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Abstract An accurate and efficient solution procedure based on the elasticity theory is employed to investigate
the thermoelastic behavior of rotating laminated functionally graded (FG) cylindrical shells in thermal environ-
ment. The material properties are assumed to be temperature dependent and graded in the thickness direction.
In order to accurately model the variation of the field variables across the thickness, the shell is divided into
a set of mathematical layers. The differential quadrature method (DQM) is adopted to discretize the gov-
erning differential equations of each layer together with the related boundary and compatibility conditions
at the interface of two adjacent layers. Using the DQM enables one to accurately and efficiently discretize
the partial differential equations, especially along the graded direction, and also implement the boundary
and compatibility conditions in their strong forms. After demonstrating the convergence and accuracy of the
presented approach, the effects of material and geometrical parameters and also temperature dependence of
material properties on the stresses and displacement components of rotating laminated FG cylindrical shells
are studied.

1 Introduction

Rotating functionally graded (FG) cylindrical shells are increasingly being used in many engineering appli-
cations like aviation, rocketry, missiles, chemical, aero-space, and mechanical industries. Functionally graded
materials (FGMs) are usually made of a mixture of ceramic and metals. The ceramic constituent of the material
provides the high temperature resistance due to its low thermal conductivity. The ductile metal constituent,
on the other hand, prevents fracture caused by stress due to a high temperature gradient. These materials are
mainly constructed to operate in high temperature environments. Hence, accurate prediction of the induced
stresses and deformations based on a thermoelastic analysis are essential for their engineering design and
manufacture.

The thermoelastic analysis of non-rotating FG cylindrical shells has been extensively studied; see for exam-
ple Refs. [1–3]. Also, there have been some research works on the thermoelastic analysis of FG rotating disks
based on elasticity or plate theories [4–10]. However, there exist only few studies concerned with the elastic
or thermoelastic analysis of FG rotating cylindrical shells [11–13].

Zenkour et al. [11] developed analytical solutions for rotating functionally graded hollow and solid long cyl-
inders based on the plane strain assumption. Young’s modulus and material density of the cylinder were assumed
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to vary exponentially in the radial direction. In addition, a viscoelastic solution to the rotating viscoelastic cyl-
inder was presented, and the dependence of stresses in hollow and solid cylinders on the time parameter was
examined. Zamani Nejad and Rahimi [12] studied stresses in rotating thick-walled FG cylindrical shells using
elasticity theory subjected to plane stress and strain conditions. Material properties vary in the radial direction
according to a power law. Khorshidvand and Khalili [13] presented an analytical solution for the one-dimen-
sional mechanical and thermal stresses in an FG rotating thick cylinder. They assumed that the material proper-
ties vary exponentially through the thickness of the shell. In all of these works, constant Poisson’s ratio was used.

In all of these works, single-layer FG cylindrical shells with temperature-independent material properties
based on one-dimensional theories were considered. Consequently, the axial variations of the field variables
were neglected, and only the radial variation of the field variables was considered. These motivate us to study the
thermoelastic behavior of rotating multilayered FG cylindrical shells with the temperature-dependent material
properties based on the two-dimensional elasticity theory. A layerwise approach together with the differential
quadrature method (DQM) [14–19] is employed to discretize the governing thermoelastic equations. The effect
of angular velocity, thickness-to-outer radius and length ratios, material properties, and the convection heat
transfer coefficient of inside hot fluid on the displacement and stress components are investigated.

2 Mathematical modeling

Consider a multi-layered FG cylindrical shell composed of NL perfectly bonded physical layers and rotating
about its axis with a constant angular velocity� (Fig. 1). The material properties and thickness of each layer of

Fig. 1 Geometry of laminated FG cylindrical shell
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the shell are assumed to be arbitrary. Also, it is assumed that a hot fluid with uniform temperature moves inside
the cylinder. Due to axisymmetric geometry and loading condition of the shell, an axisymmetric deformation
results in it. Hence, a cylindrical coordinate system (r, z) is sufficient to label the material points of the cylinder
in the undeformed reference configuration. The displacement components of an arbitrary material point of the
cylinder are denoted as u and w in the r and z direction, respectively.

The material properties of each layer of the shell vary continuously and smoothly in the thickness direction
r according to the power law distribution such that the inner (outer) surface of each layer is ceramic rich (metal
rich) and the outer surface is metal rich (ceramic rich). Hence, a typical effective material property ‘P’ of the
eth layer can be represented as

Pe (r, T ) = Pe
a (T )+ [

Pe
b (T )− Pe

a (T )
] (

r − Re
i

Re
o − Re

i

)p

. (1)

If the inner surface of the layer is metal rich then a = m and b = c otherwise, if the inner surface is ceramic
rich then a = c and b = m, where subscripts m and c refer to the metal and ceramic constituents, respectively;
p is the power law index (or the material property graded index); T is the temperature (in Kelvin) at an arbitrary
material point of the cylinder; Re

i and Re
o are the inner and outer radius of the eth layer, respectively. Hereafter,

a superscript ‘e’ denotes the properties and field variables of the eth layer.
The temperature dependence of a typical material property ‘Qe’ of the eth layer can be represented as [20]

Qe (T ) = Qe
0

(
Qe−1T −1 + 1 + Qe

1T + Qe
2T 2 + Qe

3T 3) . (2)

The coefficients Qe
i (i = −1, 0, 1, 2, 3) are unique to the constituent materials.

In order to accurately model the thermoelastic behavior of the shell, it is divided into Ne mathematical
layers, the number of which may be equal to the number of physical layers NL . In the following, the governing
equations of each mathematical layer of the shell are presented.

It is assumed that the shell is stress free at the temperature T0 and the temperature rise is uniform or varies
across its thickness and no heat generation source exists within it. Hence, the temperature distribution along
the thickness direction can be obtained by solving the following steady-state one-dimensional heat transfer
equation in each layer of the cylinder:

1

r

d

dr

(
r K e dT e

dr

)
= 0 (3)

where K e is the thermal conductivity of the eth layer. Different thermal boundary conditions can be considered
at the inner and the outer surfaces of the shell. Without loss of generality, the following thermal boundary
conditions are considered at the inner and outer surfaces of the shell, respectively:

−K 1 (r, T )
dT e

dr
= h

(
T∞ − T 1) at r = R1

i and T Ne = T0 at r = RNe
o (4.1, 2)

where T∞ and h are the inside hot fluid temperature and the convection heat transfer coefficient, respectively.
In addition, at the interface of two adjacent layers, one should satisfy the following conditions:

T
(
Re

o

) = T
(

Re+1
i

)
,

[
K e (r, T )

dT e

dr

]

r=Re
o

=
[

K e+1 (r, T )
dT e+1

dr

]

r=Re+1
i

. (5.1, 2)

Due to steady-state axisymmetric thermo-mechanical loading conditions, the thermoelastic governing equa-
tions of each layer become steady state and axisymmetric. Under these conditions, the governing equations
are presented in the following.

The constitutive relations based on the three-dimensional elasticity theory become
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Table 1 Temperature-dependent coefficients of material properties for ceramic (ZrO2) and metals (Ti-6Al-4V) [20]

Material Q−1 Q0 Q1 Q2 Q3

E Ti-6Al-4V 0 122.7 (GPa) −4.605 × 10−4 0 0
ZrO2 0 132.2 (GPa) −3.805 × 10−4 −6.127 × 10−8 0

ν Ti-6Al-4V 0 0.2888 1.108 × 10−4 0 0
ZrO2 0 0.3330 0 0 0

ρ Ti-6Al-4V 0 4420 (kg/m3) 0 0 0
ZrO2 0 3657 (kg/m3) 0 0 0

α Ti-6Al-4V 0 7.43 × 10−6(1/K) 7.483 × 10−4 −3.621 × 10−7 0
ZrO2 0 13.3 × 10−6(1/K) −1.421 × 10−3 9.549 × 10−7 0

k Ti-6Al-4V 0 6.10 (W/mK) 0 0 0
ZrO2 0 1.78 (W/mK) 0 0 0

Table 2 Convergence of the non-dimensional radial displacement of a single-layer rotating FG cylindrical shell
(t/Ro = 0.2, L/Ro = 1, Ro = 1, p = 1, η = ξ = 0.5, Ne = 1)

N e
z � = 100 (Rad/s) � = 200 (Rad/s)

N e
r = 13 N e

r = 15 N e
r = 17 N e

r = 13 N e
r = 15 N e

r = 17

7 53.2331 −76.0904 −62.6111 43.8146 −62.0881 −51.1706
9 0.5795 0.5928 0.4296 0.6977 0.7086 0.5749
11 0.6562 0.6567 0.6570 0.7605 0.7609 0.7612
13 0.6548 0.6573 0.6571 0.7594 0.7614 0.7613
15 0.6572 0.6566 0.6571 0.7613 0.7609 0.7613
17 0.6571 0.6572 0.6572 0.7613 0.7613 0.7613
19 0.6571 0.6572 0.6572 0.7613 0.7613 0.7613

Table 3 Convergence of the results for the three layered rotating cylindrical shell [model (I)] (L/Ro = 1, Ro = 1,
N e

z = 25, Ne = 3, η = ξ = 0.5, p = 1)

N e
r t/Ro � = 100 (Rad/s) � = 200 (Rad/s)

U �θθ �zz �rr U �θθ �zz �rr

13 0.1 0.7560 −0.242 −0.149 −0.027 0.8813 −0.026 −0.122 −0.023
15 0.7562 −0.242 −0.149 −0.027 0.8814 −0.026 −0.122 −0.023
17 0.7562 −0.242 −0.149 −0.027 0.8814 −0.026 −0.122 −0.023
13 0.2 0.7022 −0.285 −0.124 −0.052 0.8034 −0.078 −0.102 −0.044
15 0.7020 −0.285 −0.124 −0.052 0.8032 −0.078 −0.102 −0.044
17 0.7020 −0.285 −0.124 −0.052 0.8032 −0.078 −0.102 −0.044

Table 4 Comparison of the results for the rotating FG annular disk subjected to non-uniform temperature rise
[Ri/Ro = 0.2,L/Ro = 0.05, � = 600 (Rad/s) , Ro = 1, η = 0.5]

n ξ Present Analytic [9]

U �θθ �rr U �θθ �rr

0.5 0 0.1813 0.3691 1.41E−4 0.1813 0.3689 0
0.5 0.2546 0.1730 0.1290 0.2547 0.1735 0.1294
1 0.4054 0.0101 −1.24E−4 0.4054 0.0102 0

0 0 0.1470 0.6675 −1.51E−4 0.1468 0.6680 0
0.5 0.2381 0.1639 0.1583 0.2381 0.1636 0.1580
1 0.3997 0.005 −3.62E−4 0.3994 4.73E−3 0

−0.5 0 0.1197 1.2163 −4.60E−4 0.1194 1.2152 0
0.5 0.2267 0.1464 0.1891 0.2267 0.1465 0.1893
1 0.3965 0.0021 −1.43E−5 0.3961 1.74E−3 0

where σ e
i j (i, j = r, θ, z) are the stress tensor components; Ce

i j

[
= Ce

i j (r, T e) ; i, j = 1, 2, 3, 5
]

are the

material elastic coefficients; εe
T is the thermal strain; αe

[= αe (r, T e)
]

is the thermal expansion coefficient;
and εe

i j (i, j = r, θ, z) are the strain tensor components, which are related to displacement components as

εe
rr = ∂ue

∂r
, εe

θθ = ue

r
, εe

zz = ∂we
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. (7)
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Fig. 2 The influence of power law index on the results for the free ends rotating three layered FG cylindrical shell[
t/Ro = 0.2, L/Ro = 1, Ro = 1, Ne = 3, N e

z = 25, N e
r = 15, � = 100 (Rad/s), η = 0.5

]

Also, the material elastic coefficients Ce
i j for an isotropic material are related to Young’s modulus (E) and

Poisson’s ratio (ν) by

Ce
11 =Ce

22 =Ce
33 = (1 − νe) Ee

(1 + νe) (1 − 2νe)
, Ce

12 =Ce
23 =Ce

13 = νe Ee

(1 + νe) (1 − 2νe)
, Ce

55 = Ee

2 (1 + νe)
. (8.1–3)

Using Eqs. (7) and (8), the thermolelastic equilibrium equations in terms of the displacement components
become

δu : Ce
11
∂2ue

∂r2 +
(

dCe
11

dr
+ Ce

11

r

)
∂ue

∂r
+ Ce

55
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r

)
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r
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(

dCe
13

dr
+ Ce

13 − Ce
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)
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αe�T e
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− ρer�2, (9)

δw : (
Ce

13 + Ce
55

) ∂2ue
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55
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dCe
55
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55
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55
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where ρe is the mass density.
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Fig. 3 The results for the free ends rotating three layered FG cylindrical shell
(
t/Ro = 0.2,L/Ro = 1, Ro = 1, Ne = 3, N e

z = 25,
N e

r = 15, η = ξ = 0.5
)

The external boundary conditions at the lower and upper surfaces (z = 0, L) of the shell are

Either ue = 0 or Ce
55

(
∂ue

∂z
+ ∂we

∂r

)
= 0; (11.1, 2)

Either we = 0 or Ce
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∂ue
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23

r
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∂we
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13 + Ce

23 + Ce
33

)
αe�T e = 0. (12.1, 2)

Also, at the inner and outer surfaces of the shell
(

r = R1
i , RNe

o

)
, one has

Ce
11
∂ue

∂r
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12

r
ue + Ce

13
∂we

∂z
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11 + Ce

12 + Ce
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55
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= 0. (13.1, 2)

The thermoelastic geometrical and natural compatibility conditions at the interface of two adjacent layers
of the shell are as follows:

ue (
Re

o, z
) = ue+1

(
Re+1

i , z
)
, we (

Re
o, z

) = we+1
(
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Fig. 4 The results for the clamped ends rotating three layered FG cylindrical shell (t/Ro = 0.2,L/Ro = 1, Ro = 1, Ne = 3,
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z = 19, N e
r = 11, η = ξ = 0.5)
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. (14.1–4)

In this study, it is assumed that the lower and upper surfaces of the shell (z = 0 and z = L) have differ-
ent types of the classical boundary conditions, which can be obtained by combining the conditions stated in
Eqs. (11) and (12) as follows:

Simply support (S) : ue = 0, Ce
13
∂ue

∂r
+ Ce

23

r
ue + Ce

33
∂we

∂z
− (

Ce
13 + Ce

23 + Ce
33

)
αe�T e = 0, (15.1, 2)

Clamped (C) : ue = 0, we = 0, (16.1, 2)

Free (F) : Ce
55

(
∂ue

∂z
+ ∂we

∂r

)
=0,Ce

13
∂ue

∂r
+ Ce

23

r
ue + Ce

33
∂we

∂z
−(

Ce
13 + Ce

23 + Ce
33

)
αe�T e =0. (17.1, 2)

If it is not impossible to solve the above system of differential equations, it may be very difficult to obtain
such a solution. Hence, a numerical method should be used to solve this system of equations. On the other
hand, the differential quadrature method (DQM) as an accurate and simple numerical method has been suc-
cessfully employed for different structural problems, especially, for those with variable coefficients differential
equations [14–19]. Hence, it will be used to discretize the thermal heat conduction as well as the governing
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Fig. 5 The results for the simply supported rotating three layered FG cylindrical shell (t/Ro = 0.2, L/Ro = 1, Ro = 1, Ne = 3,
N e

z = 19, N e
r = 11, η = ξ = 0.5)

differential equations of motion and the related boundary and compatibility conditions in each mathematical
layer.

According to the DQM, in the computational domain, each mathematical layer is discretized into N e
r

and N e
z discrete grid points along the r and z directions, respectively. At each domain grid point, the strong

forms of the equations of motion and at boundary grid points, the boundary and the interface compatibility
conditions are discretized using the DQ-discretization rules. For brevity purpose, here only the DQ discretized
form of the heat conduction equation (3) for the eth layer is presented. At each domain grid point (i, j) with
i = 2, . . ., N̂ e

r

(= N e
r − 1

)
and j = 2, . . ., N̂ e

z

(= N e
z − 1

)
, one gets

K e
i

N e
r∑

m=1

Ber
im T e

m +
[(

d K e

dr

)

i
+ K e

i

ri

] N e
r∑

m=1

Aer
im T e

m = 0 (18)

where Aer
i j and Ber

i j represent the weighting coefficients of the first- and second-order derivatives along the
r direction, respectively [14–19]. The cosine-type grid generation rule is used in both the r and z directions
[14–19]. In a similar manner, the other differential equations, the external boundary and the interface com-
patibility conditions, can be discretized. After discretizing these equations, one obtains a system of algebraic
equations. Solving it, the temperature distribution together with the displacement and stress components is
obtained.
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Fig. 6 The results for the free ends rotating shell [model (II)] with the temperature-dependent/independent material properties[
t/Ro = 0.2, L/Ro = 1, Ro = 1, p = 1, η = 0.5, Ne = 3, N e

z = 19, N e
r = 15, � = 100 (Rad/s)

]

3 Numerical results

In this section, firstly, the fast rate of convergence and the accuracy of the method for the thermoelastic analysis
of rotating FG laminated cylindrical shells are investigated. Then, a parametric study for two common types
of FG sandwich shells, namely, the sandwich with homogeneous inner/outer layers and FG core [model (I),
see Fig. 1a] and the sandwich with FG inner/outer layers and homogeneous core [model (II), see Fig. 1b]
is presented. Otherwise specified, the material properties are assumed to be temperature dependent and vary
according to power law distribution; (1) also, the non-dimensional parameters are defined as:

η = z/L , ξ = r − Ri

Ro − Ri
, U = uEc

(1 + νc)
[
EcαcTc + (1 − νc) ρc�2 R2

o

]
Ro
,

�i i = (1 − νc) σi i

EcαcTc + (1 − νc) ρc�2 R2
o
(i = r, θ, z) (19)

where L is the length of the cylindrical shell. Also, otherwise specified, the values of T0 = 300 (K) ,
T∞ = 1,100 (K) and h = 200

(
W/m2K

)
are used in all examples.

The material properties of Ti-6Al-4V and ZrO2, as given in Table 1, are used to obtain the new numer-
ical results, which are chosen from the work of Kim [20]. They are valid for the temperature range of
300 K ≤ T ≤ 1,100 K.

As a first example, the convergence behavior of the non-dimensional radial displacement component of
a single-layer rotating FG cylindrical shell against the numbers of grid points along the r and z directions is
shown in Table 2. Also, the convergence behavior of the method for the rotating shell of model (I) is presented
in Table 3. In all cases, the fast rate of convergence of the method is quite evident.
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Fig. 7 The influences of length-to-outer radius ratio on the results for the free ends rotating shell (model II) (t/Ro = 0.2, Ro = 1,
p = 1, Ne = 3, N e

z = 35, N e
r = 15, η = ξ = 0.5)

Due to the lack of numerical results for rotating FG cylindrical shells in thermal environment, the results
for an annular disk as a limiting case of a cylinder (cylinder with small length-to-outer radius ratio) is used
to verify the presented approach. For this purpose, the numerical results for a rotating FG annular disk sub-
jected to thermal environment are compared with the analytical solution of Peng and Li [9] in Table 4. They
transformed the one-dimensional thermoelasticity equation into a Fredholm integral equation to obtain the
analytical solution. To find such a solution, all the material properties, except Poisson’s ratio, were assumed to
vary according to ψ = ψ0rn where ψ0 is a material constant at the outer surface and n is the material graded
index. The material properties are as follows [9]:

Em = 70 GPa, νm = 0.3, Km = 209
(
W/m◦C

)
, αm = 23 × 10−6 (

1/◦C
)
, ρm = 2,700

(
Kg/m3) ,

Ec = 151 GPa, νc = 0.3, Kc = 2
(
W/m◦C

)
, αc = 10 × 10−6 (

1/◦C
)
, ρc = 5,700

(
Kg/m3) .

Also the surface temperatures at the inner and outer surfaces of disk are assumed to be

T (Ri ) = 0◦C, T (Ro) = 1,000◦C.

The non-dimensional radial displacement and stress components at different locations and for different values
of the material graded index (n) are compared with those of Peng and Li [9]. Excellent agreement between
the results of the two approaches can be seen.

After validating the presented approach, some parametric study for FG rotating cylindrical shells subjected
to thermal environment is performed. As a first example, a comparison between the results of the two shell
models (I) and (II) with free ends is performed in Fig. 2. The effects of different values of the material graded
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Fig. 8 The influence of thickness-to-outer radius ratio on the results for the free ends rotating shell (model II) (L/Ro = 1, Ro = 1,
p = 1, Ne = 3, N e

z = 27, N e
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index (p) on the results are shown in this figure. It can be seen that the material graded index significantly
affects the non-dimensional radial displacement component of model II.

The influence of the angular velocity on the results of the two shell models (I) and (II) with three different
sets of end boundary conditions is shown in Figs. 3, 4, and 5. The results for the FG rotating shells with both
ends free, clamped and simply supported are presented in Figs. 3, 4, and 5, respectively. It can be seen that
increasing the angular velocity, the non-dimensional parameters increase for all types of boundary conditions,
except the non-dimensional radial displacement for the shells with clamped boundary condition.

The effects of temperature dependence of material properties on the results for the free ends rotating shell
of model (II) are shown in Fig. 6. It can be seen that the temperature dependence of material properties has a
significant effect on the stress components and cannot be ignored. Also, it is observable that its influence on
the radial displacement component is less than on the stress components.

The influences of the length-to-outer radius and thickness-to-length ratios for the free ends rotating shell
of model (II) are presented in Figs. 7 and 8, respectively. From Fig. 7, it can be seen that the length-to-outer
radius ratio has a significant effect on the results of the free ends shell. Also, it is observable from Fig. 8
that increasing the thickness-to-outer radius ratio, the radial stress and displacement components increase but
the axial stress component reduces. In addition, it is obvious that with increasing the angular velocity the
non-dimensional parameter increases for all values of the thickness-to-outer radius ratio.

As an important thermal parameter, the influence of the convective heat transfer coefficient on the results
of the free ends rotating shell of model (II) is presented in Fig. 9. It is obvious that this parameter considerably
changes the stress and displacement variations in the shell especially for the values of h ≤ 100(W/m2K).
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Fig. 9 The influence of convection heat transfer coefficient on the results for the free ends rotating shell of model (II) (t/Ro = 0.2,
L/Ro = 1, Ro = 1, p = 1, Ne = 3, N e

z = 25, N e
r = 15, η = ξ = 0.5)

4 Conclusion

Using the elasticity-based layerwise approach, the thermoelastic analysis of rotating laminated functionally
graded (FG) cylindrical shells in thermal environment was performed. The material properties were assumed
to be temperature dependent and graded in the thickness direction. In order to accurately model the laminated
shell, it was divided into a set of mathematical layers. Then, the differential quadrature method (DQM), as an
efficient and accurate numerical method, was employed to discretize the thermal and thermo-mechanical gov-
erning differential equations of each layer together with the related end boundary conditions and compatibility
conditions at the interface of two adjacent layers. The convective boundary condition on the inner surface and
the constant temperature on the outer surface of the shell were assumed. The convergence behavior of the
method was numerically demonstrated, and comparison studies with the available solutions in the literature
were performed to validate the presented formulation and the method of solution. Then, parametric studies
were performed to study the behavior of two commonly used laminated FG shells. From the obtained results,
it was concluded that the temperature dependence of material properties, material graded index, the convective
heat transfer coefficient, the angular velocity, the length-to-outer radius, and the thickness-to-outer radius ratios
have significant effects on the displacement and stress components of the FG laminated cylindrical shell.
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