
Acta Mech 223, 309–330 (2012)
DOI 10.1007/s00707-011-0563-2

B. Sobhani Aragh · H. Hedayati

Static response and free vibration of two-dimensional
functionally graded metal/ceramic open cylindrical
shells under various boundary conditions

Received: 11 May 2011 / Published online: 30 October 2011
© Springer-Verlag 2011

Abstract The free vibration and static response of a two-dimensional functionally graded (2-D FGM)
metal/ceramic open cylindrical shell are analyzed using 2-D generalized differential quadrature method. The
open cylindrical shell is assumed to be simply supported at one pair of opposite edges and arbitrary boundary
conditions at the other edges such that trigonometric functions expansion can be used to satisfy the boundary
conditions precisely at simply supported edges. This paper presents a novel 2-D power-law distribution for
ceramic volume fraction of 2-D FGM that gives designers a powerful tool for flexible designing of structures
under multifunctional requirements. Various material profiles in two radial and axial directions are illustrated
using the 2-D power-law distribution. The effective material properties at a point are determined in terms
of the local volume fractions and the material properties by the Mori–Tanaka scheme. The 2-D generalized
differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing
equations and to implement the boundary conditions. The convergence of the method is demonstrated, and
to validate the results, comparisons are made with the available solutions for FGM cylindrical shells. The
interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability
to reduce the mechanical stresses and natural frequency than conventional 1-D FGM. The achieved results
confirm that natural frequency and mechanical stress distribution can be modified to a required manner by
selecting an appropriate volume fraction profile in two directions.

1 Introduction

Functionally graded materials (FGMs) are materials, in which the volume fraction of two or more materials
is varied continuously as a function of the position along certain dimension(s) from one point to another.
The FGMs are usually made of a ceramic/metal mixture with an arbitrary composition of each one, and the
volume fraction of each material is changed gradually. By gradually varying the volume fraction of constituent
materials, their material properties exhibit a smooth and continuous change from one surface to another, thus
eliminating interface problems and mitigating thermal stress concentrations. This is due to the fact that the
ceramic constituents of FGMs are able to withstand high-temperature environments due to their better thermal
resistance characteristics, while the metal constituents provide stronger mechanical performance and reduce
the possibility of catastrophic fracture.
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Some research papers on the analysis of functionally graded structures are available. Woo and Meguid
[1] gave an analytical solution for the large deflection of thin FG plates and shallow shells under transverse
loading and temperature field. Based on the von Karman theory for large transverse deflection, the fundamental
equations for shallow thin rectangular FG shells have been presented. Loy et al. [2] and Pradhan et al. [3] have
studied the vibration of functionally graded cylindrical shells using Love’s shell theory and the Rayleigh–
Ritz method. The free vibration problem of simply supported rectangular plates with general inhomogeneous
material properties along the thickness direction was analyzed by Chen et al. [4]. Huang and Shen [5] dealt
with the nonlinear vibration and dynamic response of a functionally graded material plate with surface-bonded
piezoelectric layers in thermal environments. Sobhani Aragh and Yas [6] studied the 3-D free vibration of func-
tionally graded fiber orientation and volume fraction of cylindrical panels. The interesting and new results show
that the normalized natural frequency of the functionally graded fiber orientation cylindrical panel is smaller
than that of a discrete laminate composite panel and close to that of a 4-layer. In contrast, the normalized natural
frequency of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close
to that of a 2-layer. Zhao et al. [7] investigated the static response and free vibration of FGM shells subjected
to mechanical or thermomechanical loading using the element-free kp-Ritz method. Sander’s first-order shear
deformation shell theory was employed to develop the transverse shear strain–stress relation. Sobhani Aragh
and Yas [8] investigated the effect of symmetric and asymmetric volume fraction profiles on the static and free
vibration characteristics of continuously graded fiber-reinforced (CGFR) cylindrical shells with a generalized
power-law distribution, And very recently, these authors [9] studied the effect of continuously grading fiber
orientation face sheets on the free vibration of sandwich panels with functionally graded core. The face sheets
had a variation of the fiber orientation, while the core had a variation of the fiber volume fraction.

In the above-mentioned papers, the material properties are assumed having a smooth variation usually in
one direction. In 2003, the Columbia space shuttle was lost in a catastrophic breakup due to outer surface insu-
lation that fell loose when the Columbia lifted off. The physical cause of the loss of Columbia and its crew was
a breach in the thermal protection system on the leading edge of the left wing, caused by a piece of insulating
foam, which separated from the left bipod ramp section of the external tank and struck the wing in the vicinity
of the lower half of a reinforced carbon–carbon panel. During reentry, this breach in the thermal protection
system allowed superheated air to penetrate through the leading edge insulation and progressively melt the
aluminum structure of the left wing, resulting in a weakening of the structure until increasing aerodynamic
forces caused loss of control, failure of the wing and breakup of the Orbiter [10,11]. Such damage to the space
shuttle’s protective thermal tiles can be prevented by using FGMs. It is worth mentioning that a conventional
functionally graded material may also not be so effective in such design problems since all outer surfaces of
the body will have the same composition distribution and temperature distribution in such advanced machine
element changes in two or three directions. Therefore, if the FGM has 2-D dependent material properties, a
more effective high-temperature-resistant material can be obtained. Based on this fact, 2-D functionally graded
materials (2-D FGMs) whose material properties are bidirectionally dependent are introduced. The manufac-
turing of multidimensional FGM may seem to be costly or difficult, but it should be noted that while these
technologies are relatively new, processes such as 3-D printing (3-DPTM) and laser engineering net shaping
(LENS(R)) can currently produce FGMs with relatively arbitrary three-dimensional grading [12]. With further
refinements, FGM manufacturing methods may provide the designers with more control of the composition
profile of functionally graded components with reasonable costs.

Recently, many investigations for 2-D FGM have been carried out. The thermal stresses in two-directionally
graded aerospace shuttles and crafts were later studied by Nemat–Alla [13] using a finite element model. The
same technique was later applied by Hedia [14] for the stress analysis on the backing shell of the cemented
acetabular cup made of FGMs. He found that some critical stresses of concern for shells fabricated by unidirec-
tional or 2-D FGMs were reduced by more than 50% compared with shells made of homogeneous materials. A
further reduction of stresses was achieved using 2-D FGMs rather than unidirectional FGMs when designing
cementless hip stems [15]. Sutradhar and Paulino [16] used the boundary element method to investigate the
heat conduction problems of 2-D FGMs, while the Green’s functions were obtained by Chan et al. [17] for
2-D unbounded spaces with the shear modulus varying in two directions. Qian and Batra [18] made use of
the meshless local Petrov–Galerkin (MLPG) method to obtain numerical solutions for static, free, and forced
vibrations of a cantilever beam, for which material properties are power-law functions of the two coordinates.
Asgari et al. [19] studied the dynamic behavior of a 2-D FG thick hollow cylinder with finite length under
impact loading, and also Asgari and Akhlaghi [20] investigated the transient thermal stresses in a 2-D FGM
thick hollow cylinder with finite length by using the finite element method with graded material properties
within each element. Nemat–Alla et al. [21] studied the elastic–plastic analysis of 2-D functionally graded
materials under thermal loading. They showed that heat conductivity of the metallic constituents of FGM has a
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large effect on the temperature distribution that resulted from the thermal loads. Kutiš et al. [22] presented the
multilayering method and the direct integration method for modeling of a functionally graded material (FGM)
beam with continuous spatially varying material properties. Goupee and Vel [23] proposed a methodology for
the 2-D simulation and optimization of the material composition distribution of an FGM. The 2-D quasi-static
heat conduction and thermo-elastic problems were analyzed using the element-free Galerkin method. Ke and
Wang [24] developed a multilayered model for frictionless contact analysis of functionally graded materials
(FGMs) with arbitrarily varying elastic modulus under plane strain-state deformation. The FGM was divided
into several sublayers, and in each sublayer, the shear modulus was assumed to be a linear function while the
Poisson’s ratio was assumed to be a constant. With the model, the frictionless contact problem of a functionally
graded coated half-space was investigated.

Some researchers [8,25–28] have studied the influence of the power-law exponent, of the power-law distri-
bution choice, and of the choice of the different parameters on the free vibrations of conventional functionally
graded shells and panels. Moreover, analyses available in these papers are based on the assumption that the mate-
rial properties have a specific variation in one direction. As mentioned above, a conventional FGM may also not
be so effective in such design problems since all outer surfaces of the body will have the same composition dis-
tribution. This paper presents a novel 2-D power-law distribution for the ceramic volume fraction of a 2-D FGM
that gives designers a powerful tool for flexible designing of structures under multifunctional requirements.
Various material profiles in two radial and axial directions can be illustrated using a 2-D six-parameter power-
law distribution. In fact, using a 2-D power-law distribution, it is possible to study the influence of the different
kinds of two-directional material profiles including symmetric and classical ones on the natural frequencies
and mechanical stress components of a shell. Furthermore, the maximum stresses and stress distribution can
be modified to a required manner by selecting suitable different parameters of a power-law distribution and
volume fraction profiles in two directions. To the best knowledge of the authors, there is no analysis available
in the open literature for the free vibration and static response of 2-D functionally graded metal/ceramic open
cylindrical shells under various boundary conditions. In this study, a graded open cylindrical shell with 2-D
power-law distribution of the volume fraction of the constituents in two radial and axial directions is considered.
The Mori–Tanaka scheme as an accurate micromechanics model is used for estimating the homogenized mate-
rial properties. The 2-D generalized differential quadrature method (GDQM) is efficiently used to discretize the
governing equations and to implement the related boundary conditions. The effects of different boundary con-
ditions, various geometrical parameters and different ceramic volume fraction profiles in radial and axial direc-
tions on the vibration and static behavior of 2-D FGM metal/ceramic open cylindrical shells are investigated.

2 Problem formulation

Let us consider a 2-D FGM open cylindrical shell of length Lx , mean radius Zm , uniform thickness h, as
shown in Fig. 1. An orthogonal cylindrical coordinate system (x, θ, z) is used to label the material point of the
plate in the unstressed reference configuration.

Fig. 1 Geometry of 2-D FGM open cylindrical shell
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Table 1 Material properties of aluminum and silicon carbide

Young’s Poisson’s ratio, v Mass density, ρ

modulus, E (GPa) (Kg/m3)

Al 70 0.30 2,707
Silicon carbide (SiC) 410 0.170 3,100

2.1 2-D FGM constitutive law

In the conventional 1-D FGM shell, the shell’s material is graded in one direction. The 1-D FGM shells have a
smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial direction
[6–9,25–28]. Significant advances in fabrication and processing techniques have made it possible to produce
FGMs using processes that allow FGMs with complex properties and shapes, including 2-and 3-D gradients
using computer-aided manufacturing techniques. For the 2-D FGMs, the material properties are continuous
functions of the coordinates, and the volume fractions of the constituents vary in a predetermined composition
profile. Now consider a two-phase graded material with a power-law variation of the volume fraction of the
constituents in the radial and axial directions. The material properties of aluminum and silicon carbide are
listed in Table 1 [29,30]. In this paper, it is proposed that the volume fraction of the ceramic phase follows a
2-D six-parameter power-law distribution:

2 − D FGM : Vc =
(

(Vb − Va)

((
1

2
− z − Zm

zo − zi

)
+ αz

(
1

2
+ z − Zm

zo − zi

)βz
)γz

+ Va

)

×
(

1 −
(

x

Lx

)
+ αx

(
x

Lx

)βx
)γx

(1)

where the radial volume fraction index γz , and the parameters αz, βz and axial volume fraction index γx , and
the parameters αx , βx govern the material variation profile through the radial and axial directions, respectively.
The volume fractions Va and Vb, which have values that range from 0 to 1, denote the ceramic volume frac-
tions of the two different isotropic materials. For example, with the assumption Vb = 1 and Va = 0.3, some
material profiles in the radial (ηz = (z − Zm)/h) and axial (ηx = x/L) directions are illustrated in Figs. 2, 3
and 4. As can be seen from Fig. 2, the classical volume fraction profiles in the radial and axial directions are
presented as special case of the 2-D power-law distribution (1) by setting αz = αx = 0 and γz = γx = 4.
In Fig. 2, for the first 2-D power-law distribution (1), the ceramic volume fraction decreases through the thick-
ness from 1 at ηz = −0.5 to 0.3 at ηz = 0.5. Likewise, the ceramic volume fraction decreases in the axial
direction from 1 at ηx = −0.5 to 0 at ηx = 0.5. With another choice of the parameters αz, βz, αx and βx , it
is possible to obtain symmetric volume fraction profiles in the radial and axial directions as shown in Fig. 3.
Classical and symmetric profiles in the radial and axial directions are obtained by setting αz = 0, αx = 1

Fig. 2 Variations of the classical volume fraction profile in the radial and axial directions (αz = αx = 0, γz = γx = 4)
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Fig. 3 Variations of the volume fraction profile in the radial and axial directions (γz = γx = 3)(αz = 1, βz = 2, αx = 0)

Fig. 4 Variations of the symmetric volume fraction profiles in the radial and axial directions (αz = αx = 1, βz =
βx = 2, γz = γz = 3)

and βx = 2 in Eq. (1). Figure 3 shows a classical profile versus ηz and a symmetric profile versus ηx . As
observed, the ceramic volume fraction on the lower edge (ηx = −0.5) is the same as that on the upper edge
(ηx = 0.5). Figure 4 illustrates symmetric profiles through the radial and axial directions obtained by setting
αz = 1, αx = 1 and βz = 2, βx = 2. Sobhani Aragh and Yas [8,9] and [28] studied the variations of the classi-
cal and symmetric profiles of conventional 1-D functionally graded panels with radial volume fraction index.

The effective material properties of the isotropic 2-D FGMs are determined in terms of the local volume
fractions and material properties of the two isotropic phases by the Mori–Tanaka scheme. The Mori–Tanaka
scheme [31,32] for estimating the effective moduli is applicable to regions of the graded microstructure that
have a well-defined continuous matrix and a discontinuous particulate phase. It takes into account the inter-
action of the elastic fields among neighboring inclusions. It is assumed that the matrix phase, denoted by
the subscript m, is reinforced by spherical particles of a particulate phase, denoted by the subscript c. In this
notation, Km and Gm are the bulk modulus and the shear modulus, respectively, and Vm is the volume fraction
of the matrix phase. Kc, Gc, and Vc are the corresponding material properties and the volume fraction of the
particulate phase. Note that Vm + Vc = 1, that the Lamé constant λ is related to the bulk and the shear moduli
by λ = K − 2G/3, and that the stress–temperature modulus is related to the coefficient of thermal expansion
by β = (3λ+2G)α = 3Kα. The following estimates for the effective local bulk modulus K and shear modulus
G are useful for a random distribution of isotropic particles in an isotropic matrix:

K − Km

Kc − Km
= Vc

1 + (1 − Vc)(Kc − Km)/(Km + (4/3)Km)
, (2)

G − Gm

Gc − Gm
= Vc

1 + (1 − Vc)(Gc − Gm)/(Gm + fm)
(3)
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where fm = Gm(9Km + 8Gm)/6(Km + 2Gm). The effective values of Young’s modulus, E , and Poisson’s
ratio, v, are found from:

E = 9K G

3K + G
, v = 3K − 2G

2(3K + G)
. (4)

Note that, in this paper, we choose a metal/ceramic open cylindrical shell with the metal (Al) taken as the
matrix phase and the ceramic (SiC) taken as the particulate phase.

2.2 Problem description

The mechanical constitutive relations, which relate the stresses to the strains, are as follows:⎡
⎢⎢⎢⎢⎢⎣

σx
σθ

σz
τzθ
τxz
τxθ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄11 C̄12 C̄13 0 0 0
C̄12 C̄22 C̄23 0 0 0
C̄13 C̄23 C̄33 0 0 0

0 0 0 C̄44 0 0
0 0 0 0 C̄55 0
0 0 0 0 0 C̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

εx
εθ

εz
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⎤
⎥⎥⎥⎥⎥⎦. (5)

In the absence of body forces, the governing equations are as follows:
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z
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The strain–displacement relations are expressed as:

εθ = uz

z
+ ∂uθ

z∂θ
, εz = ∂uz

∂z
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∂x
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+ ∂ux

z∂θ
(7)

where uz, uθ , and ux are radial, circumferential, and axial displacement components, respectively.
Upon substituting Eq. (7) into (5) and then into (6), the following equations of motion in matrix form are

obtained in terms of displacement components:
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The outer and inner surfaces of the open cylindrical shell in the state of free vibration are traction free as:

σz = τzx = τzθ = 0, at z = a and b. (11)

The surface boundary conditions in the state of static loading are:

σz = τzx = τzθ = 0, at z = a. (12)

σz = τzx = τzθ = 0, at z = b. (13)

In this investigation, the following boundary conditions for Simply (S) supported, Clamped (C) supported,
Free (F) from support at the x = 0, Lx edges are assumed:

S : uz = uθ = σx = 0,

C : uz = uθ = ux = 0, (14)

F : σx = σxθ = σxz = 0.

For an open cylindrical shell with simply supported edge at one pair of opposite edges, the displacement
components can be expanded in terms of trigonometric functions in the direction normal to these edges. In
this work, it is assumed that the edges θ = 0 and θ =  are simply supported. Hence,

ux (x, θ, z, t) =
∞∑

m=1

Ux (x, z) sin(βmθ)eiωt ,

uθ (x, θ, z, t) =
∞∑

m=1

Uθ (x, z) cos(βmθ)eiωt ,

uz(x, θ, z, t) =
∞∑

m=1

Uz(x, z) sin(βmθ)eiωt ,

βm = mπ/, (m = 1, 2, . . . , )

(15)

where m and ω are circumferential wave number and natural angular frequency of the vibration.
Upon substituting Eq. (15) into the governing Eqs. (8)–(10), the coupled partial differential equations

reduce to a set of ordinary differential relations as follows:⎡
⎣ A1x A1θ A1z

A2x A2θ A2z
A3x A3θ A3z

⎤
⎦

⎧⎨
⎩

Ux
Uθ

Uz

⎫⎬
⎭ = −ω2ρ

⎧⎨
⎩

Ux
Uθ

Uz

⎫⎬
⎭ , (16)

where the coefficients Ai j are given in Appendix A.

3 Solution procedure

It is necessary to develop appropriate methods to investigate the mechanical responses of isotropic 2-D FGM
structures. But, due to the complexity of the problem caused by the two-directional inhomogeneity, it is difficult
to obtain the exact solution. In this paper, the generalized differential quadrature method (GDQM) approach
is used to solve the governing equations of 2-D FGM open cylindrical shells. The basic idea of the GDQM is
that the derivative of a function, with respect to a space variable at a given sampling point, is approximated as
a weighted linear sum of the sampling points in the domain of that variable. According to GDQM method, the
r th derivative of function f (ξ, η) can be approximated as:

∂r f (ξ, η)

∂ξ r

∣∣∣∣
(ξi ,ηi )

=
Nξ∑

k=1

c(r)
ik f (ξk, η j ) =

Nξ∑
k=1

c(r)
ik fk j , i = 1, 2, . . . , Nξ and r = 1, 2, . . . , Nξ − 1. (17)

From this equation, one can deduce that the important components of GDQM approximations are the weighting
coefficients c(r)

i j and the choice of sampling points. Some simple recursive formulas are available for calculating
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nth order derivative weighting coefficients c(r)
i j by means of Lagrange polynomial interpolation functions. The

weighting coefficients for the first-order derivative, that is, r = 1, are [33,34]:

c(1)
i j

= L(1)(ξi )

(ξi − ξ j )L(1)(ξi )
, i, j = 1, 2, . . . , Nξ , i �= j, (18)

c(r)
i i

= −
Nξ∑

j=1,i �= j

c(r)
i j

. (19)

In Eq. (18), the first derivative of the Lagrange interpolating polynomials at each point ξi , i = 1, 2, . . . , Nξ ,
is:

L(1)(ξi ) = N
�

j=1,i �= j
(ξi − ξ j ). (20)

For higher-order derivatives (r = 2, 3, . . . , Nξ − 1), one can use the following relations iteratively:

c(r)
i j

= r

(
c(r−1)

i i
c(1)

i j
− c(r−1)

i j

(ξi − ξ j )

)
i, j = 1, 2, . . . , Nξ , i �= j, r = 2, 3, . . . , Nξ − 1, (21)

c(r)
i i

= −
Nξ∑

j=1,i �= j

c(r)
i j

, i = 1, 2, . . . , Nξ , r = 1, 2, . . . , Nξ − 1. (22)

A simple and natural choices of the grid distribution is the uniform grid spacing rule. However, it was found
that non-uniform grid spacing yields result with better accuracy [35]. It has been proven that for the Lagrange
interpolating polynomials the Chebyshev–Gauss–Lobatto sampling points rule guarantees convergence and
efficiency to the GDQM technique [34,35]. Hence, in this work, the Chebyshev–Gauss–Lobatto quadrature
points are used, that is [33],

ξi = 1

2

(
1 − cos

(
i − 1

Nξ − 1
π

))
, η j = 1

2

(
1 − cos

(
j − 1

Nη − 1
π

))
, i = 1, 2, . . . , Nξ and j = 1, 2, . . . , Nη.

(23)

3.1 Free vibration problem

For free vibration analysis, the GDQM can be applied to discretize the equations of motion (16) and the
boundary conditions (11) and (14). As a result, at each domain grid point (xi , z j ) with i = 1, 2, . . . , N and
j = 1, 2, . . . , M , the discretized equations take the following forms:

M∑
k=1

((
∂C̄11

∂x

)
i j

d jk + (
C̄11

)
i j d(2)

jk

)
Uxik +
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∂x

)
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1

z
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1

z
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)
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)
i j
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)
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1

z

)
N∑

k=1

cikUxk j

+
N∑

k=1

((
∂C̄13

∂x

)
i j

cik + (
C̄55

)
i j c(2)

ik

)
Uzkj

−
(

∂C̄12

∂x

)
i j

1

z
βmUθ i j − (

C̄66
)

i j

1

z2 β2
mUxi j − 1

z
βm

((
C̄12

)
i j + (

C̄66
)

i j

) M∑
k=1

d jkUθ ik

+
((

C̄55
)

i j + (
C̄13

)
i j

) N∑
k1=1

M∑
k2=1

cik1d jk2Uzk1k2 = −ρi jω
2Uxi j , (24)



Static response and free vibration 317

M∑
k=1

((
∂C̄66

∂x

)
i j

d jk + (
C̄66

)
i j d(2)

jk

)
Uθ ik +

N∑
k=1

(((
∂C̄44

∂z

)
i j

+ (
C̄44

)
i j

1

z

)
cik + (

C̄44
)

i j c(2)
ik

)
Uθk j

+
((

C̄22
)

i j

1

z
+

(
∂C̄44

∂z

)
i j

+ (
C̄44

)
i j

1

z

)
1

z
βmUzi j +

(
∂C̄66

∂x

)
i j

1

z
βmUxi j

+1

z
βm

M∑
k=1

((
C̄66

)
i j d(2)

jk + (
C̄12

)
i j d jk

)
Uxik

−
((

C̄22
)

i j

1

z2 β2
mUθ + (

C̄44
)

i j

1

z2

)
Uθ i j + 1

z
βm

((
C̄23

)
i j + (

C̄44
)

i j

) N∑
k=1

cikUzk j = −ρi jω
2Uθ i j ,

(25)((
C̄13

)
i j

1

z
− (

C̄12
)

i j

1

z
+

(
∂C̄13

∂z

)
i j

)
M∑

k=1

d jkUxik

+
N∑

k=1

(((
∂C̄33

∂z

)
i j

+ (
C̄33

)
i j

1

z

)
cik + (

C̄33
)

i j c(2)
ik

)
Uzkj

+
M∑

k=1

((
∂C̄55

∂x

)
i j

d jk + (
C̄55

)
i j d(2)

jk

)
Uzik + βm

((
C̄44

)
i j

1

z2 −
(

∂C̄23

∂z

)
i j

1

z
+ (

C̄22
)

i j

1

z2

)
Uθ i j

+
((

∂C̄23

∂z

)
i j

1

z
− (

C̄44
)

i j

1

z2 β2
m − (

C̄22
)

i j

1

z2

)
Uzi j +

((
C̄13

)
i j + (

C̄55
)

i j

) N∑
k1=1

M∑
k2=1

cik1d jk2Uxk1k2

+
(

∂C̄55

∂x

)
i j

N∑
k=1

cikUxk j − 1

z
βm

((
C̄44

)
i j + (

C̄23
)

i j

) N∑
k=1

cikUθk j = −ρi jω
2Uzi j (26)

where ci j , di j and c(2)
i j , d(2)

i j are the first- and second-order GDQM weighting coefficients in the z- and x-direc-
tions, respectively. In a similar manner, the boundary conditions can be discretized. For this purpose, using
Eq. (11) and the GDQM discretization rule for special derivatives, the boundary conditions at z = a and z = b
become:

C̄13

M∑
k=1

d jkUxik + C̄23
1

z
Uri j − C̄23

1

z
βmUθ i j + C̄33

N∑
k=1

cikUzk j = 0

−C̄44
1

z
Uθ i j + C̄44

N∑
k=1

cikUθk j + C̄44
1

z
βmUzi j = 0, (27)

C̄55

N∑
k=1

cikUxk j + C̄55

M∑
k=1

d jkUzik = 0

where i = 1 at z = a and i = N at z = b, and j = 1, 2, . . . , M . The boundary conditions at x = 0 and L
stated in (14) become:

Simply supported (S):

Uzi j = 0, Uθ i j = 0,
(28)

C̄11

M∑
k=1

d jkUxik + C̄12
1

z
Uzi j − C̄12

1

z
βmUθ i j + C̄13

N∑
k=1

cikUzk j = 0, for j = 1, M and i = 1, 2, . . . , N .

Clamped (C):

Uzi j = 0, Uθ i j = 0, Uxi j = 0, for j = 1, M and i = 1, 2, . . . , N . (29)
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Free (F):

C̄11

M∑
k=1

d jkUxik + C̄12
1

z
Uzi j − C̄12

1

z
βmUθ i j + C̄13

N∑
k=1

cikUzk j = 0,

C̄66

M∑
k=1

d jkUθ ik + C̄66
1

z
βmUxi j = 0, (30)

C̄55

N∑
k=1

cikUxk j + C̄55

M∑
k=1

d jkUzik = 0, for j = 1, M and i = 1, 2, . . . , N .

To obtain the eigenvalue system of equations, the degrees of freedom are separated into the domain and
the boundary degrees of freedom as

d =
⎧⎨
⎩

Ux
Uθ

Uz

⎫⎬
⎭

domain

, b =
⎧⎨
⎩

Ux
Uθ

Uz

⎫⎬
⎭

boundary

. (31)

Using Eq. (31), the discretized form of the equations of motion in matrix form can be rearranged as

Sdbb + Sddd = −ω2Md (32)

where Sdb and Sdd are stiffness matrices and M is the mass matrix. In a similar manner, the discretized form
of the boundary conditions becomes:

Sbbb + Sbdd = 0 (33)

where Sbb and Sbd are the stiffness matrices. In the above equations, the elements of stiffness matrices are
obtained based on the definition of vectors of domain and boundary degrees of freedom from the general-
ized differential quadrature discretized form of the equations of motion and the boundary conditions. Using
Eq. (33) to eliminate the boundary degrees of freedom b from Eq. (32), one obtains

Sd = −ω2Md (34)

where

S = Sdd − SdbS−1
bb Sbd.

The natural frequencies of the isotropic 2-D FGM open cylindrical shell considered can be determined by
solving the standard eigenvalue problem (34).

3.2 Static problem

For the static analysis of a 2-D FGM open cylindrical shell, it is assumed that ω = 0 in Eqs. (24)–(25). The
discretized forms of the boundary conditions on the inner and outer surfaces of the open cylindrical shell,
shown in Eqs. (12), (13), can be expressed as follows. On the inner surface (z = a):

C̄13

M∑
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1

z
Uri j − C̄23

1
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βmUθ i j + C̄33
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cikUθk j + C̄44
1

z
βmUzi j = 0. (35)

C̄55

N∑
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cikUxk j + C̄55
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k=1

d jkUzik = 0.
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On the outer surface (z = b):

C̄13

M∑
k=1

d jkUxik + C̄23
1

z
Uri j − C̄23

1

z
βmUθ i j + C̄33
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cikUzk j = q,

−C̄44
1

z
Uθ i j + C̄44
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cikUθk j + C̄44
1

z
βmUzi j = 0, (36)

C̄55

N∑
k=1

cikUxk j + C̄55

M∑
k=1

d jkUzik = 0.

Applying the generalized differential quadrature procedure, the whole system of differential equations has
been discretized, and the global assembling leads to the following set of linear algebraic equations:[

Sbb Sbd
Sdb Sdd

] {
b
d

}
=

{
q
0

}
(37)

where q is the mechanical load. Finally, the displacement components are obtained from the following relations:

Sd = SdbS−1
bb q (38)

where

S = SdbS−1
bb Sbd − Sdd. (39)

The above system of equations can be solved to find the displacement fields of the metal/ceramic 2-D FGM
open cylindrical shells.

4 Numerical results and discussion

To validate the vibration analyses, the numerical results for simply supported conventional FGM open cylin-
drical shells with different Lx/Zm and Lx/h ratios shown in Table 2 are compared with those presented by
Matsunaga [36] and Farid et al. [37].

In Table 3, the fundamental frequencies of the radially conventional FGM open cylindrical shell with four
edges simply supported obtained by the present analysis are compared with those presented by Pradyumna and
Bandyopadhyay [38], based on the higher-order shear deformation theory. The results of the present analysis
are obtained using 9 × 9 grid points. Again, excellent agreement of the two methods is obvious.

Table 2 Comparison of the normalized natural frequency for various Lx/Zm and Lx/h ratios

Pz

0 0.5 1 4 10

Lx/h = 2 Lx/Zm = 0.5
Ref. [36] 0.9334 0.8213 0.7483 0.6011 0.5461
Ref. [37] 0.9187 0.8013 0.7263 0.5267 0.5245
Present results (M = N = 9) 0.9249 0.8018 0.7253 0.5790 0.5301
Ref. [36] Lx/Zm = 1 0.9163 0.8105 0.7411 0.5967 0.5392
Ref. [37] 0.8675 0.7578 0.6875 0.5475 0.4941
Present results (M = N = 9) 0.8857 0.7667 0.6935 0.5531 0.5065
Lx/h = 5 Lx/Zm = 0.5
Ref. [36] 0.2153 0.1855 0.1678 0.1413 0.1328
Ref. [37] 0.2113 0.1814 0.1639 0.1367 0.1271
Present results (M = N = 9) 0.2129 0.1817 0.1638 0.1374 0.1296
Ref. [36] Lx/Zm = 1 0.2239 0.1945 0.1769 0.1483 0.1385
Ref. [37] 0.2164 0.1879 0.1676 0.1394 0.1286
Present results (M = N = 9) 0.2154 0.1848 0.1671 0.1391 0.1300
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Table 3 Comparison of the normalized natural frequency of a radially FGM open cylindrical shell with four edges simply
supported for various γz and Zm/Lx ratios

γz Zm/Lx

0.5 1 5 10 50

0 Ref. [38] 68.8645 51.5216 42.2543 41.908 41.7963
M = N = 5 69.97756 52.10533 42.72019 42.37183 42.25946
M = N = 9 69.97003 52.10028 42.716036 42.36770 42.25534
M = N = 11 69.97003 52.10028 42.716036 42.36770 42.25534

0.2 Ref. [38] 64.4001 47.5968 40.1621 39.8472 39.7465
M = N = 5 65.14701 47.93925 39.12822 38.80092 38.70198
M = N = 9 65.45263 48.13411 39.08355 38.75680 38.65808
M = N = 11 65.43035 48.13411 39.08355 38.75680 38.65808

0.5 Ref. [38] 59.4396 43.3019 37.287 36.9995 36.9088
M = N = 5 60.11963 43.55386 36.12641 35.82024 34.73412
M = N = 9 60.35742 43.76887 36.09438 35.78910 35.70322
M = N = 11 60.35742 43.76887 36.09438 35.78910 35.70322

1 Ref. [38] 53.9296 38.7715 33.2268 32.9585 32.875
M = N = 5 54.10335 38.51794 31.98603 30.70648 30.63364
M = N = 9 54.71405 39.16213 32.04008 31.76079 31.68770
M = N = 11 54.71405 39.16213 32.04008 31.76079 31.68770

2 Ref. [38] 47.8259 34.3338 27.4449 27.1789 27.0961
M = N = 5 46.90162 34.77015 27.66574 27.42946 27.37254
M = N = 9 48.52503 34.68517 27.56144 27.32382 27.26625
M = N = 11 48.52503 34.68517 27.56144 27.32382 27.26625(

� = ωZm�
√

ρmh/D, D = Emh3/
(
12(1 − v2

m

))

Table 4 Comparison of the maximum stresses for a 1-layer orthotropic cylindrical shell (N , M = 13, Lx/Zm = 4)

S σ̄θ (η = ±0.5) σ̄x (η = ±0.5) σ̄z (η = 0) σ̄zθ (η = 0)

2 Present −14.8825 −0.78390 −0.37409 −2.05563
5.163241 0.13317

Ref. [39] −14.883 −0.7839 −0.37 −2.056
5.163 0.1332

10 Present −4.50902 −0.06558 −1.372343 −3.66901
4.05089 0.06632

Ref. [39] −4.509 −0.0656 −1.37 −3.669
4.051 0.0663

50 Present −3.97856 −0.00857 −5.38282 −3.91932
3.90184 0.08447

Ref. [39] −3.979 −0.0086 −5.38 −3.919
3.902 0.0845

100 Present −3.87638 0.02878 −10.12841 −3.85904
3.84309 0.11897

Ref. [39] −3.876 0.0288 −10.13 −3.859
3.843 0.119

To validate the static analysis, the present results are obtained for a 1-layer orthotropic cylindrical shell
under internal static load and compared with similar results by Varadan [39]. The mechanical properties of the
considered material are as follows:

EL

ET
= 25,

GT T

ET
= 0.2,

GLT

ET
= 0.5, vLT = vT T = 0.25. (40)

The non-dimensional parameters are:

(σ̄x , σ̄θ ) = 10(σx , σθ )

q S2 , σ̄z = σz

q
, τ̄zθ = 10τzθ

q S
. (41)

As it is observed from Table 4, there is good agreement between the results.
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Table 5 Various ceramic volume fraction profiles, different parameters, and volume fraction indices of 2-D power-law
distributions

Volume fraction profile Radial volume fraction Axial volume fraction
index and parameters index and parameters

Classical–Classical αz = 0 αx = 0
Symmetric–Symmetric αz = 1, βz = 2 αx = 1, βx = 2
Classical–Symmetric αz = 0 αx = 1, βx = 2
Classical radially αz = 0 γx = 0
Symmetric radially αz = 1, βz = 2 γx = 0

Table 6 Convergence test of fundamental frequency parameters of a C-C 2-D FGM open cylindrical shell (Lx/Zm = 5,  = π/2)

Volume fraction profile S Number of grid points (M × N )

9 × 9 13 × 13 15 × 15 17 × 17 21 × 21

Classical–Classical 10 0.020676 0.020602 0.020587 0.020570 0.020570
20 0.009039 0.008969 0.008952 0.008947 0.008947
50 0.003453 0.003417 0.003403 0.003397 0.003397

100 0.001714 0.001696 0.001688 0.001683 0.001683
Classical–Symmetric 10 0.024938 0.024868 0.024854 0.024841 0.024841

20 0.011005 0.010940 0.010924 0.010919 0.010919
50 0.004219 0.004187 0.004174 0.004168 0.004168

100 0.002095 0.002079 0.002071 0.002067 0.002067
Symmetric–Symmetric 10 0.028941 0.028885 0.028877 0.028870 0.028870

20 0.012742 0.012682 0.012668 0.012666 0.012666
50 0.004882 0.004851 0.004838 0.004834 0.004834

100 0.002425 0.002409 0.002402 0.002398 0.002398

4.1 Free vibration problem

For all results presented here, the vibration frequency is expressed in terms of a non-dimensional frequency
parameter �mn = ωmnh

√
ρAl/E Al(ρAl , E Al are mechanical properties of aluminum). In this work, C–C,

C–S, S–S, F–C, F–S, and F–F denote clamped–clamped, clamped–simply supported, simply supported–sim-
ply supported, free–clamped, free–simply supported and free–free conditions at the circumferential edges and
simply supported axial pair of edges. It is should be noted that the isotropic 2-D FGM shells considered in
the work are assumed to be composed of aluminum and silicon carbide. In the following, we have compared
the several different ceramic volume fraction profiles of conventional 1-D and 2-D FGMs with appropriate
choice of the radial and axial parameters of the 2-D six-parameter power-law distribution, as shown in Table 5.
It should be noted that the notation Classical–Symmetric indicates that the 2-D FGM open cylindrical shell
has classical and symmetric volume fraction profiles in the radial and axial directions, respectively. In order
to obtain accurate frequency parameters of 2-D FGM open cylindrical shells, a set of calculations is first
presented in Tables 6 and 7 to determine the requisite number of grid points in the radial M and axial N direc-
tions. The effect of the mid-radius-to-thickness ratio (S), length-to-mean radius ratio (L/Zm), and various
volume fraction profiles on the convergence rate of the frequency parameters of 2-D FGM open cylindrical
shells is investigated in Tables 6 and 7, respectively. It is evident from these tables that the present GDQM
converges very fast as the number of grid points M × N increases. It can also be concluded that using 17 × 17
grid points can produce accurate frequency parameters for 2-D FGM open cylindrical shells up to at least six
significant digits.

The variations of the frequency parameters of FGM metal/ceramic open cylindrical shells with mid-radius-
to-thickness ratio, S, and radial volume fraction index for the four boundary conditions are shown in Fig. 5,
by considering αz = αx = 0 and γx = 1 for a Classical–Classical 2-D FGM. As it is observed, for the all
boundary conditions the fundamental frequency parameter decreases rapidly with the increase in the S ratio
and then remains almost unaltered for the thin shells. By considering the relations (1), when the radial volume
fraction index γz is set equal to zero, the conventional 1-D FGM shell with the graded ceramic volume fraction
graded in the radial direction is obtained as a special case of functionally graded material. It is interesting to
note that for the all boundary conditions the frequency parameter decreases by increasing the radial volume
fraction index γz , due to the fact that the silicon carbide fraction decreases, and as we know silicon carbide
has a much higher Young’s modulus than aluminum.
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Table 7 Convergence behavior of fundamental frequency parameters of an F-C 2-D FGM open cylindrical shell against the
number of grid points (S = 10,  = π/3)

Volume fraction profile Lx/Zm Number of grid points (M × N )

9 × 9 13 × 13 15 × 15 17 × 17 21 × 21

Classical–Classical 1 0.047374 0.047374 0.047776 0.048244 0.048244
2 0.035056 0.034572 0.034539 0.034916 0.034916
5 0.030093 0.030091 0.030064 0.030084 0.030084

10 0.026899 0.026935 0.026927 0.026923 0.026923
Classical–Symmetric 1 0.057001 0.056919 0.057027 0.057103 0.057103

2 0.037921 0.037746 0.037714 0.037801 0.037801
5 0.033563 0.033614 0.033616 0.033622 0.033622

10 0.032509 0.032512 0.032513 0.032513 0.032513
Symmetric–Symmetric 1 0.068810 0.068317 0.068238 0.067990 0.067990

2 0.045774 0.045499 0.045408 0.045350 0.045350
5 0.039805 0.039833 0.039820 0.039811 0.039811

10 0.037932 0.037929 0.037933 0.037934 0.037934

Fig. 5 Variations of the fundamental frequency parameters of FGM metal/ceramic open cylindrical shells with S ratio and radial
volume fraction index for different boundary conditions ( = 2π/3, Lx/Zm = 5, αz = αx = 0, γx = 1)

The influence of various types of ceramic volume fraction profiles on the frequency parameters of C-C open
cylindrical shells for different values of circumferential wave number m and length-to-mean radius ratio Lx/Zm
is shown in Figs. 6 and 7. According to Figs. 6 and 7, the lowest frequency parameter is obtained by using a
Classical–Classical volume fractions profile. On the contrary, a 1-D FGM open cylindrical shell with Sym-
metric volume fraction profile has the maximum value of the frequency parameter. Therefore, a graded ceramic
volume fraction in two directions has higher capabilities to reduce the frequency parameter than conventional
1-D FGM. In addition, the new results show that, for different values of the circumferential wave number m and
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Fig. 6 Influence of various types of ceramic volume fraction profile on the frequency parameters of C–C open cylindrical shells
for different values of the circumferential wave number m (Lx/Zm = 1, S = 20,  = π/2)

Fig. 7 Influence of various types of ceramic volume fraction profile on the fundamental frequency parameters of C–C open
cylindrical shells (S = 10,  = π/2)

ratio Lx/Zm , the frequency parameter of the Classical FGM open cylindrical shell is close to that of a Sym-
metric–Symmetric 2-D FGM open cylindrical shell. Therefore, it can be concluded that using a 2-D power-law
distribution leads to a more flexible design so that the maximum or minimum value of the natural frequency can
be obtained in a required manner. It should be noted that the effect of the circumferential wave number m on
the growth rate of the frequency parameter is more pronounced for the Symmetric and Symmetric–Symmetric
volume fraction profiles.

The effects of different boundary conditions on the frequency parameters of 2-D FGM metal/ceramic open
cylindrical shells with Classical–Classical profile for different values of circumferential wave numbers m are
compared in Fig. 8. The frequency parameters vary from the maximum value for the C–C to the minimum
value for the F–S one. Figure 8a–c shows, for different values of S ratio, that the effects of the boundary
conditions diminish as the circumferential wave numbers m increase.

Here, we studied the influence of various types of the ceramic volume fraction profile on the fundamental
natural frequency at various radial volume fraction indices γz (Fig. 9). As observed, the fundamental natural
frequency decreases rapidly and then approaches a constant value for higher values of γz . It can be inferred
from Fig. 9 that the radial volume fraction index γz exerts insignificant influence on the frequency parameter
for the Classical–Classical volume fraction profile.
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Fig. 8 Effect of various boundary conditions on the frequency parameters of a 2-D FGM metal/ceramic open cylindrical shell
for different values of circumferential wave numbers m (a m = 1; b m = 2; c m = 3)( = π/2, Lx/Zm = 5)

Fig. 9 Frequency variation against radial volume fraction index γz for a C–C FGM metal/ceramic open cylindrical shell ( =
π/2, Lx/Zm = 2, S = 10)
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Fig. 10 Convergency of the non-dimensional radial displacement and radial, axial and transverse shear stresses through the
thickness C–C open cylindrical shell for Classical–Classical 2-D FGM ( = 2π/3S = 5, θ = π/3, z = Lx/2)

4.2 Static problem

The displacement and stress components are non-dimensionalized as follows:

(σ̄z, σ̄zx , σ̄zθ ) = (σz, σzx , σzθ )

q
, (σ̄x , σ̄θ ) = (σx , σθ )

q S2 , Ūr = E AlUr

q S2 . (42)

E Al is a mechanical property of aluminum. The open cylindrical shell has geometrical parameters Lx =
2 m, Zm = 0.5 m. A convergence study of the non-dimensional radial displacement and radial, axial, and
transverse shear stresses through the thickness is shown in Fig. 10a–d, for Classical–Classical 2-D FGM. As
observed, a fast rate of convergence of the method is evident, and it can also be seen that for the considered
system the formulation is stable while increasing the number of points.

The influence of edge boundary conditions on the static behavior of a 2-D FGM open cylindrical shell are
presented in Fig. 11a–d. As Fig. 11a shows, the two built-in opposite edges can cause the magnitude of radial
stress to be minimum in comparison with the other boundary conditions. The magnitude of non-dimensional
radial, circumferential, and transverse shear stresses for the 2-D FGM open cylindrical shell with F-C edges
condition are larger than on the other boundary conditions. It is interesting to note that the effect of clamped
condition in the opposite edges on the distribution of circumferential stress is less than on the other stresses
(Fig. 11d).

The influence of radial volume fraction index γz on the non-dimensional radial, axial, and transverse shear
stresses through the thickness is presented in Fig. 12a–c. The non-dimensionalized axial stress is linear for
γz = 0. In Fig. 12b, it is seen that the non-dimensionalized axial stress on the inner and outer surfaces increases
with increasing the radial volume fraction index. In this Fig. 12a and c, the peak of the radial and transverse
shear stresses increases by decreasing ceramic matrix phase (with increasing the radial volume fraction index).
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Fig. 11 Influence of edge boundary conditions on the mechanical entities of a 2-D FGM open cylindrical shell ( = 2π/3,
S = 5, θ = π/3)

It can be seen, with the exception of γz = 0, that the distribution is not symmetric with respect to the mid-surface
of the open cylindrical shell.

In the following discussion, the effect of different types of ceramic volume fraction profiles on the mechan-
ical entities of an F-S 2-D FGM open cylindrical shell is compared in Fig. 13. According to Fig. 13a–c, the
lowest magnitude of mechanical entities is obtained by using the Classical–Classical volume fractions profile.
On the contrary, a 1-D FGM open cylindrical shell with Classical volume fraction profile has the maximum
magnitude of mechanical entities. Therefore, a graded ceramic volume fraction in two directions has higher
capabilities to reduce the mechanical stresses than conventional 1-D FGM. Moreover, in Fig. 13, it is interesting
to note that the distribution of the mechanical entities in an FGM open cylindrical shell with Symmetric and
Symmetric–Symmetric profiles is symmetric with respect to the mid-surface of the open cylindrical shell. It
can be inferred from these figures that the 2-D power-law distribution for the ceramic volume fraction of 2-D
FGM gives designers a powerful tool for flexible designing of structures under multifunctional requirements.

5 Conclusion remarks

In this research work, a theoretical formulation for the free vibration and static response of a 2-D functionally
graded (2-D FGM) metal/ceramic open cylindrical shell under various boundary conditions was developed
using the 2-D generalized differential quadrature method. This paper presented a novel 2-D power-law distribu-
tion for the ceramic volume fraction of 2-D FGM that gives designers a powerful tool for flexible designing of
structures under multifunctional requirements. Various material profiles in two radial and axial directions were
illustrated using the 2-D power-law distribution. The effective material properties at a point were determined
in terms of the local volume fractions and the material properties by the Mori–Tanaka scheme. The study was
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Fig. 12 Through-the-thickness variation of the mechanical entities for different values of the radial volume fraction index
( = π/2, S = 10, θ = π/4, z = Lx/2)

carried out based on the 3-D, linear and small strain elasticity theory. Open cylindrical shells with two opposite
edges simply supported and arbitrary boundary conditions at the other edges were considered. The effects of
different boundary conditions, various geometrical parameters, and different ceramic volume fraction profiles
in radial and axial directions on the vibration and static behavior of 2-D FGM metal/ceramic open cylindrical
shells were investigated. From this study, some conclusions can be made:

• The results show that the fundamental natural frequency decreases rapidly and then approaches a constant
value for higher values of the radial volume fraction index. It is also seen that the radial volume fraction
index exerts an insignificant influence on the frequency parameter for the Classical–Classical volume
fraction profile.

• It is found that for the all boundary conditions the frequency parameter decreases by increasing radial
volume fraction index, due to the fact that the silicon carbide fraction decreases, and as we know silicon
carbide has a much higher Young’s modulus than aluminum.

• Results indicate that using a 2-D power-law distribution leads to a more flexible design so that maximum
or minimum mechanical stresses and a symmetric or asymmetric distribution can be obtained in a required
manner.

• The interesting results show that the lowest magnitude of mechanical entities and frequency parameter
is obtained by using a Classical–Classical volume fractions profile. It can be concluded that a graded
ceramic volume fraction in two directions has higher capabilities to reduce the mechanical stresses and
natural frequency than a conventional 1-D FGM.

• It is shown that the effect of clamped condition in the opposite edges on the distribution of circumferential
stress is smaller than on the other stresses. Moreover, it is observed that the magnitude of non-dimensional
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Fig. 13 The influence of the various ceramic volume fraction profiles on the mechanical entities of an F–S 2-D FGM open
cylindrical shell ( = 2π/3, S = 10, θ = π/3, z = Lx/2)

radial, circumferential, and transverse shear stresses for the 2-D FGM open cylindrical shell with F–C
edges condition is larger than for the other boundary conditions.

• The results show that the distribution of the mechanical entities in an FGM open cylindrical shell with
Symmetric and Symmetric–Symmetric profiles is symmetric with respect to the mid-surface of the open
cylindrical shell.

• Based on the achieved results, using a 2-D power-law distribution leads to a more flexible design so that
maximum or minimum mechanical stresses and a symmetric or asymmetric distribution can be obtained
in a required manner.

Appendix A: Expressions for the coefficients Ai j in Eq. (16):
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