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Abstract A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a
Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is mag-
netic drug targeting, with clusters in the range of 10–200 nm radii. As a first approximation, we use a magnetic
dipole model for the external magnet and focus on a venule of 10−4 m radius close to the surface of the skin
as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release
position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The
capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size,
the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is
derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their
accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard
deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal
the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a
cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are
the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is
enhanced by Brownian motion when the cluster is released near the wall.

1 Introduction

Magnetic drug targeting is a method of delivering drugs to targets within the body by loading magnetic nano-
particles with therapeutic drugs, delivering them into the bloodstream, and guiding them with external magnets
toward a tumor [1]. Recent reviews present the pros and cons of this highly localized treatment protocol [2–11].
Since the magnet is external, and the nanoparticles are attracted toward it, tumors closest to the magnet are
more amenable to this form of targeting. Tumors that are located close to the surface, say less than 20 mm
deep, are the best candidates [12] and this is the range in our study. In the larger arteries and veins, the field
must counteract the fast blood flow, which drags the nanoparticles away from the target. Thus, the arterioles
and venules with lower velocities improve the probability of targeting. With respect to the penetration of
magnetic fields into the body, the article of [12] itemizes the methodologies that may be used to enhance and
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stabilize magnetic levitation. Superconductors have been used in [13] to generate magnetic field gradients of
20–50 Tm−1 at a distance of 20 mm, for instance. Particles of mean size 100 nm and mass saturation magneti-
zation of 81.7 Am2 Kg−1 were injected into blood flow with velocity 100 mm s−1 in a tube of diameter 2 mm.
The particles accumulated at the target site, showing promise of future developments for depositing particles
against higher blood flow velocities and deeper within the body.

The main advantage of using magnetizable particles is that the treatment is localized, because the drugs
are bound to the nanoparticles which are injected into the blood stream close to the tumor. This reduces overall
side effects, compared with chemotherapy which is a systemic treatment that delivers chemicals to parts of
the body which do not require them. A second advantage is that by adjusting the applied magnetic field, a
high concentration of the particles can be attracted to a specific target site and kept there. Recent technologies
that enable cluster designs to be smaller and of more uniform size for potential use in magnetic targeting have
prompted renewed efforts to understand the motion of a cluster in blood vessels. This is the motivation for
this study. A cluster of superparamagnetic nanoparticles can carry more load than individual particles, and
furthermore, the advantage of superparamagnetism over a magnetized material is that the particles become
magnetized only in the presence of a magnetic field. Superparamagnetic particles have the property that their
dipoles are randomly oriented until a magnetic field is turned on [14]. Unlike a ferromagnet that exhibits spon-
taneous alignment of dipoles in the absence of an external magnetic field, the superparamagnetic particles are
magnetized in random directions, and the poles keep flipping on a fast timescale known as the Néel relaxation
time. Because they are small, the energy for the flipping comes from thermal energy. When a magnet is turned
on in the presence of a superparamagnetic particle, the particle aligns to the poles and stays that way. When
the magnet is switched to a different alignment, then the material responds to that on a timescale known as a
magnetic relaxation time. Both of these relaxation timescales are small compared with the transit times that
we model in this paper. When the drug targeting is finished, the magnetic field is turned off, and the super-
paramagnetic material does not retain any magnetization. The minimization of particle size is also important
for evading the body’s reticulo-endothelial system. In particular, a class of superparamagnetic nanoparticles
having a size less than 10 nm have been recognized for their ‘high magnetic saturation, negligible toxicity,
and easier surface modifications’ [15].

Superconductors have been shown to generate magnetic field gradients of 20–50 Tm−1 at a distance of
20 mm, which is considerably higher than can be achieved by a permanent magnet [13]. Deeper targets will
require technological advances in magnetic levitation. Since our study focusses on near-surface targets, we
model flow conditions in venules of the order of 10−4 m. In comparison with the larger arteries and veins, the
flow is slower. We begin with Newtonian pressure-driven flow, which is the simplest model for blood flow,
followed by an assessment of the influence of velocity profiles induced by changes in the properties of the
fluid.

The specific clusters modeled in this paper are chemically characterized in [16–20] and are composed of
nanoparticles with a mean diameter of as low as 3 to 4 nm coated with oleic acid, a biocompatible polymer. The
synthesis of stable clusters with controlled diameters ranging from 10 to 200 nm and containing a specified
number of nanoparticles is described in [21]. Each cluster is approximately spherical [21–23]. We therefore
investigate clusters with radii of order 10–100 nm. Brownian motion affects the dynamics if thermal energy
is much larger than the magnetic energy. This well-known estimate leads to the diameter being smaller than
(6kT/πμ0 M H)1/3 [14]. The calculations presented in this paper therefore include Brownian effects for the
smallest clusters.

Section 2 presents a simplified model for the time-dependent trajectory of a cluster released into blood flow.
The importance of the sinusoidal component of pumping is assessed and found to be weak for a small blood
vessel such as the venule. The cluster is modeled as an undeformable sphere in a flow regime where inertia is
not important. Thus, the Stokes drag for a solid sphere is incorporated. The ‘target’ is located at a prescribed
position on the tube wall, and a prescribed magnetic field is applied by an external magnet. Since our cluster is
superparamagnetic, it moves in response to the applied magnetic field. A set of coupled ordinary differential
equations which model the motion of the spherical particle in a tube filled with a viscous liquid is developed.
The aim is to track the cluster as a function of initial position, flow parameters and magnetic parameters. This
approach is similar to the models developed in [24–26]. A difference is that we track the transient motion of
single clusters rather than use a continuum approximation, for instance, an advection-diffusion model for the
concentration of particles [12,27]. In [28], the magnetic force is assumed to be a constant, which is a simpli-
fying assumption not made in this paper, but should be applicable if the size of the blood vessel is sufficiently
small compared with the distance from the magnet. Initially, the particle density is a constant across the blood
vessel. They find three main regimes of behavior: (i) magnetic force dominated, (ii) velocity dominated, and
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(iii) boundary layer formation where magnetic and drag forces are comparable. The latter is an interesting case
where the density of the nanoparticles can rise in the endothelial layer which consists of membranous cells
between the blood vessel and surrounding tissue. These qualitative regimes also appear in our results, if the
cluster (i) lies in the direction of the magnetic field vector in a low velocity region, (ii) is at the centerline where
the blood velocity is highest and provided the magnetic field is relatively weak, and (iii) the cluster arrives at
a wall upstream of the target and slides slowly to the target, resulting in the possibility of attraction toward
the magnet through a membranous wall. Numerical studies which address specific conditions in larger arteries
and veins, such as the effects of inertia, pressure oscillations, and bifurcations in channel shapes, may also
be of interest to the reader [29,30]. Experimental data on the correlation between magnetic forces and blood
velocities required to capture nanoparticles flowing through an array of microcapillaries are given in [31]. This
study finds that the particles are captured in locations that vary in magnetic field strength, and the locations
were strongly influenced by the flow rate through the array. A Neodymium Iron Boron (NdFeB) block magnet
is used, and strategies are suggested for future designs of magnetic shapes. The use of a general software
package for magnetic drug targeting in 2D is depicted in [32], although the limitations of the approach are not
clearly stated. The model equations are found in [33] which contains errors. There is a clear need for further
experimental, numerical, and mathematical studies to investigate the feasibility of biomedical applications.

2 Governing equations

Figure 1 is a schematic of our mathematical model. The blood vessel is modeled by a cylindrical tube of radius R,
with its axis along the x-axis. The tumor is modeled by a target located at the wall at x = 0, y = 0, z = −R. The
imposed flow is Hagen-Poiseuille flow with a non-zero velocity component in the x-direction, (u(y, z, t), 0, 0),
satisfying no-slip conditions at the walls y2 + z2 = R2. The blood vessel is on the scale of a venule (radius
R = 10−4 m), which is small enough that the pressure oscillations due to cardiac pulsing is found to be
low, and Stokes flow is an appropriate approximation. The fluid equation of motion is the Stokes equation,
0 = − ∂p

∂x + η�u, where η is the viscosity of the liquid. A pressure gradient is imposed resulting in

u = [umax + uosc cos(ωt)]

(
1 − y2 + z2

R2

)
, (1)

where umax, uosc, R, and ω are prescribed. For our parameter range, we shall see that uosc has a weak effect.
This flow field generates a Stokes drag force for a rigid sphere:

Fv = −Dvs, D = 6πηa, vs = dx
dt

− ub, (2)

where vs is the velocity of the particle relative to the surrounding liquid, namely the slip velocity. Here,
ub = (u, 0, 0) where u is determined by (1), x(t) = (x(t), y(t), z(t)) is the location of the cluster, and D is
the friction coefficient.

The external magnetic field in the absence of the cluster is denoted by He, following the notation of
[14,35–37]. The magnetic induction is B = μH, where the permeability is μ = μ0(1+χ), the permeability of
vacuum is μ0 = 4π × 10−7 N A−2, and the susceptibility is χ . For simplicity, χ is assumed to be a constant,
but this actually depends on the magnetic field strength. The constant approximation holds for low fields, up
to about 20 kA m−1. However, as the field gets larger the susceptibility is no longer linear, and the effective
susceptibility reduces. This reduces the magnetic force on the particles at larger applied fields. A comparison
of the constant versus variable susceptibility on the capture rate is evaluated at the end of Sect. 3.3.3.

Maxwell’s equations are curl He = 0 and div He = 0. Thus, He = ∇φ, where φ is a harmonic function.
We can then rewrite

(He · ∇)He = 1

2
∇(|∇φ|2), (3)

where φ can be calculated when the external magnetic field data are prescribed.
The magnet is modeled by a magnetic dipole. We shall see that the most effective position for it is directly

beneath the target. However, there is typically some distance between the blood vessel and the skin where the
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Fig. 1 Schematic of mathematical model for clusters guided toward a target at (0, 0, −R) in a cylindrical blood vessel of radius
R by an applied magnetic field. The magnetic point dipole (4) models the external magnet of strength |m|, with vector r pointing
from the magnet to the cluster. The dipole moment vector m points from the magnet placed below the target, and points at an
angle θ to the positive x-axis. With this definition, θ = 0 is a vector pointing directly upward. The cross-sectional slide is from
http://chemo.net/newpage91.htm [34]

magnet is placed. The dipole moment is denoted by m, where its direction and magnitude are prescribed and
fixed, as sketched in Fig. 1. The external magnetic field potential is the well-known equation [14],

φ = − 1

4π

m · r
r3 , (4)

where r is the vector pointing from the dipole to the superparamagnetic cluster, and |r| = r . This gives the
magnetic field,

He = ∇φ = − 1

4π

m
r3 + 3

4π

m · r
r4

r
r
. (5)

The force on the magnetic body in an external field is, in general, given by

Fm =
∫
V

μ0(M · ∇)He dV . (6)

The magnetization is M = χH, where H now denotes the actual field, which has been modified by the presence
of the body. For a small particle, we can assume that the external field is approximately constant on the scale
of the particle, and we can replace M by the magnetization induced in a uniform external field. For a spherical
particle, this yields the Clausius-Mossotti formula [38,39], and the magnetization inside the sphere is uniform,
with magnitude

M = 3χ

3 + χ
He. (7)

Hence, the force (6) is

Fm = V
3μ0χ

3 + χ
(He · ∇)He, (8)

where V = 4
3πa3 is the volume of the cluster, a is the radius of the cluster, and He is the given external

magnetic field.

http://chemo.net/newpage91.htm
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The relaxation time for magnetization of the nanoparticles is of order 10−7 s at T = 25◦C, and we shall
assume here that the time taken for magnetization is instantaneous. The motion of the cluster is therefore given
by the balance

Fm + Fv = 0. (9)

This leads to the following ordinary differential equations:

dx
dt

= ub + 2c(He · ∇)He, c = μ0χa2

3(3 + χ)η
(10)

or

dx

dt
= u(y, z, t) + c

∂

∂x
(|∇φ|2), (11)

dy

dt
= c

∂

∂y
(|∇φ(x, y, z)|2), (12)

dz

dt
= c

∂

∂z
(|∇φ(x, y, z)|2). (13)

In the absence of Brownian motion, the initial value problem is integrated numerically [40].
Brownian motion is intrinsically three dimensional and only relevant for the smallest clusters. When we

do incorporate Langevin’s Brownian motion model [14,41], the governing equation changes because of the
stochastic forcing vector

√
2DkT√

dt
(N(0, 1)) =

√
2DkT√

dt
(N1(0, 1), N2(0, 1), N3(0, 1)). (14)

Here, N1(0, 1), N2(0, 1), and N3(0, 1) denote independently generated, normally distributed, random vari-
ables with zero mean and unit variance [42]. k is Boltzmann’s constant 1.38 × 10−23 N m K−1, and T is
the absolute temperature in degrees Kelvin. The random variables Ni (0, 1), i = 1, 2, 3, are constants over
very short time intervals dt and change randomly with a Gaussian distribution. The average magnitude of the
distribution for the stochastic forcing vector is zero. The variance, defined as the average of the square of the
force, is 2DkT/dt . In place of (11)–(13), we have

ρV
d2x
dt2 = −D

(
dx
dt

− ub

)
+ 3χV μ0

3 + χ
∇

(
1

2
|∇φ|2

)
+

√
2DkT√

dt
N(0, 1), (15)

where ρ is the density of the cluster, and ub is the base flow. We estimate that the inertia, or acceleration, term
on the left hand side is important for only a short interval of time compared with the dynamics described by the

remaining terms. This timescale for the inertia versus the viscous term is ρV
D = 2ρa2

9η
. In the range of cluster

sizes for which we conduct the numerical integration of (15) in Sect. 3.4, this timescale is negligible; hence,
inertia is neglected.

The system (15) is expressed in the following general format:

dXt = f (Xt )dt + gdWt , (16)

where Xt is an n × 1 state vector of process variables, f (Xt ) is an n × 1 drift-rate vector, g is an n × n instan-
taneous diffusion-rate matrix, and dWt is an n × 1 vector of non-correlated random numbers

√
dt N (0, 1). In

particular, Xt , f (Xt ) and g are:

Xt = xT = (x(t), y(t), z(t))T , (17)

f (Xt ) =
[

ub(x, t) + 3χV μ0

(3 + χ)D
∇

(
1

2
|∇φ(x)|2

)]T

, (18)

g =
√

2kT

D
I, (19)

where I is the 3 × 3 identity matrix. The system (16) of stochastic ordinary differential equations is integrated
using [43], which implements the Euler-Maruyama method.
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3 Numerical results

3.1 Motion of a cluster in the absence of background flow

We begin by examining the limiting case of small or zero background flow; the cluster is initially placed at r0
and is pulled toward the magnet through a quiescent liquid. In this case, we can formulate analytical estimates
for the transit time. When the time taken to arrive at the target is investigated by varying the angle subtended by
the magnetic dipole, we find that the travel time is minimized when m ‖ r0. This means that when the cluster
is positioned directly in the path of the dipole moment vector, it is attracted to the magnet in the fastest time
possible. Moreover, the cluster approaches the magnet along a straight line, and we can denote the distance of
the cluster from the magnet to be a scalar variable r(t). Therefore the magnetic force (8) simplifies to

fm = −
(

3χ

3 + χ

)(μ0

π

) (
m2a3

r7

)
, m = |m|, r = |r|, (20)

and the viscous drag is

fv = −6πηa
dr

dt
. (21)

The negative sign here means that the direction of the viscous force is toward the dipole. The force balance (9)
yields an ordinary differential equation for r(t). Integration from the initial distance r = r0, where r0 = |r0|,
to the magnet at r = 0 yields the minimal transit (or travel) time:

tmin = 3π2

4μ0

(
3 + χ

3χ

)
a−2m−2ηr8

0 . (22)

This equation is useful since it shows explicitly the dependence of the minimal transit time on χ, a, m, η,
and r0.

A Newtonian fluid with three to four times the viscosity of water is used as a model of blood in an artery
or vein. This is a typical range although there are diseases that increase the viscosity to much higher values.
Therefore, we let ρ = 103 Kg m−3, R = 10−7 m, and η = 4 × 10−3 Pa s. Figure 3 of [44] shows experimen-
tally measured magnetic field magnitudes |H| as functions of distance from a typical magnet; from this, we
use a distance 0.005 m and |H| = 18,000 Am−1.

For the case m ‖ r, Eq. (5) simplifies and yields |H| = 1
2πr3 m. This leads to an estimate for the magnetic

dipole moment of m = 0.01 A m2. We take χ = 0.2 as in the nanoparticle sample of [35] and a = 10−7 m.
For the initial distance r0 = 10−4 m which is of the order of the vessel size R, Eq. (22) yields the minimal
transit time tmin = 1.26 × 10−9 s. The transit time increases with r0 so that at a larger initial distance we have
tmin = 0.13 s for r0 = 10−3 m.

A second instance where the cluster moves along a straight line is m ⊥ r0. The magnetic force is a quarter
of the fm in Eq. (20). We verify that this corresponds to the maximal transit time tmax = 4tmin. The transit
time as a function of the magnetic dipole orientation is shown in Fig. 2 for the case where the particle is
initially placed above the target. Since the particle is on the z-axis, above the target and the magnet, this is a
simplest case scenario for evaluating the dependence of the time taken by the cluster to reach the target when
the magnetic field direction is varied from the negative x-axis (downstream, −90◦ < θ < 0) to the positive
x-axis (upstream, 0 < θ < 90◦) along the cylindrical axis. Clearly, when the magnetic field points vertically
upwards, right at the cluster, the transit time is shortest. Since there is no background flow, the result for the
magnetic field pointing upstream −90◦ ≤ θ ≤ 0 is symmetric across θ = 0 to the results in Fig. 2.

3.2 Effect of blood flow on cluster motion

The strength of the background pulsating base flow (1) is important for large arteries and less so for small veins
which are typically found closer to the skin surface. Here, we shall conduct our investigation with reference to
the orders of magnitudes for venules of the skeletal muscle in cats [45]. First, if the flow is simplified by the
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Fig. 2 Transit time versus magnetic field orientation θ measured from the vertical axis with no background flow. The particle
is initially above the magnet. 0 < θ < 90◦ corresponds to the magnetic field pointing downstream. The physical problem has
inherent symmetry across the vertical axis at θ = 0 to negative values (pointing upstream). The minimum transit time follows
the analytical formula Eq. (22)

absence of pulsations, then u = umax(1 − r2

R2 ). This gives the flow rate

R∫
0

2πrudr = π

2
umax R2, (23)

which we estimate to be of the order of 10−10 m3 s−1 based on [45]. With R = 10−4 m, we find umax =
2
π

× 10−2 m s−1, which also agrees with the magnitude of the recorded dual-slit velocity in [45]. If the flow
were in a larger blood vessel, then we would use the systolic and diastolic blood pressure data of 120–80 mm
Hg, respectively, and estimate the parameters in our base flow; umax+uosc

umax−uosc
= 120

80 , which yields uosc = umax
5 .

A pulse of 180 beats per minute gives the period 2π
ω

= 60
180 = 0.3 s, or ω = 18 s−1. For venules, the time-peri-

odic component of the base flow is negligible with respect to the unidirectional component, so that without the
basic unidirectional background flow, there is essentially no flow. Hence, a cluster placed above the magnet
travels toward it at the times shown in Fig. 2.

The effect of blood flow (1) on the transit time is shown in Fig. 3. This figure shows the angle θ subtended by
the magnetic moment vector (cf. Fig. 1) versus time taken for the cluster to arrive at the target. The cylindrical
radius is again R = 10−4 m, umax in (1) is 2

π
× 10−2 m s−1, uosc = umax

5 , ω = 18 s−1, a = 10−7 m, η =
0.004 Pa s, and χ = 0.2. The cluster is released at (−10−3 m, 0, 0). This is upstream of the target and the
dipole which are located at the bottom wall (0, 0,−R). The cluster would be carried by the flow, starting along
the cylindrical axis, and influenced by the magnetic field. If it passes over the magnet, and goes downstream
in the positive x-direction, the cluster misses the target. The figure shows the minimum transit time at roughly
−83 to −82◦. Note that when there is no flow, the moment vector should point directly at the released cluster,
so that a right angle triangle with vertical height to horizontal base length in the ratio −1 to 10 defines the
magnetic field vector (the hypotenuse). Thus, tan θ = −10, which yields θ = −84◦. Figure 3 shows the effect
of the flow in moving the cluster toward the positive x-axis, giving a smaller optimal magnitude |θ |.

A sufficient condition for the cluster to hit the target is estimated as follows. Since the flow is parallel flow,
the initial placement of the cluster at a point downstream of the target (r0 ⊥ m and r0 ‖ u) would ensure that it
would avoid the target. The cluster hits the target if the magnetic force ( fm/4 in Eq. (20) wins over the Stokes
drag (see Eq. (21)), which leads to an over-conservative sufficient condition

ur7
0

m2a2 < C, C = μ0

24π2η

3χ

3 + χ
. (24)

For a conservative estimate, we may let u represent the maximum velocity and r0 be the radius of the venule.
For the above blood flow, u = 2

π
× 10−2 m s−1 and r0 = 10−4 m lead to m > 1.6 × 10−5 A m2. This result is

confirmed by the numerical simulation shown in Fig. 4. For a model of flow through a venule, the oscillatory
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Fig. 3 The time taken for a cluster released at (−10−3 m, 0, 0) as a function of moment vector angle θ . The background flow is u
given by (1), where umax = 2

π
× 10−2 m s−1 and uosc = umax

5 , ω = 18 s−1. The venule radius is R = 10−4 m, the cluster radius
is a = 10−7 m, the viscosity η = 0.004 Pa s, and susceptibility χ = 0.2. The dipole is located at (0, 0, −R). The minimum
transit time occurs when θ = −83◦

component is known to be insignificant compared with the rest of the base flow. Therefore, we let uosc = 0 in
(1)) for the simulations in Fig. 4. The initial position of the cluster is far upstream of the target at (−10R, 0, 0)
on the centerline axis of the blood vessel. The target and the dipole are at the vessel wall at (0, 0,−R). This
placement of the dipole, while theoretically optimal, is a first approximation to a proximal exterior location.
The figure shows the magnetic dipole moment m versus the moment vector angle θ , which are two controllable
and inputted properties of the magnet. The regime above the curve is the desirable operational regime for mag-
netic drug targeting. When a cluster is in that area, it hits the target, but below the delineating curve, the cluster
misses the target. In each numerical simulation, a cluster travels some distance from release and is attracted by
the magnetic field, so that it moves away from the cylindrical axis toward the lower wall. Here, the speed is not
as high as it is at the centerline, so that the cluster is captured with less m when θ = 0 as when it was released at
θ = −83◦. This is one reason for the critical curve for hit-or-miss to dip down at θ = 0. In addition, we probe
the sensitivity of this curve to changes in the base flow. The data points � represent results for a viscoplastic
flow with most of the velocity profile being plug flow: v = vmax, e.g., v = vmax[1 − ( r

R )n], n � 2. Therefore,
the figure shows negligible effect on the position of the hit-or-miss curve even when the base flow changes to
a shear-thinning power-law flow. This is important because flows in circulation may not be simply parabolic;
due to the rheological influence of the red blood cells [46], power-law base flows have been used to model
blood flow [47]. We have shown here that the results are not sensitive to the flow profile, but strongly depend
on the dipole moment and maximum velocity.

We next delve further to understand the results of Fig. 4. When the cluster approaches the target, the base
flow decreases in magnitude toward the vessel wall while the magnetic field increases. This is clear from
examining the slip velocity um , which is due to the magnetic force, and is the second term on the right hand
side of (10):

um = 3χ

3 + χ

V μ0

D
∇

(
1

2
|∇φ|2

)
.

We see the dependence on r−7 as r → 0. Therefore, um ∼ ub at a critical distance r = rc,

rc =
(

Cm2a2

u

)1/7

. (25)

For distances less than the critical distance, the transit time is dominated by the magnetic force, and the base
flow is negligible.
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Fig. 4 Whether a cluster hits a target or misses it is delineated by the curve shown in this figure. The magnetic moment m and
the angle θ (cf. Fig. 1) are inputted properties of a magnet. The cluster is released at (−10R, 0, 0) far upstream of the target
at (0, 0, −R). The dipole is located at the target. Above the curve, the cluster hits the target. The background flow (1) is steady
(uosc = 0): R = 10−4 m, umax = 2

π
× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa s, and χ = 0.2. The data points open square are

for the power-law base flow relevant to blood flow; these lie on top of the curve for the Hagen-Poiseuille flow

Table 1 Transit time for different magnetic dipole moments m

m (A m2) t (s) (numerical) tmin (s) (Eq. 22) rc (m) (Eq. 25)

10−2 1.26 × 10−9 1.26 × 10−9 6.29 × 10−4

10−4 1.26 × 10−5 1.26 × 10−5 1.69 × 10−4

10−5 1.27 × 10−3 1.26 × 10−3 8.74 × 10−5

5 × 10−6 6.53 × 10−3 5.03 × 10−3 7.17 × 10−5

4.5 × 10−6 1.23 × 10−2 6.21 × 10−3 6.96 × 10−5

4.4 × 10−6 ∞ 6.49 × 10−3 6.92 × 10−5

Base flow (1) is u = umax(1 − y2+z2

R2 ), R = 10−4 m, umax = 2
π

× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa s, and χ = 0.2. The
cluster is initially at (0, 0, 0), directly above the magnet

An alternative way to explain why the base flow can be neglected if r is smaller than rc is based on recalling
the transit time in a liquid at rest (22). In this case, (24) is equivalent to

utmin <
1

32
r0. (26)

This means that if the cluster is released at a distance r0 right above the target, the displacement downstream
is almost negligible during the travel time, and therefore, the influence of the base flow is also negligible.

A comparison between the transit times obtained by numerical computation of (10) and the formula (22)
which neglects the base flow is provided in Table 1. For the given a, R, χ, η, and u, the critical magnetic
dipole moment mc lies between 4.4 × 10−6 and 4.5 × 10−6 A m2. If m is increased by 10% above the critical
value to 5×10−6 A m2, then the transit time provided by Eq. (22) is evidently quite a good estimate. Note that
the mc here is higher than the one at θ = 0◦ in Fig. 4 because of the difference in initial conditions; the cluster
in Fig. 4 is closer to the target when it passes over the target. A comparison of the third to the fifth rows of
Table 1 shows that Eq. (25) underpredicts rc, as the numerical simulations reveal the capture of clusters with
initial distances r0 = R > rc. Overall, however, Eq. (25) serves as a useful estimate.

Hereafter, we shall focus on the following parameters unless otherwise indicated: u = umax(1 −
y2+z2

R2 ), R = 10−4 m, umax = 2
π

× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa s, and χ = 0.2.
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Fig. 5 Magnetic field strength H and gradient of magnetic induction dB/dξ along the dipole direction versus distance ξ from
the magnet surface. Experimentally measured values for superconducting magnets in [44] (open square) and [13] (open triangle)
compare well with (27) (solid line). These values are used for the numerical modeling in Sect. 3.3

3.3 Effect of separation distance between the magnetic dipole and the target

3.3.1 Simplified dipole model for experimentally obtained field data

In the previous section, the dipole is situated at the target on the vessel wall. However, this generates a magnetic
field which yields a force singularity at the target which is unphysical. We ameliorate this in this section by
situating the dipole at a suitable distance from the vessel wall, at x = 0, y = 0, z = −R − d . This models
a magnet with its end situated at z = −R, and its center at a distance d > 0 vertically below the target. The
magnetic field along the dipole direction is given by

H = 1

2π

m

(ξ + d)3 , (27)

where (ξ + d) represents the distance vertically upwards from the center of mass of the magnet. An important
question is whether the dipole is suitable for representing the field of a superconducting magnet realistically.
To answer this, we compare the dipole formula (27) with two different sets of experimental measurements
along the moment vector direction in Fig. 5. One data set is given for the magnetic field strength, and therefore
we compare our results with that quantity. The other measured data set is the magnetic induction gradient and
therefore we simulate the gradient, and plot both curves on the same figure. Here, the lines are predictions of
our Eq. (27) with m = 0.3121 A m2 and d = 8.823 × 10−3 m (magnet in [44], �) and m = 1,066 A m2 and
d = 3.372 × 10−2 m (magnet in [13], �). These correspond to B = 0.091 T and B = 5.561 T, respectively,
at the magnet surface. Figure 5 shows very good agreement, and therefore this theoretical approach has a high
pay-off. Figure 6 illustrates the magnetic field generated around a magnet in contact with the vessel wall at
x = 0, y = 0, and with the center of mass located a distance d below the wall.

3.3.2 Slip model versus no-slip model

We investigate the case where the dipole is placed just below the target, and both are at x = 0. The clus-
ter is released at the tube center upstream of the magnet. For the magnet in [44] (m = 0.3121 A m2 and
d = 8.823 × 10−3 m), the cluster is always flushed away before reaching the target. This is understandable
because the transit time predicted by Eq. (22) in the absence of flow, for traveling from r = R + d (at the tube
axis, right above the magnet) to r = d is 446.9 s. Given such a long estimated transit time due solely to the
pull of the magnet, the cluster would be carried more than 1 m in the presence of the background flow and be
completely out of range. This is clearly seen in Fig. 7, where the cluster trajectory is almost unaffected by the
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Fig. 6 Schematic of the vertical slice through the cylindrical vessel at y = 0. The magnetic force field is shown when the dipole
is at a distance d below the vessel wall
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Fig. 7 Cluster trajectories. R = 10−4 m, umax = 2
π

× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa s, and χ = 0.2. The magnetic
dipole is placed at (0, 0, −R − d) and the cluster is released from (−100R, 0, 0)

magnetic field. On the other hand, the magnet in [13] (m = 1, 066 A m2 and d = 3.372 × 10−2 m) is much
stronger; the transit time estimated by Eq. (22) is 0.4 s. As a result, the background flow does not flush the
cluster away before it is attracted to the magnet and hits the tube wall at t = 0.59 s. Moreover, Fig. 7 shows
that the cluster impacts the wall at some distance away from the target point at (0, 0,−R). This treatment is
therefore potentially most useful for delivering drugs to a tumor that is located at the vessel wall. When the
impact is within a certain range, say the tumor width, then it is a successful impact. In the following, we shall
refer to the center of the tumor as the ‘target’.

Up to this point, we have addressed the case of the cluster which is initially released along the central axis
of the cylindrical vessel, where the base flow velocity is maximal. In the following, we allow the cluster to be
released at a variety of positions in the circular cross-section of the vessel. A cluster that is initially closer to
the wall would more likely be captured due to a lower convection velocity and a stronger field. When a cluster
reaches the wall, the extreme cases are that it either slips along the wall or remains there. In the following, we
study both models.

If the vessel wall is smooth or slippery, the clusters may slide after they hit the wall. Depending on the
competition between the viscous drag and magnetic force, the cluster may slide toward or away from the target.
To confine the clusters inside the vessel, we adopt a collision model similar to that in [48] by imposing an
extra repulsion force if the cluster arrives too close to the vessel wall:

Fw =
{

0, r + a < R − s,
A
εw

( R−r−a
s

)2
n, otherwise.

(28)



516 P. Yue et al.

(a)
(b)

x/R

z/
R

-100 -50 0 50 100
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

target

21

(c)

x/R

y/
R

-100 -50 0 50 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

y/R

z/
R

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8 Typical cluster trajectories with sliding motion on the wall. a shows the trajectories in three dimensions (compressed
in the x-direction); b, c and d show the projection of trajectories on the x − z, x − y, and y − z planes. R = 10−4 m,
umax = 2

π
× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa s, χ = 0.2, m = 1 A m2, and d = 50R. The clusters are released from

x = −100R. In b, ‘1’ denotes a stable equilibrium point and ‘2’ denotes a saddle point

Here, r = √
y2 + z2 where y and z are the coordinates of the cluster, n is the inward pointing unit normal to the

vessel wall, s is the range of the repulsion force, A has the dimension of force, and εw is a small dimensionless
number. In our calculations, we take s = 0.1a, εw = 0.1, and A = |Fm · n| where Fm is the magnetic force
on the cluster. This yields a system of stiff ordinary differential equations which we solve numerically [49].

Figure 8 illustrates the trajectories that represent different properties. The trajectories can be divided into
three categories: trajectories that escape without hitting the vessel wall (e.g., the dash-dot trajectory), trajec-
tories that escape after hitting the vessel wall (e.g., the solid trajectory), and trajectories that eventually get
captured by the magnet (e.g., other trajectories). Along the bottom wall, there are typically two locations where
the drag force is balanced by the x-component of the magnetic force: a stable equilibrium point (point 1 in
Fig. 8b) and a saddle point (point 2 in Fig. 8b). Thus, if a cluster hits the wall upstream of point 2, it would
eventually stop at point 1. Otherwise, the cluster would slide downstream and escape (represented by the solid
trajectory). The positions of points 1 and 2 depend on the strength of the magnetic field and the hydrodynamic
drag force on the cluster. The two points move downstream and eventually disappear as m decrease or as d
increases. A simple analysis on such points for a bar magnet is given in [24].

In the slip model, all of the clusters which are captured by the magnet stop at the point denoted ‘1’ in
Fig. 8b. Thus, it is necessary to ensure that the point ‘1’ lies within the tumor itself. In the following, we
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assume the tumor radius Rtumor = 100R = 0.01 m. This requires a very focused magnetic field, i.e., the dipole
model would have a very small d . For example, the magnet with m = 1,066 A m2 and d = 3.372 × 10−2 m is
strong enough to attract all the clusters to the vessel wall, but since they impact the wall upstream of the target,
the clusters may not arrive at the tumor within a reasonable amount of time. In reality, though, the particles are
designed to be small enough to pass through the capillary wall toward the target or may slide along the vessel
wall. A simple analysis helps to understand the slow nature of the sliding speed. When the cluster is very close
to the wall, the convective velocity is approximately u ≈ (1 − ((R − a)/R)2)umax = 1.27 × 10−5 m s−1.
The cluster slides over the tumor radius on a timescale of Rtumor

u ∼ 103 s. This estimate would be longer
if the magnetic force acts against the sliding motion. An example is the solid trajectory in Fig. 8, which reaches
the wall at t = 5.25 s but slides to x = 100R at t = 714 s. During such a long time interval, a number of
events which we have not taken into account may come into play, such as the likely penetration across the
endothelium and through the capillary wall toward the target.

One aspect of the slip model which could be improved is that the Stokes drag is no longer valid when the
clusters are very close to the vessel wall. Richardson et al. [24] adopted the following drag law in the flow
direction:

Fs · ex = −6πηaK f

(
0.269ẋ ln

(
a

γ

)
− a

∂u

∂n

∣∣∣∣
∂�

)
γ � R, (29)

where ∂u
∂n

∣∣
∂�

is the normal directional derivative of flow velocity at the vessel wall, γ is the shortest distance
between the particle and the wall, and K f = 1.858. In addition to Stokes drag, therefore, this model also
considers the extra drag due to the vessel wall and predicts a slower sliding motion. In practice, any roughness
of the vessel wall such as plaque would hinder further sliding. Therefore, it is more reasonable to use the
no-slip model as a basis for the rest of this paper, i.e., the clusters stay where they are after they hit the vessel
wall, keeping in mind the high probability of penetrating the wall and arriving at the target. By ‘capture’, we
shall mean that the impact position at the wall is within the tumor radius. Ideally, the tumor lies on the vessel
wall for this treatment.

3.3.3 A guideline for the design of magnets

Let us consider the case d � Rtumor � R. The cluster that passes over the tumor along the cylindrical axis
experiences the viscous drag

fv = 6πηaumax (30)

in the x-direction and magnetic force

fm =
(

3χ

3 + χ

)(μ0

π

) (
m2a3

d7

)
(31)

in the −z direction. In Eq. (30), we have used the fact that the distance between the cluster and the dipole is
approximately d . A dimensionless parameter that characterizes the significance of the magnetic force can be
constructed from the two above,

Π = fm

fv
=

(
3χ

3 + χ

)(
μ0a2

6π2ηvmax

)(
m2a2

d7

)
. (32)

If the cluster is released from (−Rtumor, 0, 0), then it reaches the tumor if and only if

Δz

Δx
≥ R

2Rtumor
, (33)

where Δx and Δz are the absolute values of cluster displacements in the x and z directions. As the cluster
motion is solely driven by fm and fv , it is obvious that fm

fv
≈ Δz

Δx . Therefore, the above inequality transforms
to

Π ≥ R

2Rtumor
. (34)
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Fig. 9 Critical values for m that attract clusters from (−Rtumor, 0, 0) to the tumor versus the distance d . The theoretical curve is
from Eq. (34), which agrees well with the numerical values (open square). R = 10−4 m, umax = 2

π
× 10−2 m s−1, a = 10−7 m,

η = 0.004 Pa s, χ = 0.2, and Rtumor = 100R

The case of equality in this equation yields the ‘critical’ values for the corresponding magnet parameters d
and m. These are shown in Fig. 9 for the case Rtumor = 100R. For each d , computations are performed to
find the critical m, with at least three significant digits of accuracy. The agreement between Eq. (34) and the
numerical experiment is excellent. There is only a slight difference when d approaches 0.01 m. At d = 0.01 m,
the numerical and theoretical values of m are 9.2 and 5.7 A m2, respectively. The reason is that the assumption
d � R is no longer valid there. Further, this fact can easily be incorporated by replacing d in Eqs. (31), (32)

by an average distance between the cluster and the dipole, d̄. If we take d̄ =
√

d2 +
(

Rtumor
2

)2
, then Eq. (34)

yields m = 8.4 A m2, which improves the agreement with the numerical value. In conclusion, Eq. (34) is an
effective estimate for d � Rtumor � R.

In practical applications, it is desirable that the magnet attracts all of the clusters to a tumor. For all possible
cluster positions, the maximum displacement in the z direction is just the vessel diameter 2R. Equation (34)
is modified accordingly to

Π ≥ Πc = R

Rtumor
, (35)

giving the condition for the capture of all the clusters released just upstream of the tumor. Considering Eq. (32),
the critical values of m and d that start to capture all the clusters satisfy the power-law relationship mc ∼ d7/2

c .
This criterion overestimates the effect of viscous drag, which should be smaller than Eq. (30) when the

cluster is placed away from the vessel centerline. Thus, Eq. (35) must be a sufficient condition for the capture
of all clusters if d � Rtumor � R is satisfied.

To verify Eq. (35), we introduce the concept of ‘capture rate’. We assume that a cluster is equally likely to
appear at any specific location at the circular inlet cross-section and take into account the background parabolic
velocity profile. Thus, the clusters are initially uniformly distributed within the vessel cross-section, and then,
the suspension is forced through the vessel. Since the velocity is higher at the centerline, more particles are
carried through along the center of the vessel. Therefore, we define the capture rate to be weighted with the
velocity 1 − ( r

R )2. The capture rate of clusters is then given by the probability function

p =
∫ 2π

0

∫ R
0 f (r, φ)(1 − (r/R)2)rdrdφ∫ 2π

0

∫ R
0 (1 − (r/R)2)rdrdφ

, (36)

where (r, φ) are the polar coordinates on the y − z plane. f (r, φ) = 1 if the cluster initially at (r, φ) hits
the tumor, i.e., the final position satisfies |x | < Rtumor; otherwise, f (r, φ) = 0. The numerical evaluation is
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Fig. 10 Capture rate versus dipole moment m with a d = 0.03372 m and b d = 0.1 m. R = 10−4 m, umax = 2
π

× 10−2 m s−1,

a = 10−7 m, η = 0.004 Pa s, χ = 0.2, and Rtumor = 100R. Clusters are released at x = −Rtumor

carried out by dividing the circular cross-section into cells with �r = R/M and �φ = π/N , where M and
N are the number of cells in radial and circumferential direction, respectively. Only half of the cross-section
needs to be used, due to symmetry in the y-direction. In the following, we choose M = N = 50 which gives
numerical accuracy to 3 decimal places.

Figure 10 shows capture rates for a tumor size Rtumor = 100R. The clusters are initially uniformly distrib-
uted across the cross-section before simultaneous release. Each data point in the figure consists of simulations
to count the clusters which are captured at the target. We can see that the capture rate achieves 100% around
mc = 500 and 2.1×104 A m2 for d = 0.03372 and 0.1 m, respectively. Equation (35) predicts mc = 5.63×102

and 2.53 × 104 A m2. Thus, the relative error between the numerical and theoretical values is less than 20%,
indicating a reasonable estimate. We see from Fig. 11 that for small magnetic forces the capture rate is qua-
dratic in m for a class of velocity profiles for a power-law fluid, v = vmax

[
1 − ( r

R

)n]
, n = 1, 2, 4, 8. This

velocity profile includes, as an extreme case, a centrally placed plug flow with a linear velocity profile near the
walls and is a first approximation for the shear-thinning rheology of blood flow [47]. The fit for the capture
rate p ∼ mα for m ≤ 300 A m2 yields the exponents α = 1.88, 1.91, 1.94, and 1.99 for n = 1, 2, 4, and 8.
Thus, p ∼ m2 is universal for this range of parameters; this has been observed previously, for instance, see
the review article of [50]. The velocity profile does affect the capture rate, e.g., the capture rates at m = 300
are p = 0.35, 0.25, 0.19, and 0.17 for the four velocity profiles. However, the critical m for 100% capture
rate is not sensitive to the velocity profile. Note that the p ∼ m2 obtained here is consistent with that obtained
in [51]. In [51], the ‘line capture efficiency ηl ’ is found to be proportional to the square root of the magnetic
force, or m. However, this result is obtained based on a planar flow, linearizing the velocity profile, and without
weighting η with the velocity.

In practice, the tumor, blood, and cluster parameters are fixed. Our aim is to design the magnet such that
the capture rate is as high as possible. When a superconducting magnet is used, the model parameter d in (27)
represents the physical distance from the center of the magnet to the vessel wall. This distance is interpreted
as the sum of the distance from the center of the magnet to its surface and from its surface to the vessel wall.
Thus, (35) is again used to estimate the critical value mc. Finally, mc is transformed back to the relevant
superconducting magnet parameters. Note that it is not necessary for the dipole moment to go beyond mc. If a
capture rate lower than 100% is acceptable, the dipole moment m can be slightly lower than mc. For example,
Fig. 10a shows that a capture rate of 10% is still obtained when m ≈ mc/4.

In this section, we have assumed a constant susceptibility. On the other hand, the inclusion of a nonlinear
dependence of susceptibility on the magnetic field strength is of interest when the applied magnetic field is
large and can be incorporated and addressed in future work. In order to perform a preliminary assessment of
the effect of a variable susceptibility, the nonlinear Langevin fit for the magnetization versus field strength
data is taken from [35]. The susceptibility can be represented as a function of the magnetic field,

χ(H) = Ms

H

[
coth

(
H

Hs

)
− Hs

H

]
,



520 P. Yue et al.

m(Am2)

ca
p

tu
re

ra
te

101 102 10310
-3

10-2

10-1

100

n=1
n=2
n=4
n=8

y ∝ x2

Fig. 11 Capture rate versus dipole moment m for velocity profiles of a class of shear-thinning power-law fluids: v =
vmax

[
1 − ( r

R

)n]
, r = √

y2 + z2. n is the index of the power-law. d = 0.03372 m, R = 10−4 m, umax = 2
π

× 10−2 m s−1,

a = 10−7 m, η = 0.004 Pa s, χ = 0.2, and Rtumor = 100R. Clusters are released at x = −Rtumor

where Ms = 2.34 × 104 and Hs = 1.52 × 104 Am−1. To give an idea of the sample values, we mention
χ = 0.51 at H = 103 Am−1, χ = 0.20 at H = 105 Am−1, and χ = 0.02 at H = 106 Am−1. Figure 12
shows numerical results for the capture rate versus magnetic moment with d = 0.03372 m, vessel of radius
R = 10−4 m, umax = 2

π
×10−2 m s−1, nanoparticle radius a = 10−7 m, η = 0.004 Pa s, and Rtumor = 100R.

The clusters are released at x = −Rtumor. These conditions are identical to those of Fig. 10a except for χ .
In comparison with Fig. 10a, the capture rate is much lower than that with the constant χ value of 0.2. This is
not surprising because the effective magnetic susceptibility reduces to 0.0012 at m = 500 Am2, due to a large
H ∼ 2 × 106 Am−1 at the target. Correspondingly, the magnetic force drops by the factor 18. Considering the
fact that the magnetization has reached saturation at this m, the critical magnetic moment needs to be boosted
by 18 times to achieve approximately the same magnetic force as with constant χ . This is consistent with the
observed mc = 8,000 Am2, which is required to achieve 100% capture rate. The achievement of magnetic
saturation would further affect the scaling arguments of this section. For example, the m2 factor in the magnetic
force in (31) would be reduced to m1.

3.3.4 Influence of cluster injection location

We have assumed in the previous section that the clusters are uniformly distributed at the plane x = −Rtumor
and injected right before the tumor. In this subsection, we generalize this and release the clusters at a variety
of locations x = x0.

The influence of x0 on the capture rate is investigated in more detail by using magnetic parameters that
generate capture rates away from both 0 and 100%. Based on Fig. 10a, we choose d = 0.03372 m and
m = 300 A m2 which yields a capture rate of 0.515 at x0 = −100R. The capture rate for varying x0 is plotted
in Fig. 13. Here, the tumor capture rate refers to the percentage of clusters that hit the tumor, while the wall
capture rate refers to the percentage of all clusters that hit the vessel wall. The tumor capture rate achieves its
maximum at x0 = −Rtumor, which means it is optimal to inject the drug right before the tumor. The transit
time for the cluster to pass over the magnet decreases as the injection location approaches the tumor. As a
result, clusters are less affected by the magnet, which leads to a monotonically decreasing wall capture rate.

The distribution of clusters on the vessel wall is shown in Fig. 14. Part (a) of the figure shows a bell-shaped
normal distribution centered at x ≈ 0. The optimal placement of the magnet is therefore directly below the
center of the tumor. As x0 moves toward the tumor, the distribution becomes truncated from the left as shown in
Fig. 14b. The standard deviation in (a) is 159R, which is roughly one half of d . The calculations with different
m and d also support this relationship. As the tumor only covers a portion of the width of the distribution, the
tumor capture rate is lower than the wall capture rate. To maximize the tumor capture rate, it is preferable to
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Fig. 12 Capture rate versus magnetic moment for magnetic susceptibility χ which varies according to a Langevin fit to the
magnetization data of [35]. d = 0.03372 m, vessel of radius R = 10−4 m, umax = 2

π
× 10−2 ms−1, nanoparticle radius

a = 10−7 m, η = 0.004 Pa s, and Rtumor = 100R. The clusters are released at x = −Rtumor. These conditions are the same as
those of Fig. 10a except for χ , which varies in this figure
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Fig. 13 Capture rates as a function of cluster initial position x0. R = 10−4 m, umax = 2
π

× 10−2 ms−1, a = 10−7 m, η =
0.004 Pa s, χ = 0.2, Rtumor = 100R, d = 0.03372 m, and m = 300 Am2

have a tumor size that is comparable with d . In other words, the magnet size should match the tumor size if
the former is not strong enough to attract all of the clusters to tumor.

3.4 Brownian motion

Brownian motion affects the cluster trajectory and may even cause the cluster to hit or miss the tumor. Figure 15
shows the effect of Brownian motion for the larger cluster size a = 10−7 m. For each stochastic trajectory, the
simulation stops once the trajectory intersects the wall of the blood vessel. The Brownian motion is visible,
but not to the extent that significantly influences the capture rate.
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Fig. 14 Distribution of clusters that hit the vessel wall. a x0 = −1000R and b x0 = −100R. The height of each bar represents
the cluster capture rate by the x range covered by that bar. R = 10−4 m, umax = 2

π
× 10−2 m s−1, a = 10−7 m, η = 0.004 Pa

s, χ = 0.2, and Rtumor = 100R

Fig. 15 Cluster trajectories in the x − z plane with y = 0, x − y plane with z = 0 and y − z plane with x = 0. Radius of
a cluster a = 10−7 m (relatively large). The simulations include the effect of Brownian motion. R = 10−4 m, umax in (1) is
2
π

× 10−2 m s−1, η = 0.004 Pa s, χ = 0.2, m = 1056 Am2, d = 0.03372 m, and time step �t = 2 × 10−4 s. The clusters are
released from (−100R, 0, 0). 100 stochastic trajectories are shown
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Fig. 16 Cluster trajectories with Brownian motion for smaller clusters. a = 10−8 m. Other parameters are the same as in Fig. 15.
The simulations are performed to t = 10 s

Due to Brownian motion, the cluster position has a standard deviation (square root of the variance)

δ =
√

2kB T

6πηa
t, (37)

in any direction over time t . Let us take the trajectories of Fig. 15 for example. Based on Fig. 7, the time
duration of the trajectories is approximately t = 0.59 s. Equation (37) predicts δ = 8 × 10−7 m. For a normal
distribution, three standard deviations cover 99.7% of the distribution. This is consistent with the width of the
trajectories in Fig. 15b, c. As δ � R, we conclude that the Brownian motion can be safely neglected for the
these parameters.

Brownian motion becomes important when the cluster size decreases, which is expected, and shown in
Fig. 16. The simulations end at t = 10 s. Equation (37) predicts δ = 1.07 × 10−5 m for a = 10−8 m, which
again agrees with the boundary of trajectories in Fig. 16. For a = 10−8 m, the simulation without the Brownian
motion is simply a straight line parallel to the x-axis. Brownian motion for this cluster size is still not large
enough to bring the cluster to the vessel wall. As the cluster size is further reduced, the Brownian motion
becomes so dominant that some trajectories hit the vessel wall. The analysis above is supported by the left
part of the solid curve in Fig. 17. For clusters of size a < 10−9 m, some trajectories hit the wall due to the
strong Brownian motion. As a increases, Brownian motion decreases, and therefore the capture rate drops. For
clusters of size a > 2 × 10−8 m, the magnetic force is strong enough to attract some trajectories to the tumor.
This reveals two different mechanisms for cluster capture: magnetic force for the large clusters and Brownian
motion for the small clusters.

Brownian motion is also more significant for the clusters that are initially closer to the vessel wall, as
verified in Fig. 17 by the higher capture rates for small clusters that are closer to wall. If the cluster is released
from (−Rtumor, 0, z0) and the local convection velocity is U = (1 − (z0/R)2)umax, then the time that the
cluster passes over the tumor (x ∈ (−Rtumor, Rtumor)) is approximately t = 2Rtumor/U . Meanwhile, the
Brownian motion starts to affect the capture of a cluster when 3δ � R − |z0|. The equality gives the cluster
sizes a = 3.2 × 10−10, 1.7 × 10−9 and 1.7 × 10−7 m for z0 = 0, −0.5R and −0.9R, respectively. The first
two values of a are very close to the numerical values (about 6 × 10−10 and 3 × 10−9 m ) at which the capture
rate decreases to zero. However, for z0 = −0.9R, there is a large discrepancy. The reason lies in the fact that
the effect of Brownian motion weakens when it competes with magnetic force. For z0 = −0.9R, the effect of
the magnetic force is so strong that the capture rate remains 100% until a ≈ 10−8 m, which is much smaller
than the value predicted by δ.

In summary, the effect of Brownian motion is limited for the more traditional cluster sizes. Those that are
smaller than 10−8 m or very close to the vessel wall are significantly affected. The latter would apply to a small
fraction of all the clusters. In particular, for the parabolic velocity profile, the percentage of clusters within√

y2 + z2 ≤ z0 is calculated to be
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Fig. 17 Capture rate as a function of cluster radius. Clusters are injected at (−100R, 0, z0) for z0 = 0, −0.5R, −0.9R. The
effects of Brownian motion are included. Rtumor = 100R. Each data point is obtained based on 200 stochastic trajectories with
time step �t = 2 × 10−4 s

p = 2(z0/R)2 − (z0/R)4. (38)

Thus, the clusters with initial positions satisfying
√

y2 + z2 > 0.9R comprise just 3.6% of the total
amount.

4 Conclusions

We study the motion of spherical superparamagnetic clusters of roughly 10−7 m carried in a flow through a
channel of radius 10−4 m, guided by a magnetic field. The governing equations are integrated numerically to
obtain paths of motion and capture rates. Theoretical analyses are performed and supported by the numeri-
cal simulations. The effect of Brownian motion is also studied for the smallest clusters. The investigation of
agglomeration [52,53] is left for future work, as is the interaction of the clusters with red blood cells. Our
model for flow through small venules warrants comparisons with experimental data, but the authors are not
aware of controlled experiments with well-characterized flow conditions on the class of superparamagnetic
nanoparticle clusters which are recently being developed [54]. The major results can be summarized as follows:

(i) A point dipole is used to model an external magnet. While this approximation is correct when the
magnet is small compared with the distance from the particle, and significantly simplifies the analytical
and numerical solutions to the forces acting on the particles, we mention the limits of validity of this
approximation. In order to model a bar magnet which is not small, an improved approximation is to use
a continuous distribution of point dipoles over the magnet volume. At the other extreme, the need for a
high magnetic field gradient leads to the use of a superconducting coils system. In our parameter range,
we verified with Fig. 5 that the analytical dipole formula (27) is a very good approximation. An improved
model would essentially be the Biot-Savart law, with inputted data on the physical shape of the coils in the
superconducting magnet, its radius, the number of times it winds, and the applied current. To derive the
analytical formula for the field strength, Maxwell’s equations are used: the magnetic field H, the current
density J, and a magnetic vector potential A are related by ∇·H = 0, ∇×H = J, H = ∇×A, ∇·A = 0.
This yields a Laplacian, curl(curl A) = −ΔA = J, which is solved using the known Green’s functions
for the Laplacian operator. Thus, A is calculated by evaluating a number of integrals. From this, H is
calculated and fed back as He into the force equation (6).

(ii) The sliding motion of the clusters on the vessel wall occurs on a slow timescale. As a result, we may
assume that a cluster remains at the point of impact with the vessel wall.
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(iii) Optimal treatment conditions for a tumor require that the magnet be placed beneath the center of the
tumor and the clusters be injected into the bloodstream just before the tumor.

(iv) Equation (35) gives a useful estimate for the critical values of the magnet parameters m and d , which
ensure that the tumor capture rate is 100%.

(v) The capture rate scales with the square of dipole moment for a variety of velocity profiles relevant to
blood flow, such as the shear-thinning power-law fluid. Hence, the capture rate shows limited sensitivity
to changes in the velocity profile.

(vi) In the case that the magnet parameters are not sufficiently strong to achieve a 100% capture rate, we
find that the clusters deposited on the vessel wall follow a normal distribution. The standard deviation
is approximately half of the distance d between the magnetic dipole and the blood vessel. To optimize
the capture rate, the distance d should match the tumor size.

(vii) Brownian motion has a significant influence on cluster paths for radii much less than a = 10−7 m.
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