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Abstract This paper deals with the problem of magneto-thermo-elastic interactions in an unbounded, perfectly
conducting elastic medium due to the presence of periodically varying heat sources in the context of linear
theory of generalized thermo-elasticity with energy dissipation (TEWED or GN-III model), without energy
dissipation (TEWOED or GN-II model) and three-phase-lag model (3P model). The governing equations of
generalized thermo-elasticity of the above models under the influence of a magnetic field are established. The
Laplace-Fourier double transform technique has been used to get the solution. The inversion of the Fourier
transform has been done by using residual calculus, where poles of the integrand are obtained numerically
in a complex domain by using Laguerre’s method, and the inversion of the Laplace transformation is done
numerically using a method based on Fourier series expansion technique. Displacement, temperature, stress
and strain distributions have been computed numerically and presented graphically in numbers of figures.
A comparison of the results for different theories (GN-II, GN-III and 3P model) and the effect of magnetic
field and damping coefficient on the physical quantities has been discussed.

List of symbols

u Displacement vector
λ,μ Lamé’s constants
ρ Constant mass density of the medium
γ Thermal modulus
αt Coefficient of linear thermal expansion
T0 Uniform reference temperature
T Small temperature increase above the reference temperature T0
J Electric current density vector
B Magnetic induction vector
cv Specific heat of the medium at constant strain
K ∗ A material constant characteristic for the GN theory
H Total magnetic field vector at any time
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E Electric field vector
μe Magnetic permeability of the medium
σ Electric conductivity of the medium
cT Non-dimensional finite thermal wave speed of GN theory of thermo-elasticity II
εT Thermo-elastic coupling constant
K Thermal conductivity
κ Thermal diffusivity

1 Introduction

The classical theories of thermo-elasticity, involving infinite speed of propagation of thermal signals, contradict
physical facts. During the last three decades, non-classical theories involving a finite speed of heat transport
in elastic solids have been developed to remove this paradox. In contrast to the conventional coupled thermo-
elasticity theory, which involves a parabolic-type heat transport equation, these generalized theories involving
a hyperbolic-type heat transport equation are supported by experiments exhibiting the actual occurrence of
wave-type heat transport in solids, called the second-sound effect. The extended thermo-elasticity theory (ETE)
proposed by Lord and Shulman [1] incorporates a flux-rate term into Fourier’s law of heat conduction and
formulates a generalized form that involves a hyperbolic-type heat transport equation with a finite speed of the
thermal signal. The temperature-rate-dependent generalized thermo-elasticity (TEDTE) theory proposed by
Green and Lindsay [2] involving two relaxation times do not violate the classical Fourier law of heat conduc-
tion, and this theory also predicts a finite speed for heat propagation. Because of the experimental evidence in
support of the finiteness of the speed of propagation of a heat wave, generalized thermo-elasticity theories are
more realistic than conventional thermo-elasticity theories in dealing with practical problems involving very
short time intervals and high heat fluxes like those occurring in laser units, energy channels, nuclear reactors.

The phenomenon of coupling between the thermo-mechanical behavior of materials and the electro-mag-
netic behavior of materials has been studied since the nineteenth century. By the middle of the twentieth
century, piezoelectric materials were finding their first applications in hydrophones. In the last two decades,
the concept of electro-magnetic composite materials has arisen. Such composites can exhibit field coupling
that is not present in any of the monolithic constituent materials. These so called “Smart” materials, and
composites have applications in ultrasonic imaging devices, sensors, actuators, transducers and many other
emerging components. Magneto-electro-elastic materials are used in various applications. Due to the ability of
converting energy from one kind to another (among mechanical, electric and magnetic energies), these mate-
rials have been used in high-tech areas such as lasers, supersonic devices, microwave, infrared applications.
Furthermore, magneto-electro-elastic materials exhibit coupling behavior among mechanical, electric, and
magnetic fields and are inherently anisotropic. Problems related to the wave propagation in thermo-elastic or
magneto-thermo-elastic solids using these generalized theories have been studied by several authors. Among
them, Paria [3] has presented some ideas about magneto-thermo-elastic plane waves. Nayfeh and Nemat-
Nasser [4,5] have studied thermo-elastic waves and electro-magneto-elastic waves in solids with a thermal
relaxation time. Roychoudhuri and Chatterjee [6] have introduced a coupled magneto-thermo-elastic problem
in a perfectly conducting elastic half-space with thermal relaxation. Hsieh [7] has considered modeling of
new electro-magnetic materials. Ezzat [8] has studied the state space approaches to generalized magneto-
thermo-elasticity with two relaxation times in a perfectly conducting medium. Ezzat et al. [9] have studied
electro-magneto-thermo-elastic plane waves, with thermal relaxation in a medium of perfect conductivity.
Problems related to magneto-thermo-elasticity with thermal relaxation have been investigated by Sherief and
Yossef [10], Baksi and Bera [11] and by Ezzat and Karamany [12].

Hetnarski and Ignaczak [13,14] developed low-temperature generalized thermo-elasticity called H-I theory.
Green and Naghdi [15–17] provided sufficient basic modifications in the constitutive equations that permit the
treatment of a much wider class of heat flow problems labeled as GN-I, GN-II and GN-III. GN models include
a term called ’thermal displacement gradient’ among the independent constitutive variables. When the three
theories are linearized, the heat transport equation of GN-I is the same as the classical equation, whereas both
GN-II and GN-III admit propagation of thermal signals of finite speeds [17]. However, GN-II does not sustain
propagation of magneto-thermo-elastic waves which undergo attenuation and dispersion [18]. An important
feature of GN-III theory is that it accommodates dissipation of thermal energy due to the presence of a thermal
damping term. In the context of a linearized version of this theory (Green and Naghdi [16,17]), a theorem
on the uniqueness of solutions has been established by Chandrasekhariah [19,20]. Chandrashekhariah [21]
have studied one-dimensional thermal wave propagation in a half-space based on the GN model due to the



Magneto-thermo-elastic response in a perfectly conducting medium 813

sudden exposure of the temperature to the boundary using the Laplace transform method. Chandrasekhariah
and Srinath [22] have studied thermo-elastic interactions caused by a continuous heat source in a homogeneous
isotropic unbounded thermo-elastic body by employing the linear theory of thermo-elasticity without energy
dissipation (TEWOED).

Thermo-elastic interactions with energy dissipation in an infinite solid with distributed periodically varying
heat sources have been studied by Banik et al. [23] and for functionally graded material without energy dissipa-
tion have been studied by Mallik and Kanoria [24]. Das and Kanoria [25] have studied magneto-thermo-elastic
interaction in a functionally graded isotropic unbounded medium due to the presence of periodically varying
heat sources. Kar and Kanoria [26,27] have analyzed thermo-elastic interactions with energy dissipation in a
transversely isotropic thin circular disk and in an unbounded body with a spherical hole. Mallik and Kanoria
[28] have solved a two-dimensional problem for a transversely isotropic generalized thick plate with spa-
tially varying heat source. Das and Kanoria [29] described the magneto-thermo-elastic wave propagation in
an unbounded perfectly conducting elastic solid with energy dissipation. Islam and Kanoria [30] have studied
the dynamical response in a two-dimensional transversely isotropic thick plate due to a heat source. Islam et
al. [31] have discussed the study of dynamical response in a two-dimensional transversely isotropic thick plate
with spatially varying heat sources and body forces. The generalized thermo-elastic problem of a spherical
shell under a thermal shock has been solved by Kar and Kanoria [32].

The generalized thermo-elasticity theory with dual-phase-lag effect has been developed by Tzou [33]
and Chandrasekharaiah [34]. Tzou [33] introduced two-phase lags to both the heat flux vector and tem-
perature gradient. According to this model, the classical Fourier’s law �q = −K �∇T has been replaced by
�q(P, t + τq) = −K �∇T (P, t + τT ), where the temperature gradient �∇T at a point P of the material at time
t + τT corresponds to the heat flux vector �q at the same point at time t + τq . The delay time τT is interpreted
as that caused by the microstructural interactions and is called the phase lag of the temperature gradient. The
other delay time τq is interpreted as the relaxation time due to the fast transient effects of the thermal inertia
and is called the phase lag of the heat flux. For τq = τT �= 0, this is identical with classical Fourier’s law.
If τq = τ and τT = 0, Tzou [33] refers to the model as single-phase-lag model. Roychoudhuri [35] studied
one-dimensional thermo-elastic wave propagation in an elastic half-space in the context of a dual-phase-lag
model. The effect of three-phase lags on generalized thermo-elasticity for an infinite medium with cylindrical
cavity has been studied by Kumar and Mukhopadhyay [36].

The next generalization is known as three-phase-lag thermo-elasticity which is due to Roychoudhuri [37].
According to this model, �q(P, t + τq) = −[K �∇T (P, t + τT ) + K ∗ �∇ν(P, t + τν), where �∇ν(ν̇ = T ) is the
thermal displacement gradient and τν is the phase lag for the thermal displacement gradient. Quintanilla and
Racke [38] have discussed the theory of heat conduction models with three-phase lags. Kar and Kanoria [39]
have discussed thermo-elastic interaction due to a step input of temperature on the boundaries of a functionally
graded orthotropic hollow sphere in the context of linear theories of generalized thermo-elasticity.

The purpose of the present work is to study magneto-thermo-elastic interaction due to the presence of
periodically varying heat sources in a perfectly conducting medium in the context of the linear theory of
generalized thermo-elasticity (GN-II, GN-III and 3P lag models). The governing equations are expressed in
Laplace-Fourier transform domain. The solution for displacement, temperature, stress and strain in the Laplace
transform domain is obtained by taking the Fourier inversion, which is carried out by using residual calculus,
where the poles of the integrand are obtained numerically in the complex domain by using Laguerre’s method.
The inversion of the Laplace transform is computed numerically by using a method based on the Fourier series
expansion technique [40]. The results obtained theoretically have been computed numerically and are pre-
sented graphically to show the comparison of results of the above theories and also the effect of the magnetic
field and damping coefficient on the physical quantities.

2 Basic equations

For a perfectly conducting medium, the constitutive equations are

σi j = 2μei j + [λ� − γ (T − T0)]δi j (1)

where

ei j = 1

2
(ui, j + u j,i ), � = eii . (2)
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The stress equations of motion in the presence of body forces Fi are

σi j, j + Fi = ρüi . (3)

The heat equation corresponding to generalized thermo-elasticity for the three-phase-lag model with energy
dissipation in the presence of a heat source is

ρcv

(
T̈ + τq

...
T + 1

2
τq

2 ....
T

)
+ γ T0

(
�̈ + τq

...
� + 1

2
τq

2....
�

)

= K (∇2Ṫ + τT ∇2T̈ ) + K ∗(∇2T + τν∇2Ṫ ) + ρ Q̇ (4)

where γ = (3λ + 2μ)αt, K is the thermal conductivity, K ∗ the material constant, τT the delay time caused by
the microstructural interactions and is called the phase lag of the temperature gradient, τq the delay time due
to the fast transient effects of thermal inertia and is called the phase lag of the heat flux and τν the phase lag
for the thermal displacement gradient.

3 Formulation of the problem

We now consider an unbounded, perfectly conducting thermo-elastic medium at a uniform reference temper-
ature T0 in the presence of periodically varying heat sources distributed over a plane area. We shall consider
a one-dimensional disturbance of the medium, so that the displacement vector u and temperature field T can
be expressed in the following form:

u = (u(x, t), 0, 0), (5)

T = T (x, t). (6)

The electromagnetic field is governed by Maxwell’s equations (in the absence of the displacement current and
charge density) as

curl H = J, curl E = −∂B
∂t

, div B = 0, B = μeH. (7.1–4)

The generalized Ohm’s law in the deformable continuum is

J = σ(E + u̇ × B), (8)

where the small effect of a temperature gradient on the conduction current J is neglected.
In the context of the linear theory of generalized thermo-elasticity based on the three-phase-lag model, the

equation of motion, heat equation and constitutive equation can be written as

(λ + 2μ)
∂2u

∂x2 − γ
∂T

∂x
+ Fx = ρ

∂2u

∂t2 (9)

where

F = (J × B), F = (Fx , Fy, Fz),

K

(
∂3T

∂x2∂t
+ τT

∂4T

∂x2∂t2

)
+ K ∗

(
∂2T

∂x2 + τγ

∂3T

∂x2∂t

)
+ ρ Q̇

= ρcv

(
∂2T

∂t2 + τq
∂3T

∂t3 + 1

2
τq

2 ∂4T

∂t4

)
+ γ T0

(
∂3T

∂t2∂x
+ τq

∂4u

∂t3∂x
+ 1

2
τq

2 ∂5u

∂t4∂x

)
, (10)

τxx = (λ + 2μ)exx − γ (T − T0) (11)

where

exx = ∂u

∂x
. (12)
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We set H = H0 + h , where H0 = (0, 0, H0). The perturbed magnetic field h is so small that the product of h
and u and their derivatives can be neglected for linearization of the field equations.

We assume that all the vector and scalar functions depend only on the spatial coordinate x and time t and
are independent of the y and z coordinates.

Equation (7.1) gives

Jx = 0, Jy = −∂ Hz

∂x
, Jz = ∂ Hy

∂x
, (13)

where J = (Jx , Jy, Jz), H = (Hx , Hy, Hz).
Equation (7.2) yields

∂ Hx

∂t
= 0,

∂ Ez

∂x
= μe

∂ Hy

∂t
,

∂ Ey

∂x
= −μe

∂ Hz

∂t
, E = (Ex , Ey, Ez). (14)

Equation (7.3) gives
∂hx

∂x
= 0, which implies that hx = 0, since initially no perturbed field is applied along

the x-axis.
The modified Ohm’s law gives

Jx = σ Ex , Jy = σ

[
Ey − μe Hz

∂u

∂t

]
, Jz = σ

[
Ez + μe Hy

∂u

∂t

]
. (15)

NowJx = 0 implies Ex = 0.
By eliminating Jx , Jy, Jz and using Eqs. (7), (8), and (15), we get

∂ Hz

∂t
= νH

∂2 Hz

∂x2 − ∂

∂x

(
Hz

∂u

∂t

)
, (16)

∂ Hy

∂t
= νH

∂2 Hy

∂x2 − ∂

∂x

(
Hy

∂u

∂t

)
, (17)

where νH = (σμe)
−1 is called the magnetic viscosity.

Equation (9) reduces to

(λ + 2μ)
∂2u

∂x2 − γ
∂T

∂x
− ∂

∂x

[
1

2
μe(Hy

2 + Hz
2)

]
= ρ

∂2u

∂t2 . (18)

We set Hz = H0 + hz where the perturbed magnetic field hz is small compared to the strong initial magnetic
field H0. Then, from Eqs. (16), (17) and (18) after linearization, we get

∂hz

∂t
= νH

∂2hz

∂x2 − H0
∂2u

∂x∂t
,

∂hy

∂t
= νH

∂2hy

∂x2 (19.1, 2)

and

(λ + 2μ)
∂2u

∂x2 − γ
∂T

∂x
− μe H0

∂hz

∂x
= ρ

∂2u

∂t2 . (20)

Now for a perfect electrical conductor, νH −→ 0 as σ −→ ∞. Equation (19.1) leads to hz = −H0
∂u

∂x
, since

there is no perturbation at ∞. Then, Eq. (20) reduces to

c1
2(1 + RH ) − γ

ρ

∂T

∂x
= ∂2u

∂t2 (21)

where RH = μe H2
0

ρc2
1

= v2
A

c2
1
, c1 =

√
λ+2μ

ρ
, and vA =

√
μe
ρ

H0 is the Alf’ven wave velocity of the medium. The

coefficient RH represents the effect of an external magnetic field in the thermo-elastic processes proceeding
in the body.
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We introduce the following dimensionless quantities:

x ′ = x

l
, u′ = λ + 2μ

γ T0l
u, t ′ = c1t

l
, θ = T − T0

T0
, τ ′

x ′x ′ = τxx

γ T0
, e′

x ′x ′ = exx ,

1 + RH = R2
M, τT

′ = c1τT

l
, τν

′ = c1τν

l
, τq

′ = c1τq

l
,

where l = some standard length and c1 =
√

λ+2μ
ρ

is the standard speed, and omitting primes, Eqs. (10), (11),
(12) and (21) can be re-written in dimensionless form as

R2
M

∂2u

∂x2 − ∂θ

∂x
= ∂2u

∂t2 , (22)
(

1 + τν

∂

∂t

) [
c2

T
∂2θ

∂x2

]
+

(
1 + τT

∂

∂t

)[
κ0

∂2

∂x2

(
∂θ

∂t

)]
+ Q0 =

(
1 + τq

∂

∂t
+ 1

2
τ 2

q
∂2

∂t2

)

×
[
∂2θ

∂t2 + εT
∂2

∂t2

(
∂u

∂x

)]
, (23)

τxx = ∂u

∂x
− θ, (24)

exx = γ T0

λ + 2μ

∂u

∂x
(25)

where

c2
T = K ∗

ρcvc2
1

, εT = γ 2T0

(λ + 2μ)ρcv

, κ0 = K

ρcvc1l
, Q0 = l

T0cvc1

∂ Q

∂t
.

We assume that the medium is initially at rest. The undisturbed state is maintained at a reference temperature.
Then, we have

u(x, 0) = u̇(x, 0) = θ(x, 0) = θ̇ (x, 0) = 0. (26)

4 Method of solution

Let us define the Laplace-Fourier double transform of the function g(x, t) by

ḡ(x, p) =
∞∫

0

g(x, t)e−pt dt, Re(p) > 0

ḡ(α, p) = 1√
2π

∞∫
−∞

ḡ(x, p)eiαx dx .

Applying the Laplace-Fourier double integral transform to Eqs. (22)–(25), we obtain:

(R2
Mα2 + p2) ˆ̄u(α, p) = iα ˆ̄θ(α, p) , (27)[

{(1 + τν p)c2
T + (1 + τT p)pκ0}α2 +

(
1 + pτq + 1

2
τ 2

q p2
)

p2
]

ˆ̄θ(α, p)

= iεTαp2(1 + pτq + 1

2
τ 2

q p2) ˆ̄u(α, p) + ˆ̄Q0, (28)

ˆ̄τxx (α, p) = −iα ˆ̄u(α, p) − ˆ̄θ(α, p), (29)
ˆ̄exx (α, p) = −iαβ1 ˆ̄u(α, p) (30)

where β1 = γ T0
λ+2μ

.
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Solving Eqs. (27) and (28) for ˆ̄u(α, p) and ˆ̄θ(α, p), we get

ˆ̄u(α, p) = iα ˆ̄Q0

M(α)
, (31)

ˆ̄θ(α, p) = (R2
Mα2 + p2) ˆ̄Q0

M(α)
, (32)

where

M(α) = {(1 + τν p)c2
T + (1 + τT p)pκ0}R2

Mα4 + α2
[

p2
{

p(1 + τT p)κ0 + (1 + τν p)c2
T

+R2
M

(
1 + pτq + 1

2
τ 2

q p2
)

+ εT

(
1 + pτq + 1

2
τ 2

q p2
)}]

+ p4
(

1 + pτq + 1

2
τ 2

q p2
)

= R2
M{c2

T(1 + τν p) + p(1 + τT p)κ0}(α − α1)(α − α2)(α − α3)(α − α4). (33)

Now the expressions for the stress and strain in the Laplace-Fourier transform domain can be obtained from
Eqs. (29) and (30), using Eqs. (31) and (32),

ˆ̄τxx (α, p) = α2 ˆ̄Q0

M(α)
− (R2

Mα2 + p2) ˆ̄Q0

M(α)

= [α2(1 − R2
M) − p2] ˆ̄Q0

M(α)
, (34)

ˆ̄exx (α, p) = α2β1
ˆ̄Q0

M(α)
. (35)

Thus, the solution for the displacement, temperature, stress and strain in the Laplace transform domain can be
obtained in terms of the following four integrals:

ū(x, p) = 1√
2π

∞∫
−∞

iα ˆ̄Q0

M(α)
e−iαx dα, (36)

θ̄ (x, p) = 1√
2π

∞∫
−∞

(R2
Mα2 + p2) ˆ̄Q0

M(α)
e−iαx dα, (37)

τ̄xx (x, p) = 1√
2π

∞∫
−∞

[α2(1 − R2
M) − p2] ˆ̄Q0

M(α)
e−iαx dα, (38)

ēxx (x, p) = 1√
2π

∞∫
−∞

α2β1
ˆ̄Q0

M(α)
e−iαx dα. (39)

4.1 Periodically varying heat source

Now let us assume that the heat source is distributed over the plane x = 0 in the following form:

Q0 = Q∗
0δ(x) sin

π t

τ
, 0 ≤ t ≤ τ,

= 0, t > τ.
(40)

Then,

ˆ̄Q0 = Q∗
0πτ(1 + e−pτ )√
2π(π2 + p2τ 2)

. (41)
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Thus, the expressions for the displacement, temperature, stress and strain in the Laplace transform domain
take the following form:

ū(x, p) =
∞∫

−∞

iαQ∗
0τ(1 + e−pτ )

2(π2 + p2τ 2)M(α)
e−iαx dα, (42)

θ̄ (x, p) =
∞∫

−∞

(R2
Mα2 + p2)Q∗

0τ(1 + e−pτ )

2(π2 + p2τ 2)M(α)
e−iαx dα, (43)

τ̄xx (x, p) =
∞∫

−∞

[α2(1 − R2
M) − p2]Q∗

0τ(1 + e−pτ )

2(π2 + p2τ 2)M(α)
e−iαx dα, (44)

ēxx (x, p) =
∞∫

−∞

α2β1 Q∗
0τ(1 + e−pτ )

2(π2 + p2τ 2)M(α)
e−iαx dα. (45)

Applying contour integration to Eqs. (42)–(45), we obtain

ū(x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )<0

iα j A j e
−iα j x for x > 0

= iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )>0

iα j A j e
−iα j x for x < 0, (46)

θ̄ (x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )<0

(R2
Mα2

j + p2)A j e
−iα j x for x > 0

= iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )>0

(R2
Mα2

j + p2)A j e
−iα j x for x < 0, (47)

τ̄xx (x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )<0

[α2(1 − R2
M) − p2]A j e

−iα j x for x > 0

= iQ∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )>0

[α2(1 − R2
M) − p2]A j e

−iα j x for x < 0, (48)

ēxx (x, p) = − iβ1 Q∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )<0

α2
j A j e

−iα j x for x > 0

= iβ1 Q∗
0πτ(1 + e−pτ )

R2
M(π2 + p2τ 2)N (p)

4∑
j=1

Im(α j )>0

α2
j A j e

−iα j x for x < 0 (49)
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where A j ’s are given by

A j =
4∏

n=1
n �= j

1

(α j − αn)
(50)

and

N (p) = {c2
T(1 + τν p) + p(1 + τT p)κ0}.

5 Inversion of Laplace transform

It is difficult to find the inverse Laplace transform of the complicated solution for the displacement, temper-
ature, stress and strain in the Laplace transform domain. So we have to resort to numerical computation. We
now outline the numerical procedure to solve the problem. Let f̄ (x, p) be the Laplace transform of a function
f (x, t).

Then, the inversion formula for the Laplace transform can be written as

f (x, t) = 1

2π i

d+i∞∫
d−i∞

ept f̄ (x, p) dp (51)

where d is an arbitrary real number larger than the real parts of all singularities of f̄ (x, p).

Taking p = d + iw, the preceding integral takes the form

f (x, t) = edt

2π

∞∫
−∞

f (x, d + iw) dw . (52)

Expanding the function h(x, t) = e−dt f (x, t) in a Fourier series in the interval [0, 2T ], we obtain the
approximate formula [40]

f (x, t) = f∞(x, t) + ED (53)

where

f∞(x, t) = 1

2
c0 +

∞∑
k=1

cK 0 ≤ t ≤ 2T, (54)

ck = edt

T

[
e

ikπ t
T f̄

(
x, d + ikπ t

T

)]
. (55)

The discretization error ED can be made arbitrarily small by choosing d large enough [40]. Since the infinite
series in Eq. (54) can be summed up to a finite number N of terms, the approximate value f (x, t) becomes

fN (x, t) = 1

2
c0 +

N∑
k=1

ck, 0 ≤ t ≤ 2T . (56)

Using the preceding formula to evaluate f (x, t), we introduce a truncation error ET that must be added to the
discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First, the ‘Korrektur’ method is applied to reduce the
discretization error. Next, the ε-algorithm is used to accelerate convergence [40].

The Korrektur method uses the following formula to evaluate the function f (x, t):

f (x, t) = f∞(x, t) − e−2dT f∞(x, 2T + t) + E ′
D, (57)
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where the discretization error | E ′
D |≤| ED |. Thus, the approximate value of f (x, t) becomes

fN K (x, t) = fN (x, t) − e−2dT fN ′(x, 2T + t), (58)

where N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm that is used to accelerate the convergence of the series in Eq. (56).

Let N = 2q + 1, where q is a natural number and sm = ∑m
k=1 ck is the sequence of the partial sum of the

series in Eq. (56).
We define ε-sequence by

ε0,m = 0, ε1,m = sm

and

εp+1,m = εp−1,m + 1

εp,m+1 − εp,m
, p = 1, 2, 3, . . . .

It can be shown that [40] the sequence ε1,1, ε3,1, ε5,1, . . . , εN ,1 converges to f (x, t) + ED − c0

2
faster than

the sequence of partial sums sm, m = 1, 2, 3, . . .

The actual procedure used to invert the Laplace transform consists of using Eq. (58) together with the
ε-algorithm. The values of d and T are chosen according to the criteria outlined by Honig and Hirdes [40].

6 Numerical results and discussion

To get the solution for the thermal displacement, temperature, stress and strain in the space-time domain, we
have to apply the Laplace inversion formula to Eqs. (46)–(49), respectively. This has been done numerically
using a method based on the Fourier series expansion technique mentioned above. To get the roots of the
polynomial M(α) in the complex domain, we have used Laguerre’s method. The numerical code has been
prepared using Fortran 77 programming language. For computational purpose, a copper-like material with a
material constant [41] has been taken into consideration,

εT = 0.0168, λ = 1.387 × 1011 Nm−2, μ = 0.448 × 1011 Nm−2,

αt = 16.7 × 10−6 K−1, c1 = 1 m s−1.

Also, we have taken Q∗
0 = 1, τ = 1 and cT = 2 so the faster wave is the thermal wave.

The relaxation time parameters are taken as τq = 0.001, τT = 0.05, τν = 0.05, which agree with the
stability condition in [38].

We now present our results to compare the thermal displacement, temperature, stress and strain in the
case of the TEWOED (GN-II model), TEWED (GN-III model) and three-phase-lag model (3P model) for an
unbounded elastic medium in the form of the graphs (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).
Now the Figures (Figs. 1, 2, 3, Figs. 5, 6, 7, Figs. 9, 10, 11 and Figs. 13, 14, 15) are plotted against distance x
for t = 0.4, and the Figures (Figs. 4, 8, 12 and 16) are plotted against time t for x = 0.3.

Figure 1 depicts the variation of the thermal displacements (u) versus distance (x). It is observed that the
displacement increases for 0.0 ≤ x ≤ 0.3 and then decreases and ultimately tends to zero for x ≥ 0.9 in the
presence of a magnetic field (WMF) by taking RM = 2.0, and it is also observed that displacement increases
for 0.0 ≤ x ≤ 0.2 and then decreases and ultimately goes to zero in the absence of a magnetic field (WOMF)
by taking RM = 1.0 for GN-II model, i.e., κ0 = 0.0. For the case of WOMF, the result complies with that of
Roychoudhuri and Dutta [41] where they have used the analytical method. Also in the case when κ0 = 1.2,
both for GN-III model and 3P model, u increases first, then decreases and ultimately approaches to zero as
before with the increase of x for WMF (RM = 2.0) as well as WOMF (RM = 1.0). As may be seen from the
figure the rate of decay is slower in the case of 3P model than that of GN-III model and that is again slower
than that of GN-II model both for WMF and WOMF, this implies that κ0 = 1.2 corresponds to a slower rate
of decay than the case when κ0 = 0.0 in the absence of a magnetic field (RM = 1.0). This result agrees with
that of Banik et al. [23]. The magnitude of the displacement u is large in the GN-II model in comparison to
GN-III model and 3P model, but the qualitative behavior is almost the same for all the three models.
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Fig. 1 Variation of displacement u with distance x

Fig. 2 Variation of displacement u with distance x in the three-phase-lag model

Fig. 3 Variation of displacement u with distance x for the three-phase-lag model
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Fig. 4 Variation of displacement u with time t

Fig. 5 Variation of temperature θ with distance x

Fig. 6 Variation of temperature θ with distance x in the three-phase-lag model

Figure 2 depicts the variation of the displacement (u) with distance (x) taking RM = 1, 2, 3, 4 and keeping
the damping coefficient κ0 = 1.2 where we have considered the 3P model. Here also a similar qualitative
behavior observed as in the case of Fig. 1. But one important thing observed here is that with the increase in
the magnetic field the magnitude of displacement decreases, which is quite plausible.
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Fig. 7 Variation of temperature θ with distance x in the three-phase-lag model

Fig. 8 Variation of temperature θ with time t

Fig. 9 Variation of stress σ with distance x

Figure 3 is plotted to show the variation of displacement (u) with distance (x) for RM = 2.0, where we
have again considered the 3P model. Figure 3 depicts the effect of the damping coefficient on the displacement.
Now it is observed that as the damping coefficient increases the rate of decay of the displacement becomes
slow.
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Fig. 10 Variation of stress σ with distance x in the three-phase-lag model

Fig. 11 Variation of stress σ with distance x in the three-phase-lag model

Fig. 12 Variation of stress σ with time t



Magneto-thermo-elastic response in a perfectly conducting medium 825

Fig. 13 Variation of strain e with distance x

Fig. 14 Variation of strain e with distance x in the three-phase-lag model

Fig. 15 Variation of strain e with distance x in the three-phase-lag model

Figure 4 represents the variation of displacement (u) against time (t) for x = 0.3. It is observed that
the displacement increases first and then reaches a constant value with the increase in time t in the presence
of a magnetic field (WMF) by taking RM = 2.0, and it is also observed that in the absence of a magnetic
field (WOMF), i.e., for RM = 1.0, the displacement shows the same qualitative behavior for GN-II model
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Fig. 16 Variation of strain e with distance x

(κ0 = 0.0). Also, in the case when κ0 = 1.2, for both GN-III model and 3P model, u increases first and then
ultimately approaches to a constant value as before with the increase of t for WMF (RM = 2.0) and WOMF
(RM = 1.0). But one important thing is observed here that in the presence of a magnetic field the displacement
is smaller in the case of 3P model than that of GN-III model which is again smaller than that of GN-II model. It
is also seen from this Figure that with the increase in magnetic field the magnitude of displacement decreases
for all the three models. It is observed that the time to reach the steady state for GN-II model for WMF and
WOMF is faster than for the other two models, which is quite plausible since for GN-II model there is no such
dissipation of energy.

Figure 5 depicts the variation of temperature (θ) with distance (x) for WMF (RM = 2.0) and WOMF
(RM = 1.0). Here, it can be observed that temperature decreases with the increase in distance and finally
goes to zero for GN-II (κ0 = 0.0), GN-III (κ0 = 1.2) and 3P model (κ0 = 1.2). In the case of 3P model, the
rate of decay is slower than that of GN-III model and that is again slower than that of GN-II model both for
WMF and WOMF. From this figure, it can also be observed that there is no such effect of the magnetic field
on temperature.

Figure 6 shows the variation of temperature (θ) with distance (x) for the various values of the magnetic
field keeping κ0 = 1.2. Here, we have considered the 3P model. This Figure depicts that there is no such effect
of the magnetic field on temperature for this model.

Figure 7 is plotted to show the variation of temperature (θ) versus distance (x) for 3P model in the presence
of a magnetic field (RM = 2.0). It is observed from the Figure that temperature decreases with the increase
in distance and finally goes to zero for all values of the damping coefficient but as the damping coefficient
increases, the rate of decay decreases.

Figure 8 depicts the variation of temperature (θ) with time (t) for WMF (RM = 2.0) and WOMF (RM =
1.0). Here, it is observed that temperature increases for 0.0 ≤ x ≤ 1.1 and then approaches a steady state for
GN-II (κ0 = 0.0) model by taking RM = 2.0 and RM = 1.0. For GN-III model and 3P model, the displacement
shows the same nature for WMF and WOMF. From this Figure, it can also be observed that there is no such
effect of the magnetic field on temperature. Here also the time to reach the steady state for GN-II model for
WMF and WOMF is faster than for the other two models, which is quite plausible since for GN-II model there
is no such dissipation of energy as it is in Fig. 4.

Figure 9 exhibits the space variation (x) of stress (σ ) in the presence of a magnetic field (RM = 2.0) and
also in the absence of a magnetic field (RM = 1.0). It is observed that stress is compressive in nature, and the
magnitude is maximum near the boundary. Here, the rate of decay is faster in the case of GN-II model than in
case of GN-III model, which is again faster than 3P model both for RM = 2.0 and RM = 1.0.

Figures 10 and 11 are plotted to show the variation of stress (σ ) against distance (x) for 3P model taking
various values of the magnetic field and the damping coefficient, respectively. From Fig. 10, it is observed that
with the increase in the magnetic field the magnitude of stress increases near the boundary, and from Fig. 11
it is observed that by increasing the value of the damping coefficient the magnitude of stress decreases near
the boundary, but the rate of decay is reversed in nature.
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Figure 12 depicts the variation of stress (σ ) with time (t) for GN-II, GN-III and 3P model in the presence
of a magnetic field (RM = 2.0) and in the absence of a magnetic field (RM = 1.0). It is observed that the
magnitudes of stress are large in the case of TEWED (GN-II) theory in comparison with the rest of the theories.
This Figure also shows that by increasing magnetic field the damping of stress is also increasing until σ reaches
a constant value.

Figure 13 gives the variation of strain (e) against distance (x) in the presence of a magnetic field (RM = 2.0)
and in the absence of a magnetic field (RM = 1.0). From this figure, we can show for GN-II model (κ0 = 0.0)
that strain is positive up to a distance x = 0.2, and for GN-III model, (κ0 = 1.2) and 3P model (κ0 = 1.2)
strain is positive up to a distance x = 0.3, and then, it is negative and finally diminishes to zero for all the three
models in the case of WMF (RM = 2.0). Now in the absence of a magnetic field (WOMF, i.e., RM = 1.0),
the magnitude of strain is larger near the boundary than that of WMF for all the three models. The qualitative
behavior is nearly the same.

Figure 14 depicts the variation of strain (e) with distance (x) for 3P model taking κ0 = 1.2 and RM = 1, 2, 3
and 4. In this Figure, it can be observed that with the increase in the magnetic field the magnitude of strain
decreases near the boundary and ultimately approaches to zero as distance increases, which is quite plausible
since the periodic disturbance is given on the boundary.

Figure 15 is plotted to show the variation of the strain (e) versus distance (x) in the presence of a magnetic
field (RM = 2.0) where we have considered the three-phase-lag model. Here, the effect of the damping coef-
ficient on strain is such that for all values of κ0 strain is positive first, then remains negative and finally goes
to zero.

Figure 16 depicts the variation of strain (e) with time (t). This figure shows that for GN-II, GN-III and 3P
model strain is negative first, then increases and ultimately reaches a steady state both for WMF (RM = 2.0)
and WOMF (RM = 1.0). In Figs. 1, 5, 9, 13 when there is no such magnetic field (RM = 1.0) but there is
a dissipation of energy (κ0 = 1.2), the result agrees with that of Banik et al. [23] and when RM = 1.0 and
κ0 = 0.0, the result is confirmed by that of Roychoudhuri and Dutta [41] in which the closed-form solution of
the problem has been derived.
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