

displacements are prescribed and elements Û b
i j resulting from the application of the differential operators Tpq

on û j , at nodes where tractions are prescribed. The N × N matrices Tb
i , Sb

i contain the coefficients of the
unknown quantities from Eqs. (17) and (18.1), in which the derivatives ūi ,s are approximated in terms of ūi
using numerical differentiation.

Solving (32) for boundary values and substituting into the discretized counterpart of Eq. (20), given by

ui = Ûdα(i) + [
Hd −Gd

] [
ūi

ūi,n

]
, (33)

the displacements at M collocation points are given by

u = [u1 u2]T =
[

W(1) 0
0 W(2)

]
α +

[
w(1)

w(2)

]

= Wα + w, (34)

where ui (i = 1, 2) are M × 1 arrays, which contain the values of the i-component of displacement at the M
domain collocation points; Hd , Gd and Ûd are matrices evaluated as previously defined Hb, Gb and Ûb except
that in the former the source point takes values from the set {x j }M

j=1 of the collocation points. W(i) and w(i)

are M square matrices and arrays with elements resulting from the multiplication of known matrices.
Collocating Eqs. (25) results in

lpq(ui ) = Ûd
pqα(i) + [

Hd
pq −Gd

pq

] [
ūi

ūi,n

]
, (35)

and after the elimination of boundary quantities using Eq. (32) we obtain the arrays lpq(ui ), which contain the
values of the differential operators Lpq(ui ) at the M collocation points, i.e.,

lpq(ui ) = W(i)
pqα(i) + w(i)

pq (p, q = 1, 2). (36)

Hd
pq , Gd

pq are M × N matrices with elements from the integration of Lpq(u,∗n ) and Lpq(u∗) on the boundary

elements, respectively; Ûd
pq is an M square matrix with elements (U d

pq)i j = Lpq(û j ). Moreover, W(i)
pq , w(i)

pq
are M square matrices and arrays with known elements, resulting from matrix operation among previously
calculated matrices.

The final step of the proposed method is to collocate Eq. (7.1) at the M domain collocation points. The
substitution of Eqs. (34) and (36) into the discretized equations of motion results in the following system of
2M equations:

W(1)
11 α(1) + W(2)

12 α(2) + w(1)
11 + w(2)

12 + b1 + ρw(1)
t = ρW(1)α̈(1), (37.1)

W(1)
21 α(1) + W(2)

22 α(2) + w(1)
21 + w(2)

22 + b2 + ρw(2)
t = ρW(2)α̈(2), (37.2)

in which w(i)
t are arrays depending on the accelerations of prescribed displacements and the second time

derivatives of prescribed tractions at the boundary. The system is solved using a time integration scheme based
on the Houbolt method [21], which gave the best results with the smallest fluctuations. The applied time step
�t for the integration of the equations is calculated from

�t = min

{
β

dmin

cmax
, 0.01Tn

}
, (38)

in which β represents a nondimensional number with values greater or equal to 0.4716 [22], dmin is the min-
imum distance between the collocation points and the boundary points; cmax is the maximum value between
the quasi longitudinal cL = (c22/ρ)0.5 and the quasi transverse cT = (c66/ρ)0.5 wave velocities; Tn is the
fundamental period of the problem.
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Fig. 3 Geometry and loading for the curved FGM cantilever beam

The interpolation coefficients at each discrete time n�t (n = 1, 2, . . .) are obtained from the solution of
Eq. (37.1). Subsequently, the coefficients {α(i)

j (t)}M
j=1 are employed into Eq. (34) to evaluate the displacement

components at the M collocation points. From the integral equations eliminated unknown boundary quantities
can be found from the solution of Eq. (32) after the substitution of the calculated interpolation coefficients.
Also, the stress components σi j are obtained at each collocation point from Eq. (4) using the discretized coun-
terpart of (22) for the derivatives of the displacements. For any other point within the domain, not coincident
with the selected {x j }M

j=1, the components of the stress and strain fields can be computed from the discretized
counterpart of the respective integral equation for the displacements and their spatial derivatives.

5 Numerical examples

To demonstrate the accuracy of the method, three example problems dealing with the transient dynamic analy-
sis of nonhomogeneous, anisotropic plane elastic bodies were analyzed. Computationally, the results obtained
by the method were checked with other numerical procedures (FEM) and found very close. In each example,
the positions of the collocation points are selected in such a way that the nonhomogeneity and anisotropy of
the material is best captured. Since the problem of obtaining accurate global interpolants using a multivariate
approximation with MQs is strongly influenced by the selection of c [23,24], the calculation of an optimal
value within an interval in which the constructed interpolants are cone-like functions [24–26] resolves the
issue of selection using empirical formulae or numerical experiments. In this optimization procedure, the total
potential energy of the system is used as the objective functional. The components of the displacement and
their spatial derivatives are expressed within the functional in terms of the expansion coefficients and the
shape parameter of the MQs. From the solution of this optimization problem, an optimal value for the shape
parameter is calculated and used in the dynamic problem. The regular distribution schemes employed in the
examples are selected from a sequence of increasingly refined grids until the results converge satisfactorily.
Using these finer grids of collocation points, stable solutions are expected since small perturbations in the
location of the points have little influence on the obtained results [27,28].

The presented formulation has been implemented into the BEM program TranNhAn, which uses the AEM
with integral techniques, MQs as interpolation functions and the Houbolt method for the time integration of
the resulting equations of motion.

5.1 Analysis of a curved FGM cantilever beam

We examine the response of a circular cantilever beam, under a uniformly distributed time-varying load along
its tip, as depicted in Fig. 3. Numerical calculations are carried out for a functionally graded material in which
the tangential modulus of elasticity varies according to the law Et = Eoeγ (r−2), while Er is constant and equal
to Eo, everywhere. The numerical results are obtained for the following material properties: Eo = 5,000 Mpa,
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Fig. 4 Boundary discretization and pattern of collocation points

Fig. 5 Normalized displacements against normalized time for various rise times td of loading

ν = 0.3, G = 0.385Et and material density ρ = 10 Mg/m3. We examine two load cases. In the first (LC1), the
applied load is represented by a rectangular pulse of duration td with amplitude po = 750 kN/m2, and in the
second (LC2) by a ramp function that has a finite rise time td while remaining constant thereafter at the value
of 750 kN/m2. The boundary is discretized into N = 76 boundary elements, whereas a pattern of M = 105
domain points is chosen having a denser distribution along the radial direction where the material gradients
are large, as schematically presented in Fig. 4. Several plots of normalized displacement, maxu2(t)/maxust

2 ,
against normalized time, t/Tn , with ust

2 the maximum static deflection and Tn the fundamental period of the
beam, are presented in Fig. 5 and compared with the results obtained from the FEM package ANSYS using
a mesh of 685 quadratic finite elements. Moreover, in Fig. 6 the displacements and in Fig. 7 the tangential
stresses for LC1 and LC2 are plotted along the perimeter of the beam (counterclockwise from point A ) for
different values of the graded parameter, at times where the maximum displacements occur.
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Fig. 6 Distribution of radial and tangential displacement along the boundary of the beam

Fig. 7 Distribution of tangential stress along the boundary of the beam

5.2 Circular disc with a concentric hole

Consider the unit width circular disc of radius R with a concentric hole of radius r shown in Fig. 8. The disc
is subjected to a time-varying sinusoidal pressure t̃r (t) and shear tractions t̃t (t), with amplitude 50 kN/m2 and
circular frequencies � and 0.5�, respectively. The time duration of the loading is td = 0.3 s. Due to symmetry,
only one-quarter of the disc is modeled. Numerical calculations are carried out for a functionally graded mate-
rial with an exponential variation in the radial modulus of elasticity, according to the law Er = Eoeγ (r−1),
while Et is constant and equal to Eo everywhere. The employed data are as follows: R = 2.5 m, r = 1.0 m,
Eo = 1,000 Mpa, ν = 0.3, G = 0.385Et , ρ = 10 Mg/m3.

The problem was analyzed using N = 90 constant boundary elements and M = 88 interior collocation
points, as shown in Fig. 9. To compare the obtained results, the FEM code ANSYS was employed using 585
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Fig. 8 Circular disc with a concentric hole

Fig. 9 One-quarter modeling of the disc. Boundary nodes and domain collocation pattern

Fig. 10 Time history of radial displacement at points A and B
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Fig. 11 Time history of radial displacement at point A for various forcing frequencies �

Fig. 12 Time history of tangential displacement at point A for various values of forcing frequency �

four-node isoparametric elements. The time history of radial displacement at points A and B is presented in
Fig. 10, for γ = 1, � = 100 rad/s, and compared with the response obtained for homogeneous orthotropic
material having Er = Eo and Et the mean value of the tangential modulus in the nonhomogeneous case.

Moreover, in Figs. 11 and 12, the time history of radial and tangential displacement at point A is compared
with the results calculated from the FEM solution for different values of the forcing frequency �. The dis-
tribution of radial and tangential displacements along the perimeter of the disc (counterclockwise from A) at
t = 65 msec, for � = 100 rad/s, is plotted in Fig. 13, for different values of the graded parameter γ . For the
same �, the distribution of tangential stress along the perimeter of the disc is plotted in Fig. 14, for different
values of γ .
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Fig. 13 Distribution of radial and tangential displacement along the boundary at t = 65 msec for � = 100 rad/s

Fig. 14 Distribution of tangential stress along the boundary for � = 100 rad/s at t = 65 msec

5.3 Homogeneous orthotropic disc with semi-circular cuts

We examine the homogeneous orthotropic disc with semi-circular edge cuts, depicted in Fig. 15. The disc
is subjected to uniform tensile tractions t̃1(x, t) on the vertical straight parts of the boundary, which can
be represented by a time function resulting from the addition of three sinusoidals of the same amplitude
and circular frequencies �1, �2 and �3, respectively. The duration of the input is set to: td = 2 s. Due
to the symmetry of the problem, only one-quarter of the disc is modeled. The employed data of the mate-
rial are as follows: E1 = 1,000 Mpa, G = 1,000 Mpa, ν = 0.2, ρ = 10 Mg/m3 and E2 = αE1, with α
the anisotropy coefficient which takes values between 1 and 10. We examine two load cases. Load case 1
(LC1) is constructed with �1 = 25 rad/s, �2 = 50 rad/s and �3 = 75 rad/s, whereas load case 2 (LC2) with
�1 = 100 rad/s, �2 = 125 rad/s and �3 = 150 rad/s. The amplitude on both cases is set to: t̃o(x) = 1 Mpa.
The problem was analyzed using N = 63 constant boundary elements and M = 135 interior collocation
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Fig. 15 Homogeneous orthotropic disc with semi-circular cuts

Fig. 16 One-quarter modeling of the disc. Boundary discretization and domain collocation pattern

points, as shown in Fig. 16. In Figs. 17 and 18, the maximum disc displacements are plotted against α for
both load cases and compared with those obtained from the FEM package ANSYS using 1325 four-node
isoparametric elements. Moreover, the time history of the horizontal displacement at point C is plotted for
LC1, for two values of the anisotropy coefficient, as shown in Fig. 19. Also, in Fig. 20, the time history of the
maximum horizontal displacement is plotted with α = 1.9, for LC2.

6 Conclusions

In this paper, the transient dynamic analysis of nonhomogeneous, anisotropic, plane elastic bodies is examined
by a boundary-only method based on the concept of the analog equation. From the presented analysis and the
solution of the selected numerical examples, the following main conclusions can be drawn.

• The method, as a boundary-only method, has all the advantages of the BEM, i.e., the discretization and
integration are performed on the boundary only. Comparing to other boundary-only methods and specifi-
cally the dual reciprocity method (DRM), we can conclude that the presented method is alleviated from the
restrictions and drawbacks characterizing the DRM. Thus, the fundamental solution to Laplace’s equation
is employed to derive the integral representation of the solution in contrast to the DRM, where the extrac-
tion of a standard linear differential operator from the governing equations of the problem is not always
possible, or the fundamental solution of the adjoint operator cannot be established.
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Fig. 17 Dependence of maximum developed displacement from anisotropy coefficient (LC1)

Fig. 18 Dependence of maximum developed displacement from anisotropy coefficient (LC2)

• The proposed method is considered as an alternative to domain discretization methods, such as the FEM,
with its major advantage being that the discretized equations of motion are formed without the use of a
predefined mesh. The set of interior nodes, which are uniformly scattered within the body following the
geometry and the nonhomogeneity of the system in a simple geometric pattern, are used to represent and
not to discretize the domain. Since they do not form a mesh, no information on the relationship between
the nodes is required. Thus, a considerable time is saved in modeling projects, and flexibility is provided
in adding, deleting or relocating a node whenever needed.
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Fig. 19 Time history of horizontal displacement at point C (LC1)

Fig. 20 Time history of horizontal displacement at point C (LC2)

• The displacements and the stress components can be computed at any position within the domain and on
the boundary using the respective integral representation of the quantity as mathematical formulas.
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