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Abstract A multi-stage approach for the mathematical modeling in the field of nonlinear problems of
mechanics of thin-walled structures is the subject of the present paper. A combination of the asymptotic,
direct, and numerical methods for consistent and efficient analysis of problems of structural mechanics is pre-
sented on the example of plane problem of finite vibrations of a thin curved strip with material inhomogeneity.
The method of asymptotic splitting allows for a consistent dimensional reduction of the original two-dimen-
sional continuous problem as the thickness is small: the leading-order solution of the full system of equations
of the theory of elasticity results in a one-dimensional formulation of the reduced theory and a problem in
the cross-section. The direct approach to a material line extends the results to the geometrically nonlinear
range. The appropriate finite element formulation allows for practical applications of the theory; with the
numerical solution of the reduced problem, we restore the distributions of stresses, strains, and displacements
over the thickness. Numerically and analytically investigated convergence of the solutions of various problems
in the original (two-dimensional) and reduced (one-dimensional) models as the thickness tends to zero justifies
the analytical conclusion that the curvature and variation of the material properties over the thickness do not
require special treatment for classical Kirchhoff’s rods. Further terms of the asymptotic expansion lead to a
model with shear and extension, in which curvature appears in a nontrivial way.

1 Introduction

1.1 State-of-the-art in the mechanics of thin-walled structures

Theories of thin-walled structures, as they exist in the literature, generally fall into one of the following major
categories:

“Method of hypotheses”, also known as technical or engineering approach, stands historically at the first
place. These theories, which appear nearly in each course on strength of materials all over the world, are
based on standard assumptions concerning the distribution of mechanical entities over the cross-section, the
negligibility of certain values, etc. Equations of balance and constitutive relations are derived using some of
the equations of the theory of elasticity. Results, which are now considered as classical in the theories of rods
(ordinary and with an open profile), plates, and shells can be found e.g. in [33,39,46] and other books. Although
the resulting formulations are reasonable, and all assumptions have theoretical and practical argumentation,
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some more fundamental and thorough research in the field of reduction of the three-dimensional problem is
needed.

Variational methods appear as a subsequent theoretical step. Based on the weak formulation of the three-dimen-
sional problem, in which an appropriate variational principle replaces the field equations, this approach uses
the famous Galerkin-Ritz method with an approximation of the unknowns over the cross-section (kinematic
assumptions). The variational principle produces equations and natural boundary conditions for the coeffi-
cients in the approximations, which can be interpreted in terms of the theory of the dimensionally reduced
continuum. Among numerous works concerned with the analytical and numerical application of this method
to plates and rods, we mention [6,23,33,37,45].

Being very useful in engineering and numerical applications, the traditional variational method does not
reveal the particularity of thin bodies: the resulting theory strongly depends on the chosen set of approximating
functions. Advantageous approximations can only be selected based on previous experience, and the corre-
spondence to the true solution of the original three-dimensional problem is estimated by numerical modeling.
A different approach is the variational-asymptotic method (VAM), proposed by Berdichevsky [4,5] and further
developed by his colleagues [18,48]: stationary points of a functional with a small parameter are determined
asymptotically, when the small parameter tends to zero. Clarity and attractivity of the idea of the method are
counterbalanced by the absence of a formal mathematical proof of its validity along with a certain dependence
of the results on the decisions, made during the analysis [4].

Another known version of the combination of variational and asymptotic methods for linear shells was
proposed by Koiter [22]; a mathematical analysis of the variational three-dimensional formulation leads to
the principle of minimal strain energy of the reduced shell model in the position of equilibrium. An impor-
tant advantage of the variational methods, which is especially important in applications, is that the material
nonlinearity can be treated relatively easily and consistently, for reference see e.g. [13,19,29,45].

Direct approach to rods and shells uses the concept of material lines or surfaces with a certain set of degrees
of freedom of particles, see e.g. [1,10,32] for shells, [3,9,16,34,35] for rods, and [40] for thin-walled rods of
open profile; various types of continua are treated e.g. in [12,35], etc. Being free from logical contradictions,
this powerful method easily deals with such complicated problems as geometrically nonlinear and electrome-
chanically coupled behavior of curved shells with piezoelectric patches [43].

The practical application of this method requires certain three-dimensional analysis to be performed prior
to the solution of the dimensionally reduced problem, which provides explicit constitutive relations and allows
to find the stressed state of the actual solid body from the computed force factors of the reduced model; for
combined presentations of both the direct and three-dimensional analysis, see e.g. the comprehensive works
[3,7,30,49]. Bridging the gap between appropriate three-dimensional analysis and reduced models is the
central point of the present study.

The procedure of through-the-thickness integration of the three-dimensional balance relations provides impor-
tant relations for the stress and other resultants of the reduced theory; see e.g. [26] for purely mechanical or [11]
for thermoelastic analysis. However, the complete system of equations requires some kinematic assumptions
or hypotheses, which makes the procedure close to the first two methods considered above.

Series expansions applied to the solution of differential equations of mechanics of three-dimensional contin-
uum are broadly discussed in the literature; for a general look of asymptotic methods commonly applied in
continuum mechanics, see e.g. [2,31].

There exists a class of works in which the solution is expanded into series with respect to the coordinate
along the thickness direction, see e.g. [21]. Writing recurrent relations for the subsequent terms according to
the three-dimensional equations and truncating the series, one obtains a hierarchy of reduced models capturing
various effects.

More fundamental is the approach in which the three-dimensional solution is sought as a series expansion
with respect to a small parameter, which is related to the thickness of the structure. Thus, Goldenveizer [14]
obtained two-dimensional equations for the leading-order terms of the series expansion for a homogeneous
plate. An advanced study of piezoelectric plates with material inhomogeneity in all three dimensions is reported
in [20]; the usage of powerful mathematical techniques, typical for the analysis of periodic structures, makes
the latter work quite complicated.
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Some authors considered the boundary conditions for a plate within the asymptotic framework, see
e.g. [15,27]. The challenging problem of matching of the asymptotic expansions, valid inside the domain
and in the edge layer (near the boundary), requires thorough mathematical treatment.

Examples of asymptotic analysis of thin-walled rods of open profile can be found in [8,17,41].
Relevant to the present study are the works [38] for plates and [17] for thin-walled rods of open profile.

In the equations for the components of stresses and displacements, written for a particular material structure,
a small parameter is introduced by means of nondimensional variables. The analysis proceeds by assigning
particular orders of smallness to different components of the stress tensor a priori. The conditions of solvability
for the minor terms of the series expansion of the solution with respect to the small parameter take part in the
formulation of the reduced equations.

1.2 Hybrid asymptotic-direct approach

The present study uses the procedure of asymptotic splitting in the form suggested by Eliseev [8,9]. The
method has already been systematically applied to the dimensional reduction in the theories of thin rods with
an inhomogeneous cross-section [47], of thin-walled rods of open profile [8,41] and of thin piezoelectric plates
with an inhomogeneous material structure through the thickness [44]. The main idea of the method is that
the principal terms of the series expansion of the solution are determined from the conditions of solvability
for the minor terms. In comparison to the method of formal asymptotic expansion in its traditional form, the
advantages are the following:

– The procedure is formal and straightforward as soon as we have the original three-dimensional problem
with a small parameter formulated; no assignment of orders of smallness to different components of stresses
and displacements (“scaling”), which is intrinsic to some earlier works (see e.g. [38]), needs to be done a
priori.

– Instead of the complete recurrent system of relations between successive terms in the series expansion (see
e.g. [27]), we consider only those equations which appear to be relevant for the analysis.

– The procedure has a clear modular structure: we study the stresses, strains, displacements, and electrical (or
other nonmechanical) effects almost independently. Each of these stages provides a corresponding part of
the complete theory for the reduced continuum. The formulation is completed by the constitutive relations
of the reduced model. This particular simplicity of the analysis is provided by the use of the three-dimen-
sional compatibility conditions. Moreover, the analysis of the edge layer for the boundary conditions can
be strongly based on the compatibility conditions.

The mathematical aspects are presented in Sect. 2.2.
The key point of the hybrid approach, proposed in the present paper, is the assumption that the mathematical

equivalence of the linearized equations of the direct approach and of the asymptotically reduced equations
of the three-dimensional linear theory justifies the general geometrically nonlinear theory obtained with the
direct approach. This allows for solving challenging problems of nonlinear deformations of thin-walled struc-
tures with complex properties. Thus, the method has successfully been applied to the challenging problem of
nonlinear and electromechanically coupled deformations of thin shells, equipped with piezoelectric actuators
and sensors [43,44]. The problem of the effect of the curvature of the shell on the results of the asymptotic
analysis remains yet open and will be addressed in the present paper on the simpler example of deformation
of a curved strip.

2 Hybrid approach to a thin curved strip

2.1 Linear plane problem for a curved strip

We will demonstrate the philosophy and the stages of the hybrid approach by applying it to the sample dynamic
problem of plane deformation of a curved strip, Fig. 1.

The strip has a constant thickness h, and the position of the points of the middle line is parametrically
defined by the vector x0(s). This results in the basis

{t(s), n(s), k}, t = x′
0, n = k × t, n′ = α t, t ′ = −αn, (1)

where k is the unit out-of-plane vector, t is the tangent vector (t · t = 1 because s is the arc coordinate for the
middle line), n is the unit normal vector, and α is the curvature. The position vector of a point in the strip
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Fig. 1 Geometry of a curved strip with a given middle line x0(s) and thickness h

x(s, n) = x0 + nn, (2)

is defined by the arc coordinate s and the thickness coordinate n. The two-dimensional differential operator is

∇ = n∂n + (1 + αn)−1 t∂s, ∇x = I; (3)

the gradient of the position vector is the two-dimensional identity tensor I = t t + nn.
We consider a plane strain problem with the following linear equations for the stresses τ , the strains ε and

the displacements u [28]:

∇ · τ + f = ρ ü, n · τ ∣
∣
n=±h/2 = 0,

ε = ∇uS, (4)

∇ × (∇ × ε)T = 0,

τ = 4C· ·ε, 4C = 4C(n),

external forces f = fnn + ft t are considered inside the domain, and the boundary is free from traction forces.
The fourth-rank tensor of material elastic properties 4C as well as the density ρ may vary over the thickness
of the strip. The condition of compatibility (4)3 will play an important role in the subsequent analysis.

A general exact solution of the formulated plane problem of the theory of elasticity cannot be written in a
closed form, but for thin strips, one can reduce the problem to a one-dimensional formulation of a rod in the
plane, in which all unknowns are functions of the arc coordinate s.

2.2 Asymptotic analysis

General idea of the method. The procedure of asymptotic splitting has a simple basic idea: the equations for
the principal terms of the solution are found as the conditions of solvability for the minor terms. It can be
illustrated by the following example [9]. Consider a system of linear algebraic equations:

(C0 + λC1)u = f, det C0 = 0, λ → 0. (5)

The system becomes singular as the small parameter λ approaches zero. Therefore, we seek the solution u in
the form of a series, starting with negative powers of λ:

u = λ−1 0
u + 1

u + λ
2
u + · · · ; C0

0
u = 0 ⇒ 0

u =
∑

akϕk; C0ϕk = 0. (6)

At the first step, we find the principal term of the solution
0
u as a linear combination of the vectors of the

fundamental solutions ϕk . The coefficients ak follow from the conditions of solvability for
1
u:

C0
1
u = f − C1

0
u ⇒ ψT

i

(

f − C1

∑

akϕk

)

= 0, CT
0 ψi = 0 ⇒ ak . (7)

The right-hand side f − C1
0
u must be orthogonal to all solutions ψi of the conjugate system. If the resulting

system for the coefficients ak is again singular, then more terms with negative powers of λ must be included
in the expansion of u, and several steps of the procedure need to be taken. It should be noted that this simple
procedure cannot be explicitly found in such a classical treatise as [31].
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Equations of balance with the small parameter. In the expressions for the position vector of a point (2) and
for Hamilton’s operator (3), we introduce a formal small parameter λ which indicates the thinness of the strip:

x(s, n) = λ−1x0 + nn, ∇ = n∂n + λ(1 + λαn)−1 t∂s . (8)

Now the magnitudes of n and s in (8) have formally the same asymptotic order. These expressions for x and
∇ may be seen as a mathematical definition of a thin strip.

Decomposing the stress tensor into components,

τ = σt t t + σnnn + τ(nt + tn)+ σz kk, (9)

and using (8), we write the balance equations (4)1 with the small parameter:

∂nσn + λα(σn − σt + n ∂nσn)+ λ ∂sτ + fn(1 + λαn) = 0,

∂nτ + λα(2τ + n ∂nτ)+ λ ∂sσt + ft (1 + λαn) = 0, (10)

σn
∣
∣
n=±h/2 = 0, τ

∣
∣
n=±h/2 = 0

(we yet restrict ourselves to a static case).
We seek for the unknown field of stresses in the form of a power series in the small parameter:

τ = λ−2 0
τ + λ−1 1

τ + λ0 2
τ + · · · (11)

Our goal is to find those terms in the solution which dominate as the strip is getting thinner and λ → 0. It means

that we are interested in the convergence of the solution to the principal term
0
τ, rather than in the convergence

of the series itself, and the role of the rest of the series is to determine the principal term from the conditions
of solvability for the minor terms. The formal small parameter allows us to consider not just a thin strip, but
rather a special class of “rod” solutions with a particular asymptotic behavior; for an additional discussion,
see [41,44,47]. The leading power λ−2 in (11) is guessed in advance from other known solutions; otherwise
it would have been necessary to estimate it with the help of trial-and-error.

Asymptotic splitting of the equations of balance. At the first step of the procedure, we substitute the expansion
(11) in (10) and balance the principal terms in the resulting equations and boundary conditions, which have
the order of smallness λ−2. The results are:

∂n
0
σn = 0,

0
σn

∣
∣
n=±h/2 = 0 ⇒ 0

σn = 0,

∂n
0
τ = 0,

0
τ
∣
∣
n=±h/2 = 0 ⇒ 0

τ = 0.
(12)

The principal term in the tangential stress component
0
σt remains undetermined at the present stage.

At the second step of the procedure, we proceed to the terms of the order λ−1, taking (12) into account:

∂n
1
σn − α

0
σt = 0,

1
σn

∣
∣
n=±h/2 = 0,

∂n
1
τ + ∂s

0
σt = 0,

1
τ
∣
∣
n=±h/2 = 0.

(13)

We conclude that

h/2∫

−h/2

0
σt dn = 0; (14)

for a straight rod with α = 0, the asymptotics looks slightly different. Denoting

Qn(s) = w

h/2∫

−h/2

1
τ dn, M(s) = −w

h/2∫

−h/2

n
0
σt dn (15)
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(here, w is the out-of-plane size of the strip), integrating the expression for Qn by parts, using the boundary
conditions and applying the relation in the second line of (13), we arrive at

M ′ = −Qn; (. . .)′ ≡ ∂s(. . .). (16)

The third step completes the procedure. We collect the terms of the order λ0 and integrate them over the
thickness. As

h/2∫

−h/2

∂n
2
σn dn = 0,

h/2∫

−h/2

∂n
2
τ dn = 0 (17)

(these are the conditions of solvability for the minor terms), we obtain

h/2∫

−h/2

(

fn + α
(

1
σn − 1

σt

)

+ nα ∂n
1
σn + ∂s

1
τ
)

dn = 0,

h/2∫

−h/2

(

ft + 2α
1
τ + nα ∂n

1
τ + ∂s

1
σt

)

dn = 0.

(18)

Integrating again by parts, using the boundary conditions and denoting

qn = w

h/2∫

−h/2

fn dn, qt = w

h/2∫

−h/2

ft dn, Qt = w

h/2∫

−h/2

1
σt dn, (19)

we arrive at

qn + Q′
n − αQt = 0, qt + Q′

t + αQn = 0. (20)

With the vectors of external force, moment, and transversal force

q = qnn + qt t = w

h/2∫

−h/2

f dn, M = Mk, Q = Qnn + Qt t, (21)

we rewrite (16) and (20) in the known vectorial form of the equations of balance of forces and moments in a
rod (see e.g. [3,47]):

Q′ + q = 0, M ′ + t × Q = 0. (22)

External distributed moments do not appear in the resulting asymptotic equations. The asymptotic analysis of
stresses does not only produce the known balance equations (22) but provides important information for the
subsequent analysis of the deformation.

Asymptotic analysis of the field of strains. Since the components of 4C are independent from the small para-
meter, as in the relation of elasticity (4)4, the strain tensor must have the form

ε(s, n) = εnnn + εt t t + εnt (nt + tn) = λ−2 0
ε+ λ−1 1

ε+ λ0 2
ε+ · · · (23)

Balancing the subsequent powers of λ in the condition of compatibility (4)3, we obtain

λ−2 : ∂2
n

0
εt = 0 ⇒ 0

εt = ε + κn;
λ−1 : ∂2

n
1
εt = 2∂n∂s

0
εnt + α ∂n

0
εn − 2ακ; (24)

λ0 : . . . etc.

The principal term of the axial strain
0
εt is linearly distributed over the cross-section, which completes the

system of equations for the leading-order solution:
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– The elastic relation (4)4 and the results of the first step of the analysis of stresses (12) allow to write
0
εn ,

0
εnt , and

0
σt as functions of n, ε, and κ .

– From (14), we express ε via κ: the only independent parameter in the principal term of strains has the
meaning of change of curvature, which is intrinsic to the classical Kirchhoff rod theory with constrained
shear and extension [47]; for a straight rod, the asymptotics is different and ε remains independent.

– From the second integral in (15), we explicitly compute the bending stiffness a, which is independent from
the curvature of the strip:

M = aκ. (25)

The analysis of the effects of shear and extension requires further treatment of the correction terms in the
expansion of ε with the help of the equation in the second line of (24).

Asymptotics of displacements From the three-dimensional analysis [44,47], we know in advance that the
vector of displacements should have the asymptotic order λ−4:

u(s, n) = ut t + unn = λ−4 0
u + λ−3 1

u + λ−2 2
u + · · · (26)

From the kinematic relation (4)2 and from (24), we obtain:

λ−2 : ∂n
0
un = 0, ∂n

0
ut = 0 ⇒ 0

u = U(s),

λ−1 : ∂n
1
un = 0, α

0
ut = ∂n

1
ut + ∂s

0
un, α

0
un + ∂s

0
ut = 0, (27)

λ0 : ∂s
1
ut + α

1
un = 0

εt , . . .

The principal term is the displacement of the cross-section in terms of the rod theory U(s). From the second
and third lines in (27), we conclude that

α
0
un + ∂s

0
ut = 0, ∂s

(

α
0
ut − ∂s

0
un

)

= κ ⇒ U ′ · t = 0,
(

U ′ · n
)′ = κ, (28)

which is in full correspondence with the kinematic relations of classical Kirchhoff rods [9,47], written in terms
of the vector of small rotation θ = θk and the vector of bending and torsional deformation κ = κk:

U ′ = θ × t, θ ′ = κ . (29)

It remains to say that the first correction term
1
u corresponds to the rotation of the cross-section with the

angle θ , i.e. the classical Kirchhoff hypothesis of straight normals is fulfilled asymptotically. Without the
compatibility conditions (i.e. solving the problem in displacements from the very beginning), the clarity of the
approach would be lost, as the solution would require several additional steps.

Dynamical effects. Finally, we are able to consider effects due to the inertial term in the equation of balance
(4)1. We consider processes with a particular asymptotic rate over time, which is reflected by a formal change
of the time variable:

t = λ−2 t̃, (. . .)̇ = λ2∂t̃ (. . .), ü = ∂2
t̃ U + · · · (30)

(higher order terms are replaced by an ellipsis in the right-hand side of the last equality). After the asymptotic
procedure is completed, we set the formal small parameter λ to 1. This allows to write the inertial term in the
equation of balance of forces in the classical form:

Q′ + q = Ü w

h/2∫

−h/2

ρ dn. (31)
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Concluding remarks on the asymptotic analysis. Finding the leading-order solution of the original two-
dimensional problem requires the following steps:

1. The problem in the cross-section (solution scheme before (25)) needs to be solved, which produces the
bending stiffness of the one-dimensional model.

2. The one-dimensional rod model, determined by the relations (22), (25), and (28), needs to be analyzed. In
a general case, the boundary conditions for the reduced model should also be obtained by the asymptotic
analysis of the two-dimensional fields near the boundary and by matching of the two asymptotic expansions
inside the domain and in the edge layer [15,27,44].

3. With the displacements U and strains κ , we restore the principal terms in the corresponding fields of the
nonreduced two-dimensional model.

Asymptotics is different for a straight rod, and the axial force Qt gets its own relation of elasticity. The pro-
cedure allows for a relatively simple extension to coupled problems, e.g. piezoelectric [44]. It is advantageous
that the procedure does not allow for alternatives as soon as “slow” and “fast” variables are chosen, and the
relations of the original nonreduced theory are written with a formal small parameter.

2.3 Direct approach

For the present problem of plane deformation of a rod, we consider a one-dimensional continuum of particles.
Following the strategy, presented e.g. in [9,10,24,40], we write the principle of virtual work for a part of
the rod:

s1∫

s0

(

q · δx + m δθ + δA(i)
)

ds + (Q · δx + Mδθ)
∣
∣s1
s0

= 0. (32)

Here, external force q and moment m are distributed along the arc length, Q and M are the force and the
moment of interaction with the remaining parts of the rod (s < s0 and s > s1), x(s) and θ(s) are the position
vector and the angle of rotation of particles, and δA(i) is the virtual work of the internal forces on the virtual
deformation δx and δθ : each particle has three mechanical degrees of freedom. In the reference configuration,
we have x = x0 and θ = 0. We rewrite the boundary term in (32) as an integral; a local variational relation
follows from the arbitrariness of s0,1 [9]:

(

Q′ + q
) · δx + (M ′ + m)δθ + Q · δx′ + Mδθ ′ − δA(i) = 0. (33)

Now, the internal forces produce no work at rigid body motion; hence,

δx = δx1 + δθ1k × x, δx1 = const. δθ1 = const. ⇔ δA(i) = 0 ⇒
Q′ + q = 0, M ′ + x′ × Q · k + m = 0. (34)

In contrast to (22), the balance equations (34) allow for external moments and axial extension of the rod;
writing the static boundary conditions is simple in the considered case. The following terms remain in (33):

Mδθ ′ + Q · (δx′ − δθ k × x′)+ δA(i) = 0. (35)

Instead of the known model of a Cosserat continuum, see e.g. [1,36], we will consider a model with constrained
shear deformation. The axial extension is allowed for the sake of an efficient numerical implementation. The
kinematical constraint between virtual displacements and rotations of particles, which is similar to (29),
follows as

δ(n · x′) = 0, δn = δθ k × n ⇒ δθ t · x′ = n · δx′; t = x′/|x′|; (36)

here, the normal vector n is “frozen” into a particle and rotates with it.
For an elastic rod, the work of the internal forces is δA(i) = −δ�;� is the strain energy per unit “length” s.

From (35) and (36), we show that the strain energy is a function of the deformation of bending κ (change of
curvature of the rod) and of axial extension ε:

δ� = Mδθ ′ + Q · (δx′ − nn · δx′) = Mδκ + Qtδε,

Qt = Q · t, κ = θ ′, x′ = (1 + ε)t, ε = |x′| − 1.
(37)
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The elastic relations read

M = ∂Π

∂κ
, Qt = ∂Π

∂ε
, (38)

the transversal force Qn = Q · n is determined by the constraint (36). This type of a generalization of the
Bernoulli-Euler beam theory has already been discussed in the literature, see e.g. [3,25].

For problems with small local strains (which does not exclude large overall rotations and displacements),
a quadratic approximation of the strain energy should be satisfactory:

2Π = aκ2 + bε2. (39)

The stiffnesses a and b cannot be determined in the framework of the direct approach.

2.4 Hybrid asymptotic-direct formulation

As it was shown by the asymptotic analysis, the effect of the axial extension is negligible for thin curved rods,
and the second term in (39) can be considered as a penalty, which keeps ε → 0 as b → ∞. Moreover, in
[8], it is shown that the model will be asymptotically equivalent to the classical model of Kirchhoff when the
stiffness b is asymptotically larger than a. Axial extension may be important for straight rods or for numerical
analysis.

As the direct approach must be equivalent to the asymptotic model in the linear setting, a must be equal
to the bending stiffness in (25); the problem in the cross-section, which results from the asymptotic analysis,
needs to be solved prior to the analysis of the rod problem. It is also important that the asymptotics determines
the minimal set of degrees of freedom of particles, which need to be included in the direct approach.

2.5 Numerical analysis

The rod model, derived in Sect. 2.3 with the help of the principle of virtual work, allows for a very simple
implementation in the framework of the finite element method. The balance equations and the static boundary
conditions are equivalent to the following variational principle:

Π(Σ) [x(s)] = Π(def) +�(ext) → min, Π(def) =
l∫

0

Π(ε, κ)ds,

Π(ext) = −
l∫

0

(q · x + mθ) ds − (Q · x + Mθ)
∣
∣
l
0, (40)

κ = n′ · t − n′
0 · t0 = 1

|x′|n · x′′ − n0 · x′′
0.

At a stable equilibrium, the sum of the total strain energy Π(def) (integrated over the length of the rod l) and
of the potential energy of external loads Π(ext) has a minimum. The functional �(Σ) is considered on the
configurations of the rod x(s), which are kinematically admissible.

The problem of minimization of (40) is well suited for the application of the Ritz method; the approxima-
tions of the field x(s) need to be chosen such, that the functions κ and ε have no singularities. A two-node
finite element with the following approximation can serve to this purpose:

x(s̃) = xi N1(s̃)+ ∂s̃ xi N2(s̃)+ x j N3(s̃)+ ∂s̃ x j N4(s̃), −1 ≤ s̃ ≤ 1. (41)

The cubic shape functions Ni are such that the position vector and its derivative in the node k take on
the values xk and ∂s̃ xk , i.e. we have four degrees of freedom in each node. Because the local coordinate
on the element s̃ is no longer the arc coordinate in the reference configuration, the coefficient ds

/

ds̃ will
enter the formulas for ε in (37) and for κ in (40). This choice of the nodal positions and local derivatives
guarantees the necessary continuity in x and n.
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The element makes use of the so-called absolute nodal coordinate formulation (ANCF, for further details
see e.g. [13]); the main benefit is that the mass matrix remains constant during simulation, which allows for
efficient transient analysis.

These finite elements were applied in [24]; the version of the numerical method, extended to the nonlinear
and electromechanically coupled shell problems, was used in [10,43]; an extension to a three-dimensional
geometrically and physically nonlinear rod problem was presented in [45]. Being free from a priori chosen
approximation over the cross-section, these numerical schemes represent a good alternative to methods based
on nonreduced theories.

3 Numerical example

For the practical validation of the analytical conclusions, we have chosen the problem of force bending of a
clampled quarter of a circle, presented in Fig. 2. The radius of the middle line is r = 1 m; material parameters
of the two layers, each of them having the thickness h/2, are presented in Table 1. The out-of-plane thickness
was chosen w = 1 m.

In the following, we will consider solutions of various problems when the thickness tends to zero:

h = h0/k, (42)

the reference thickness value is h0 = 0.1 m, and the thickness factor k will be sequentially increased. Com-
paring solutions of the problems in the rod formulation and continuous two-dimensional solutions, obtained
by the finite element method, we can make conclusions concerning the asymptotic nature of the rod theory as
h → 0. The continuous finite element solutions were obtained in ABAQUS. The mesh was chosen such that
there were always 60 quadratic quadrilateral elements (CPS8R) over the thickness, and the height to width
ratio for all elements was approximately 1.

While the analytic study in Sect. 2.2 was easier to formulate under the plane strain assumption, we consider
the particular solutions for the plane stress formulation.

r

F

x

y

h

steel

aluminium

Fig. 2 Force bending of a layered curved strip in the form of a quarter of a circle

Table 1 Material parameters of the two layers of the strip

Layer 1 Layer 2
(inner, steel) (outer, aluminium)

Young’s modulus E 2.1 × 1011 Pa 7 × 1010 Pa
Poisson’s ratio ν 0.3 0.34
Density ρ 7,800 kg/m3 2,700 kg/m3
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3.1 Linear static problem

We started with a simple geometrically linear problem of static bending. Finding an analytical solution for the
statically determined rod model is easy with the help of Castigliano’s method. Choosing the arc coordinate s
with its origin in the clamped point of the rod, we write the bending moment M , the total strain energy �� ,
and the vertical displacement of the point under the load as the derivative of the total strain energy with respect
to the force:

M = −Fr cos
s

r
, ΠΣ =

πr/2∫

0

M2

2a
ds = F2πr3

8a
, uy = ∂ΠΣ

∂F
= Fπr3

4a
. (43)

The bending stiffness a is determined in accordance with the procedure, described before (25). The relation
between ε and κ due to the conditions (12) and (14) is equivalent to finding the coordinate n0 of the neutral
layer of the rod:

h/2∫

−h/2

E(n)(n − n0) dn = 0 ⇒ n0 = h

4

E2 − E1

E2 + E1

⇒ a = w

h/2∫

−h/2

E(n)(n − n0)
2 dn = wh3

96

E2
1 + 14E1 E2 + E2

2

E1 + E2
. (44)

Substituting this a into (43), we obtain an expression for the vertical displacement, which we will call u(1)y .
It may also make sense to modify the formula by using the radius of the neutral fiber r + n0 instead of the
radius of the geometric middle line r ; the corresponding expression will be called u(2)y in the following. And
the third rod solution, which we considered, was obtained by taking axial extension into account according to
the model obtained in Sect. 2.3. Instead of (39), we used the expression for the strain energy with coupling
between κ and ε due to the unsymmetry of the cross-section:

Π = 1

48
w

(

12(E1 + E2)ε
2 + 6(E2 − E1)hεκ + (E1 + E2)h

2κ2). (45)

Writing again the expressions for the bending moment M and for the axial force Qt , performing Legendre
transformation of (45) according to (38), integrating the strain energy over the length, and computing the
derivative with respect to F , we arrive at the expression for the vertical deflection

u(3)y = 2Fr
(

(E1 + E2)h2π + 12(E2 − E1)hr + 12(E1 + E2)πr2
)

w
(

E2
1 + 14E1 E2 + E2

2

)

h3
. (46)

The finite element solutions u∗
y for particular values of k, obtained in ABAQUS, were considered as

reference values for computing the relative errors of the rod solutions

e(i) = |u(i)y − u∗
y |/u∗

y . (47)

It is interesting to notice that the simple formula predicts displacements larger than the continuous model:
u(1)y > u∗

y . Usually, it is assumed that the rod model is too stiff, but the curvature and the material inhomoge-
neity change the situation; the opposite effect can be achieved by switching the layers. The two other solutions
u(2)y and u(3)y generally predict smaller displacements than the continuous model.

The dependence of the three relative errors on the thickness factor k in logarithmic scale is presented in
Fig. 3. All three errors obviously converge toward zero. Correction of the radius by the offset of the neutral
fiber makes the situation worse. Taking axial extension into account, we obtain much more precise solutions.
Particularities concerning the last set of results at k = 25 appear probably due to the numerical problems in
the finite element solution: with more than one million finite elements in total, accumulated numerical errors
seem to prevent ABAQUS from reaching the required precision of the results, and using less finite elements,
we arrive at solutions which are not sufficiently converged.
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Fig. 3 Convergence of the solutions of the linear static problem to the continuous solution. Open circle u(1)y : only bending, r is

the radius of the middle line. Open square u(2)y : only bending, r is the radius of the neutral layer. Open triangle u(3)y : bending and
axial extension
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Fig. 4 Convergence of the first four eigenfrequencies of the linear dynamic problem

The noticeable outcome of the results in Fig. 3 is that although the precision of the model with the axial
extension is higher, the rate of convergence is obviously the same. Obtaining a model with higher asymptotic
precision would require subsequent terms to be considered in the asymptotic analysis of Sect. 2.2, and the
starting point would be to consider the correction terms to the strain tensor according to the condition of
compatibility (24). The resulting theory should include axial extension together with the shear effects, and it
may be expected that the resulting stiffness coefficients will depend on the curvature of the strip.

3.2 Linear eigenvalue problem

For dynamical problems, the correspondence of the eigenfrequencies of the reduced rod model ωi to the
eigenfrequencies of the continuous model ω∗

i is crucial. While the reference values ω∗
i are again computed in

ABAQUS, for the rod model, we have also decided to use a numerical method. The model was discretized
with finite elements, presented in Sect. 2.5; the equations of motion were linearized in the vicinity of the
undeformed state, and the eigenvalue problem was solved. For thicker rods, sufficiently converged values ωi
were obtained with ten one-dimensional finite elements, while at higher k, we went up to twenty (compare
with hundreds of thousands of two-dimensional finite elements needed for thin structures!).

The relative errors

ei = |ωi − ω∗
i |/ω∗

i (48)

are presented for the first four eigenfrequencies in Fig. 4 depending on the thickness factor k in logarithmic
scale (the number of the eigenfrequency is marked to the left of the points at k = 1).

There is no clear understanding, whether numerical problems or some other reason make the third eigen-
frequency converge better than the others. But the general convergence of the solutions of the two-dimensional
and one-dimensional eigenvalue problems as the thickness tends to zero can clearly be seen.
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Fig. 5 Nonlinear static analysis with the rod model (thick dashed line) and with the continuous model (solid line) (a), convergence
of the solutions (b)

Table 2 Relative errors of the eigenfrequencies of the pre-deformed structure

k e1 e2 e3 e4

20 0.01505 0.01191 0.03239 0.00517
21 0.0085 0.00147 0.00606 0.0175
22 0.00449 0.00016 0.00021 0.0035
23 0.00231 0.0005 0.00066 0.00038
24 0.00115 0.00026 0.0005 0.00015
25 0.02724 0.01085 0.00301 0.00127

3.3 Nonlinear static problem

As the next step, we considered geometrically nonlinear static deformation of the structure. For thick strip with
k = 1, the vertical displacement as a function of the dead force F in the range −F0 ≤ F ≤ F0, F0 = 107 N is
presented in Fig. 5a. The solution, obtained with the rod finite element model, is compared to the displacements
of the middle node of the loaded edge of the two-dimensional finite element model.

The convergence of the vertical displacement was studied for the force values F , which were scaled
according to the thickness factor:

F = F0/k3. (49)

As it is shown in Fig. 5b, the resulting deflections remain in the vicinity of a moderately large value with
varying k. The dashed line in Fig. 5b connects the points, obtained with the rod model, and the solid line
represents mean vertical displacement of the loaded end in the two-dimensional solution. Fine convergence
can be observed except for the last point k = 25, at which numerical difficulties prevent us from getting a good
continuous solution.

3.4 Eigenfrequencies of the pre-deformed structure

Quantitative analysis of the convergence of the nonlinear dynamical properties of the reduced and continuous
models is a nontrivial problem, which is largely affected by the chosen criteria and by the precision of the
available solutions. In the present work, we studied eigenfrequencies of the structure, pre-deformed by the
force F ; the force itself was supposed not to bring additional inertia to the structure. The relative errors (48)
for the first four eigenfrequencies depending on the thickness factor are presented in Table 2. Although the
numerical effects make the situation less clear than in the fully linear case (see Fig. 4), the convergence of the
two solutions can again be seen.

3.5 Nonlinear transient simulation

We performed transient analysis of large oscillations due to the instant application of the dead force (49) for
k = 0 and k = 4. The results, which are shown in Fig. 6, speak for themselves. Although dynamic effects lower
the reliability of the rod model for thicker structures in comparison to static analysis, for thinner structures,
the results are quite satisfactory.
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Fig. 6 Nonlinear transient analysis with the rod model (thick dashed line) and with the continuous model (solid line)

4 Conclusions

The plane problem of finite deformations and dynamics of a thin curved strip is considered with the help
of the hybrid asymptotic-direct approach, which leads to a dimensionally reduced one-dimensional rod model.
The theoretical results were validated in a series of numerical experiments. Solutions of linear and nonlinear
as well as statical and dynamical problems were considered both in the original continuous and in the rod
models. As the thickness tends to zero, the equivalence of the solutions can be clearly seen from the results of
the simulation.
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