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Abstract A numerical method is presented for form-finding of tensegrity structures with multiple states of
self-stress. At the first stage, the range of feasible sets of the nodal coordinates and the force densities are iter-
atively calculated by the only known information of the topology and the types of members until the required
rank deficiencies of the force density and equilibrium matrices are satisfied, respectively. The linear constraints
on the force densities which are derived from the obtained configuration’s symmetry properties and/or directly
assigned by designers are then utilized to define a single integral feasible force density vector in the second
stage. An explanation on the null space of the force density matrix that generates the configurations of the
tensegrities is rigorously given. Several numerical examples are presented to demonstrate the efficiency and
robustness in searching new self-equilibrium stable configurations of tensegrity structures with multiple states
of self-stress.

1 Introduction

Over the past few decades, tensegrity structures first proposed by Fuller [1] have attracted considerable atten-
tion in a wide variety of fields including aerospace [2], architecture [3,4], civil engineering [5,6], biology [7–9],
mathematics [10,11] and robotics [12,13]. They belong to a class of free-standing, prestressed, pin-jointed,
cable-strut system where contacts are allowed among the struts [14].

As a pioneering work of numerical form-finding, the so-called force density method was proposed by Schek
[15] for form-finding of tensile structures. Motro et al. [16] then presented the dynamic relaxation that has
been reliably applied to tensile structures [17] and many other nonlinear problems. Recently, Masic et al. [18],
Zhang and Ohsaki [19] and Estrada et al. [20] developed new numerical methods using the force density for-
mulation. Pagitz and Tur [21] suggested a form-finding algorithm that is based on the finite element method.
Zhang et al. [22] employed a refined dynamic relaxation method for form-finding of nonregular tensegrity
systems. Micheletti and Williams [23] used a marching procedure for finding stable placements of irregular
tensegrities based on their given regular counterparts. Rieffel et al. [24] and Xu and Luo [25] introduced an
evolutionary algorithm for producing irregular tensegrity structures. Most recently, Tran and Lee [26] pro-
posed an advanced form-finding for tensegrity structures based only on the given topology and the types of
members, i.e., either tension or compression. They also introduced an approach [27] for the determination of
a unique configuration of free-form tensegrity structures. Li et al. [28] suggested a method by incorporating a
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Monte Carlo type approach into tensegrity form-finding. A review of the existing methods for form-finding of
tensegrity structures can be found in Tibert and Pellegrino [29], Juan and Tur [30] and Sultan [31]. However,
most of the available methods have dealt with the form-finding of tensegrities for only the case of a single
self-stress state. Thus, an efficient numerical form-finding procedure for tensegrities with multiple states of
self-stress is the motivation of this study.

In this paper, a numerical method is presented for form-finding of tensegrity structures with multiple states
of self-stress. The topology and the types of members, i.e., either compression or tension, are the required
information. The eigenvalue decomposition (EVD) of the force density matrix and the singular value decom-
position (SVD) of the equilibrium matrix are iteratively executed to find the range of feasible sets of the nodal
coordinates and the force densities until the required rank deficiencies of the force density and equilibrium
matrices for the case of multiple states of self-stress are satisfied, respectively. Since the obtained geometry
at the first stage has multiple self-stress states, the linear constraints on the force densities which are derived
from its symmetry properties and/or directly assigned by designers are then utilized to define a single integral
feasible force density vector in the second stage. An explanation on the null space of the force density matrix
that generates the configurations of tensegrities is rigorously given.

2 Self-equilibrium equations and rank deficiency conditions

2.1 Basic assumptions

In this study, the following assumptions are made in tensegrity structures:

• The topology of the structure in terms of nodal connectivity is known.
• Members are connected by pin joints.
• No external load is applied and the self-weight of the structure is neglected during the form-finding

procedure.
• There are no dissipative forces acting on the system.
• Both local and global buckling are not considered.

2.2 Self-equilibrium equations

For a d-dimensional (d = 2 or 3) tensegrity structure with b members, n free nodes and n f fixed nodes
(supports), its topology can be expressed by a connectivity matrix Cs (∈ R

b×(n+n f )) as discussed in Tran and
Lee [26]. Suppose member k connects nodes i and j (i < j), then the i th and j th elements of the kth row of
Cs are set to 1 and −1, respectively, as follows:

Cs(k,p) =
⎧
⎨

⎩

1 for p = i,
−1 for p = j,

0 otherwise.
(1)

If the free nodes are numbered first, and then the fixed nodes, Cs can be divided into two parts as

Cs = [C C f ], (2)

where C (∈ R
b×n) and C f (∈ R

b×n f ) describe the connectivities of the members to the free and fixed nodes,
respectively. Let x, y, z (∈ R

n) and x f , y f , z f (∈ R
n f ) denote the nodal coordinate vectors of the free and

fixed nodes, respectively, in x-, y- and z-directions.
The equilibrium equations of the free nodes in each direction of a general pin-jointed structure given by

Schek [15] can be stated as

CT diag(q)Cx + CT diag(q)C f x f = px , (3a)

CT diag(q)Cy + CT diag(q)C f y f = py, (3b)

CT diag(q)Cz + CT diag(q)C f z f = pz, (3c)
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where px , py and pz (∈ R
n) are the vectors of external loads applied at the free nodes in x-, y- and z-directions,

respectively. The symbol (·)T denotes the transpose of a matrix or vector, and diag(q) (∈ R
b×b) is a diagonal

square matrix of q (∈ R
b) which is the force density vector as suggested in Schek [15], defined by

q = {q1, q2, . . . , qb}T , (4)

in which each component of this vector is the force fk to length lk ratio qk = fk/ lk (k = 1, 2, . . ., b), known
as force density or self-stressed coefficient in Vassart and Motro [32].

When external load and self-weight are ignored, the tensegrity system does not require any fixed nodes
(supports). Its geometry can be defined by the relative position of the nodes. That is, the system can be
considered as a free-standing rigid body in space [26,33]. In this context, Eq. (3) becomes

Dx = 0, (5a)

Dy = 0, (5b)

Dz = 0, (5c)

where D (∈ R
n×n), known as force density matrix [20,29], or stress matrix [34–36], is given by

D = CT diag(q)C. (6)

For simplicity, Eq. (5) can be reorganized as

D[x y z] = [0 0 0], (7)

where [x y z] (∈ R
n×d) is a matrix of nodal coordinates for a d-dimensional tensegrity structure.

On the other hand, by substituting Eq. (6) into (5), the self-equilibrium equations of the tensegrity structures
can also be reorganized as

Aq = 0, (8)

where A (∈ R
dn×b) is known as the equilibrium matrix in [26,33], defined by

A =
⎛

⎝
CT diag(Cx)

CT diag(Cy)

CT diag(Cz)

⎞

⎠ . (9)

Equation (7) presents the relationship between the force densities and the nodal coordinates, while Eq. (8)
shows the relationship between the projected lengths in x-, y- and z-directions, respectively, and the force
densities. Both Eqs. (7) and (8) are linear homogeneous systems of the self-equilibrium equations with respect
to the nodal coordinates and the force densities, respectively.

2.3 Rank deficiency conditions for multiple states of self-stress

Let q be the vector of force density and C be the incidence matrix of a d-dimensional tensegrity structure in
self-equilibrium state. It is well known that the set of all solutions to the linear homogeneous system of Eq. (7)
is the null space of D. The dimension of this null space or rank deficiency of D is defined as

nD = n − rD, (10)

where rD = rank(D). Note that D is always square, symmetric and singular with nullity at least 1 since the
sum of all components in any row or column is zero for any tensegrity structure [26,29]. The general solution
of Eq. (7) [37] has the following form:

x =
nD∑

i=1

αx
i gi , (11a)

y =
nD∑

i=1

α
y
i gi , (11b)

z =
nD∑

i=1

αz
i gi , (11c)
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where the coefficients αx
i , α

y
i and αz

i are arbitrary values and gi ∈ R
n (i = 1, 2, . . ., nD) represent particular

solutions of Eq. (7). In other words, gi are in the null space of D such that Dgi = 0. As the coefficients αx
i , α

y
i

and αz
i range over all possible values, the general solution generates all possible ones. From Eq. (11), the

following cases occur based on the dimension of the null space of D:

• If nD = 1, the basic solution of Eq. (7) is a uniform vector g1 = {1, 1, . . ., 1}T (∈ R
n), since the sum of

the elements of a row or a column of D is always equal to zero [26,29]. Hence, Eq. (11) becomes

[x1 y1 z1] =

⎡

⎢
⎢
⎢
⎣

αx
1 α

y
1 αz

1
αx

1 α
y
1 αz

1
...

...
...

αx
1 α

y
1 αz

1

⎤

⎥
⎥
⎥
⎦

n×3

. (12)

This means that n nodes of the structure possess the same nodal coordinates. In other words, these n nodes
degenerate into one node (αx

1 , α
y
1 , αz

1), named as original node in this paper. Consequently, Eq. (11) can
be expressed as

x = x1 +
nD∑

i=2

αx
i gi , (13a)

y = y1 +
nD∑

i=2

α
y
i gi , (13b)

z = z1 +
nD∑

i=2

αz
i , gi , (13c)

or in matrix form

[x y z] = [x1 y1 z1] + [g2 g3 · · · gnD
]

⎡

⎢
⎢
⎢
⎣

αx
2 α

y
2 αz

2
αx

3 α
y
3 αz

3
...

...
...

αx
nD

α
y
nD αz

nD

⎤

⎥
⎥
⎥
⎦

(nD−1)×3

. (14)

• If nD = 2, Eq. (13) defines a line that goes through the original node.
• If nD = 3, Eq. (13) forms a two-dimensional space holding the original node.
• If nD = 4, Eq. (13) generates a three-dimensional space containing the original node.
• In general, d eigenvector bases can be selected from (nD−1) ones except g1 (due to degenerating geometry

of the tensegrity structure [26]) in the null space of D to form a d-dimensional tensegrity structure. Hence,
if nD > 4, Eq. (13) gives in total

CnD−1
d = (nD − 1)!

d!(nD − 1 − d)! , (15)

distinct options that one can choose to generate a d-dimensional tensegrity structure.

There are two rank deficiency conditions for tensegrities with multiple states of self-stress need to be
considered. The first one related to the semi-definite matrix D of Eq. (7) is defined by

nD ≥ d + 1. (16)

This condition forces Eq. (7) to yield at least d useful particular solutions that exclude the above vector g1.
Therefore, the minimum rank deficiency or nullity of D must be (d + 1) for configuration of any tensegrity
structure with multiple states of self-stress embedding into R

d .
Let nA denote the dimension of the null space of the equilibrium matrix A, which is computed by

nA = b − rA, (17)
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where rA = rank(A). Similarly, the general solution q̄ (∈ R
b) of Eq. (8) that lies in the null space of A is

calculated as

q̄ =
nA∑

i=1

ci qi , (18)

where the coefficients ci are arbitrary values and qi ∈ R
b (i = 1, 2, . . ., nA) are the particular solutions of

Eq. (8). The second rank deficiency condition related to matrix A of Eq. (8), which ensures the existence of at
least two states of self-stress, can be stated as

s = nA ≥ 2, (19)

where s is known as the number of independent states of self-stress. It is clear that Eq. (19) allows Eq. (8) to
create at least two useful particular solutions.

3 Form-finding process

The proposed form-finding procedure only needs to know the topology of the structure, in terms of the inci-
dence matrix C and the type of each member, i.e., either cable or strut which is under tension or compression,
respectively. There are two stages in the form-finding process: (i) the first one is to find the range of feasible
sets of the nodal coordinates [x y z] and the force densities q that satisfy Eqs. (16) and (19), respectively, and
(ii) the other is to determine a single integral feasible set of force densities. Based on the member type, the
initial force density coefficients of cables (tension) are automatically assigned as +1, and those of the struts
(compression) as −1, respectively, as follows:

q0 = {+1 + 1 · · · + 1
︸ ︷︷ ︸

cables

−1 − 1 · · · − 1
︸ ︷︷ ︸

struts

}T . (20)

Subsequently, the force density matrix D is calculated from q0 by Eq. (6). After that, the nodal coordinates are
selected from the EVD of the matrix D, which is discussed in Sect. 3.1. These nodal coordinates are substituted
into Eq. (8) to define the force density vector q by the SVD of the equilibrium matrix A, which is presented
in Sect. 3.2. The force density matrix D is then updated by Eq. (6). The process is iteratively calculated for
searching the range of feasible sets of the nodal coordinates [x y z] and the force densities q until the rank
deficiencies of Eqs. (16) and (19) are satisfied at the first stage, which forces Eqs. (7) and (8) become true. In
this context, at least two states of self-stress can be created, s ≥ 2. In this study, based on the required rank
deficiencies from Eqs. (16) and (19), the form-finding process is stopped as

nD ≥ n∗
D = d + 1, (21a)

nA ≥ n∗
A = 2, (21b)

where n∗
D and n∗

A are the minimum required rank deficiencies of the force density and equilibrium matrices
for the tensegrities with at least two states of self-stress, respectively. The symmetry properties of the obtained
configuration are then employed to derive the linear constraints on the force densities in the second stage for
the determination of a single integral feasible force density vector. Furthermore, linear relations between some
specific force densities directly assigned by designers can also be included in the formulation for the purpose
of obtaining the single integral feasible force density vector.

3.1 Determination of feasible set of nodal coordinates

The square, symmetric force density matrix D can be factorized as follows by using the EVD [37]:

D = ���T , (22)

where � (∈ R
n×n) is the orthogonal matrix (��T = In , in which In ∈ R

n×n is the unit matrix) whose
i th column is the eigenvector basis φi (∈ R

n) of D and � (∈ R
n×n) is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues, i.e., �i i = λi . The eigenvector φi of � corresponds to eigenvalue
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λi of �. The eigenvalues are in ascending order as λ1 ≤ λ2 ≤ · · · ≤ λn . It is clear that the number of
zero eigenvalues of D is equal to the dimension of its null space. Let p be the number of zero and negative
eigenvalues of D. There are two cases need to be considered. The first one is p ≤ n∗

D, and the other is p > n∗
D.

However, since initial force densities q0, which consist of unitary entries +1 and −1 for members in tension
and compression, respectively, usually result in p ≤ n∗

D, only this case is considered in this paper.
The first n∗

D orthonormal eigenvectors of � are directly taken as potential nodal coordinates

[x y z] ∈ �̄ = [φ1 φ2 · · · φn∗
D
]. (23)

Let G (∈ R
b×d(d+1)/2) denote the potential geometry matrix of the structure formed by any combination of d

eigenvectors from �̄, determined by the connectivity and potential nodal coordinates as

G =
{[

Lx lx Ly ly Lz lz Lx ly Lx lz Ly lz
]

if d = 3
[
Lx lx Ly ly Lx ly

]
if d = 3

(24)

where Lx (= diag(lx )), Ly(= diag(ly)) and Lz(= diag(lz)) (∈ R
b×b) are diagonal square matrices of lx , ly and

lz , respectively, and lx (= lx
k ), ly(= l y

k ) and lz(= lz
k) ∈ R

b (k = 1, 2, . . ., b) denote the coordinate difference
vectors of the b members in x-, y- and z-directions, respectively, which are calculated from

lx = Cφi ,

ly = Cφ j (φi , φ j , φk ∈ �̄), (25)

lz = Cφk .

A vector φi of �̄ which linearly depends on the vector g1 (i.e., Cφi = 0) or causes a zero length to any member

among the b members of the structure (whose lengths are defined by lk =
√

(lx
k )2 + (l y

k )2 + (lz
k)

2, assuming

d = 3) can be identified and eliminated. If there is no φi found, the first three eigenvectors of �̄ are chosen as
nodal coordinates [x y z] for 3-dimensional tensegrity structure. And the potential geometry matrix G formed
by the chosen nodal coordinates should satisfy the following condition:

rG = d(d + 1)

2
, (26)

where rG = rank(G). Equation (26) indicates that the rank of the potential geometry matrix G must be
d(d + 1)/2 for a d-dimensional structure, i.e., it must equal to three or six for two- or three-dimensional
structure, respectively; if it is less than d(d + 1)/2, then there exist nontrivial affine motions [27,38] in the
null space of the geometrical stiffness matrix KG (= Id ⊗ D); Id (∈ R

d×d) and ⊗ are the unit matrix and the
tensor product, respectively.

The force density vector q that is repeatedly approximated from Eq. (31) is in fact the least-square solution
of the linear homogeneous Eq. (8) solved by the SVD technique of the equilibrium matrix A as presented in the
next section. In other words, the algorithm iteratively modifies the force density vector q as little as possible
to make the first n∗

D eigenvalues of D become null as

λi = 0 (i = 1, 2, . . ., n∗
D). (27)

Accordingly, D will finally have at least the minimum required rank deficiency n∗
D without any negative eigen-

value. It implies D is positive semi-definite and there is no nontrivial affine motion in the null space of the
geometrical stiffness matrix KG . Any tensegrity structure falling into this case is super stable regardless of
material properties and level of self-stress coefficients [27,36,38].

In short, the best scenario of configuration in 3-dimensional space is formed by three best candidate eigen-
vectors selected from the first n∗

D eigenvector bases which corresponding to the first n∗
D smallest eigenvalues,

respectively. These eigenvalues will be gradually modified to be zero by the proposed iterative form-finding
algorithm. In other words, the proposed form-finding procedure has repeatedly approximated equilibrium
configuration such that

D[x y z] ≈ [0 0 0]. (28)

In essence, the nodal coordinates [x y z] repeatedly approximated from Eq. (28) are the least-square solutions
of the linear homogeneous Eq. (7), which is solved by the EVD technique of the force density matrix D. This is
since they are selected from the first four eigenvector bases corresponding to the first four smallest eigenvalues.
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3.2 Determination of feasible set of force densities

The equilibrium matrix A is computed by substituting the set of approximated nodal coordinates [x y z]
from Eq. (28) into (9). In order to solve the linear homogeneous Eq. (8), the SVD [37] is carried out on the
equilibrium matrix A:

A = UVWT , (29)

where U (∈ R
dn×dn) = [u1 u2 · · · udn] and W (∈ R

b×b) = [w1 w2 · · · wb] are the orthogonal matrices and
V (∈ R

dn×b) is a diagonal matrix with non-negative singular values of A in descending order as

σ1 ≥ σ2 ≥ · · · ≥ σb ≥ 0. (30)

As indicated in Eq. (21b), the iterative form-finding algorithm for the case of multiple states of self-stress
is successful in case of s ≥ n∗

A = 2. Accordingly, there are also two cases for s during the procedure:
Case 1: (i) s = 0 and (ii) s = 1. Regarding s = 0, there exists no null space of A. That is, the structure is not
in self-equilibrium with its current approximated nodal coordinates, which is the usual case of the structure
generated from the incidence matrix C and the initial assigned force density vector q0. In particular, the right
singular value (σb) of A in V is not equal to zero. It denotes that Eq. (8) has no nonzero force density vector
q as a solution. The form-finding procedure defines the approximated q [39] such that

Aq ≈ 0. (31)

Regarding s = 1, the vector q1 (∈ R
b) in Eq. (32b) matching in sign with q0 is indeed the single state of

self-stress which satisfies the homogeneous Eq. (8). However, the proposed form-finding algorithm keeps
iterating until Eq. (21b) is satisfied.

Case 2: s ≥ 2, it is known [40] that the vector space bases of mechanisms and force densities of any
tensegrity structure are calculated from the null space of the equilibrium matrix. In this case, the matrices U
and W from Eq. (29) can be expressed, respectively, as

U = [u1 u2 · · · urA |m1 · · · mm], (32a)

W = [w1 w2 · · · wrA |q1 · · · qs], (32b)

where the vectors mi ∈ R
dn (i = 1, 2, . . ., m) denote m (= dn − rA) inextensional mechanisms including

both possible infinitesmal mechanisms and rigid body motions, while the vectors q j ∈ R
b ( j = 1, 2, . . ., s)

are s independent states of self-stress which satisfy the linear homogeneous equation (8).

3.3 Determination of a single integral feasible set of force densities

Let c = {c1, c2, . . ., cs}T (∈ R
s) denote the coefficient vector of s independent self-stress states. Equation (18)

can be simplified as

q̄ = Sc, (33)

where S (∈ R
b×s) is the matrix of self-stress basis states defined by

S = [q1 q2 · · · qs]. (34)

The general solution q̄ is considered as a single integral feasible self-stress state [27] if and only if it
satisfies the three following conditions: (i) symmetry properties of the structure (i.e., members at symmetrical
positions are considered to belong to the same group and have the same force density); (ii) unilateral behav-
iors of members (i.e., cables and struts must be under tension and compression, respectively); (iii) and it is
uniquely defined. The self-stress basis states S resulting from the null space of the equilibrium matrix A cannot
be employed directly since every independent state itself does not satisfy the unilateral behavior of members.
This is because the equilibrium matrix A does not take into account member characteristics.
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In practical situations, the tensegrity system usually has symmetric properties, i.e., invariance conditions
to reflection with respect to some planes and/or rotation around some axes. Therefore, the same force densities
should be assigned to the symmetrically located members. In other words, based on the geometric symmetry
of the tensegrity structure, members at symmetrically positions are considered to belong to the same group
and have the same force density. Let h denote the number of groups of members in tensegrity structure, q̄ can
then be written as

q̄ = {q1 q1 q1 · · · qi qi qi · · · qh qh qh}T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 0 0 0 0
... 1 0 0 0
... 1 0 0 0

0
... 1 0 0

0
... 1 0 0

0 0
... 1

...

0 0
... 1

...

0 0 0
... 1

0 0 0
... 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b×h)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q1
...

qi
...

qh

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
(h×1)

. (35)

Equation (35) can be rewritten as

q̄ = [e1 · · · ei · · · eh]{q1 · · · qi · · · qh}T, (36)

where qi is the force density of members in the i th group; {q1 · · · qi · · · qh}T (= qh) ∈ R
h is the force

density vector of h groups; and ei (∈ R
b) is the basis vector composed of a unit in the i th group and zero in

the other (h − 1) groups.
Equation (18) is substituted by (36) and re-arranged into the following form:

q1c1 + q2c2 + · · · + qscs + (−e1q1) + · · · (−ei qi ) · · · + (−ehqh) = 0. (37)

Let c̄ (∈ R
(s+h)) is the vector of the coefficients of s independent self-stress states and the force densities of h

groups denoted as c̄ = {c1, c2, . . ., cs, q1, . . ., qi , . . ., qh}T . Equation (37) can be rewritten in matrix form:

S̄c̄ = 0 (38)

where S̄ (∈ R
b×(s+h)) is a matrix computed by

S̄ = [q1 q2 · · · qs − e1 · · · − ei · · · − eh]. (39)

It should be noted that linear relations on the force densities between two groups can be directly assigned as

qi = αq j (i �= j), (40)

where qi , q j and α are the force density coefficients of member groups i, j and a specified value, respectively.
In this case, substituting Eq. (40) into (37), Eq. (38) will be updated by a new version of vector c̄ as well as
matrix S̄, and the force density variables of member groups can be reduced by these linear relations. Similarly,
the set of all solutions to the linear homogeneous system of Eq. (38) lies in the null space of S̄. Let nS̄ denote
the dimension of this null space which is computed by

nS̄ = (s + h) − rS̄, (s + h ≤ b), (41)

where rS̄ = rank(S̄). Both the number of independent self-stress states s and the number of groups h are
dependent on the obtained geometry of the tensegrity. However, usually, their sum is less or equal to the
number of members (s + h ≤ b). Therefore, only this case is considered in this paper. Depending on the value
of nS̄, there are also the following two cases:



Form-finding of tensegrity structures 139

Case 1. nS̄ = 1, Eq. (38) has a single nontrivial solution (c̄ �= 0). That is, the tensegrity structure possesses
a single integral self-stress state. It satisfies not only the self-equilibrium condition but also the condition of
symmetry derived by the geometric shape of the structure. Moreover, this single integral self-stress state auto-
matically satisfies the condition of cables under tension and struts under compression, which can be considered
as the benefit of the single solution of the linear homogeneous Eq. (38) for the tensegrity structure. Hence, it
is a single integral feasible self-stress state.

Case 2. (i) nS̄ = 0 and (ii) nS̄ > 1. For nS̄ = 0, Eq. (38) has no nontrivial solution. It implies that
group division for members does not consist with the obtained configuration of the tensegrity structure. In
other words, the tensegrity is not in self-equilibrium with such geometric symmetry. In order to get a unique
nontrivial solution as in Case 1, the number of member groups should be correctly increased until nS̄ becomes
1. For nS̄ > 1, Eq. (38) has more than one nontrivial solution, i.e., there are multiple integral self-stress states
for the structure. In this case, a single nontrivial solution (Case 1) may exist if the number of member groups
is appropriately decreased until nS̄ becomes 1. Alternatively, together with the constraints on geometric sym-
metry, some linear relations on force densities between some specific groups can be directly introduced by
designers through Eq. (40) to impose the unique solution (i.e., nS̄ = 1).

To solve the linear homogeneous equation (38), the second application of the SVD on matrix S̄ is employed:

S̄ = ŪV̄W̄
T
. (42)

The matrices Ū (∈ R
b×b), V̄ (∈ R

b×(s+h)) and W̄ (∈ R
(s+h)×(s+h)) are similarly defined as the matrices U, V

and W described above. If the null space of the matrix S̄ exists, i.e., nS̄ ≥ 1, the following equation can be
obtained:

S̄w̄i = 0 (i = rS̄ + 1, rS̄ + 2, . . ., s + h). (43)

Equation (43) also means w̄i are the solutions of c̄. The number of integral independent self-stress states of
the tensegrities which satisfy the symmetric shape condition is s̄ = nS̄. Note that the (s + 1)th to (s + h)th
component of c̄ are the force densities of h groups which satisfy the condition that the members in the same
group have the same force density.

In this paper, only Case 1 (s̄ = nS̄ = 1) is considered. If the obtained tensegrity structure at the first
stage falls into Case 2, it will be converted into Case 1 by appropriately increasing or decreasing its number
of member groups and/or directly assigning some linear relations on force densities between some specific
groups. Once c̄ is known, the single integral feasible self-stress force density vector q̄ can be obtained from
the last h variables of c̄ or from Eq. (33).

In summary, the EVD of the force density matrix D and the SVD of the equilibrium matrix A are performed
iteratively to find the feasible sets of the nodal coordinates [x y z] and the force densities q at the first stage
by selecting the appropriate singular vector bases in each decomposition as the least-square solutions until
the minimum required rank deficiencies of these two matrices for the case of multiple states of self-stress are
satisfied, respectively, as presented in Eq. (21). Then, the symmetry properties of the obtained configuration
are employed to derive the linear constraints on the force densities in the second stage for the determination
of a single integral feasible force density vector. Furthermore, linear relations between some specific force
densities directly assigned by designers can also be included in the formulation for the purpose of obtaining the
single integral feasible force density vector. The final nodal coordinates [x y z] and the single integral feasible
force density vector q̄ may be not unique for the structure with given topology and the types of members.
Other two sets of the nodal coordinates and the force densities may exist for the same topology and the same
types of members.

Since the tensegrity structure should satisfy the self-equilibrium conditions, the vector of unbalanced forces
ε f (∈ R

dn) defined as follows can be used for evaluating the accuracy of the results:

ε f = Aq. (44)

The Euclidean norm of ε f is used to define the design error ε as

ε =
√

ε f (ε f )T . (45)
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Fig. 1 A two-dimensional three-strut tensegrity structure. The thick and thin lines represent the struts and cables, respectively

3.4 Form-finding procedure for tensegrity structures with multiple states of self-stress

The feasible sets of parameters which are the nodal coordinates and the single integral feasible force densities
of the tensegrity structures can be simultaneously defined by the proposed form-finding through the following
procedure.

Form-finding procedure

• Step 1: Define C by Eq. (1) for the given topology of tensegrity structure.
• Step 2: Specify the types of members to generate initial force density vector q0 by Eq. (20). Set i = 0.
• Step 3: Calculate Di using Eq. (6)
• Step 4: Carry out Eq. (22) to define [x y z]i through Eq. (28).
• Step 5: Determine Ai by Eq. (9).
• Step 6: Perform Eq. (29) to define qi+1 through Eq. (31).
• Step 7: Define Di+1 with qi+1 by Eq. (6). If Eq. (21) is satisfied, the solutions exist. Otherwise, set i = i +1

and return to Step 4.
• Step 8: Based on the symmetry of the obtained geometry, calculate S̄ from Eq. (39) and nS̄ from Eq. (41).
• Step 9:

1. If nS̄ = 1, go to Step 10.
2. If nS̄ = 0, increase the number of member groups h and define S̄ from Eq. (39), nS̄ from (41) repeatedly

until nS̄ becomes 1.
3. If nS̄ > 1, decrease the number of member groups h and/or directly assign some linear relations on

force densities between some specific groups, and define S̄ from Eq. (39), nS̄ from (41) repeatedly
until nS̄ becomes 1.

• Step 10: Define c̄ by Eq. (42). Extract c and qh from c̄. Compute q̄ by Eq. (33) or (36).
• Step 11: The process is terminated until Eq. (45) has been checked. The final coordinates and the single

integral feasible force density vector q̄ are the solutions. Otherwise, set i = i + 1 and return to Step 4.

4 Numerical examples

Numerical examples are presented for several tensegrity structures using Matlab Version 7.4 (R2007a) [41].
Based on the algorithm developed, both the nodal coordinates and the single integral feasible force density
vector are simultaneously defined with limited information of the nodal connectivity and the type of each
member. A two-dimensional three-strut tensegrity, a three-strut octahedral cell tensegrity, a three-dimensional
six-strut tensegrity and an expanded octahedron tensegrity are then illustrated to demonstrate the capability of
the proposed method.

4.1 Two-dimensional tensegrity structures

4.1.1 Three-strut tensegrity

The initial topology of the three-strut tensegrity structure comprising three struts and eight cables is shown
in Fig. 1. Initial nodal coordinates, member lengths and force density coefficients are unknown in advance.
The only basic information is the incidence matrix C and the type of each member which is employed to
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automatically assign the initial force density vector by the proposed form-finding procedure as

q0 = {q1–q8 = 1, q9–q11 = −1}T . (46)

The obtained self-equilibrium configuration of the structure is plotted in Fig. 2. The form-finding procedure
converges in two iterations at the first stage with the design error ε = 2.135 × 10−15 defined by Eq. (45). The
structure achieved has two self-stress states (s = 2) and no infinitesimal mechanism (m = 0) after constraining
its three rigid body motions, indicating it is statically indeterminate and kinematically determinate [42].

Two independent self-stress states q1 − q2 are now available in the null space of the equilibrium matrix A.
However, they cannot be utilized directly because they do not satisfy the unilateral behavior of elements as
mentioned in Sect. 3.3. In order to find the single integral feasible self-stress state, the symmetry properties
of the obtained structure are employed to impose the linear constraints on the force densities in the second
stage. Table 1 generally shows a relationship between the number of member groups (h) and the dimension
of the null space of S̄ (nS̄) in the three-strut tensegrity. For h = 2, all cables and struts belong to their own
group, respectively. For all the other cases 2 < h ≤ 9 (note that h ≤ b − s = 11 − 2 = 9 as mentioned in
Eq. (41)), the members are grouped based on the symmetry of the structure. From Table 1, it can be seen that
the single integral feasible prestressed mode exists (nS̄ = 1) if the number of member groups is four. That is,
if the structure is divided into four groups, it satisfies not only the equilibrium but also the unilateral behavior
of elements.

However, according to the symmetry of the structure, the members can be appropriately divided into five
groups, which results nS̄ = 2, as listed in Table 2. In order to obtain a single integral feasible prestressed mode,
a linear relation between member groups 2 and 3 is imposed as q3 = 1.5q2. Accordingly, the vector of the
coefficients of two independent prestressed modes and force densities of five groups (c̄) can be obtained from
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Fig. 2 The obtained geometry of the two-dimensional three-strut tensegrity structure

Table 1 A relationship between the number of groups (h) and the dimension of the null space of S̄ (nS̄) in the 2-D three-strut
tensegrity

h 2 3 4 5 6 7 8 9
nS̄ 0 1 1 2 2 2 2 2

Table 2 Single integral feasible self-stress state of the 2-D three-strut tensegrity structure

Member group Member qh

1 1–4 1.0
2 5–6 2.0
3 7–8 3.0
4 9–10 −2.5
5 11 −0.5
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Fig. 3 A three-strut octahedral cell tensegrity structure

Eq. (38) by using SVD of S̄ [Eq. (42)] as follows:

S̄c̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1954 −0.3902 −1 0 0 0
0.1954 −0.3902 −1 0 0 0
0.1954 −0.3902 −1 0 0 0
0.1954 −0.3902 −1 0 0 0

−0.4627 0.0123 0 −1 0 0
−0.4627 0.0123 0 −1 0 0
−0.2673 −0.3779 0 −1.5 0 0
−0.2673 −0.3779 0 −1.5 0 0

0.3650 0.1828 0 0 −1 0
0.3650 0.1828 0 0 −1 0

−0.0977 0.1951 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11×6)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1
c2
q1
q2
q4
q5

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
(6×1)

= 0. (47)

Equation (47) yields a single solution since the dimension of the null space of the matrix S̄ equals to one
(nS̄ = 1):

c̄ = {−0.6041, −0.6504, 0.1358, 0.2715, −0.3394, −0.0679}T . (48)

The coefficient vector c is obtained by extracting the first two components of c̄, and its remaining components
are the force density coefficients of four groups. The single integral self-stress state qh (force density vector of
h groups) normalized with respect to the force density coefficient of member group 1 is presented in Table 2.
It is also the single integral feasible self-stress state of the tensegrity since it satisfies the condition of cables
in tension and struts in compression. Equation (29) in Tran and Lee [27] is fulfilled: the rank of the geometry
matrix G is three (rG = 3); the required rank deficiency nD of the force density matrix D is three (n −rD = 3);
and D is positive semi-definite. Accordingly, the structure is certainly super stable regardless of materials and
prestress levels as given in [27, Eq. (29)].

4.2 Three-dimensional tensegrity structures

4.2.1 Three-strut octahedral cell

As the next example, consider the structure shown in Fig. 3 has three struts and eight cables. Similarly, the only
known information is the incidence matrix C and the type of each member which is employed to automatically
generate the initial force density vector by the proposed form-finding procedure as

q0 = {q1–q12 = 1, q13–q15 = −1}T . (49)

Figure 4 shows the obtained self-equilibrium configuration. The form-finding procedure converges in only one
iteration at the first stage with the design error ε = 1.633 × 10−14. The structure achieved has three self-stress
states (s = 3) and no infinitesimal mechanism (m = 0) excluding its six rigid body motions. Accordingly, it
belongs to statically indeterminate and kinematically determinate [42].

Three independent self-stress states q1 − q3 can be found by the SVD of the equilibrium matrix A. Based
on the symmetry of the obtained geometry (Fig. 4), the members can be pertinently divided into four groups
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Fig. 4 The obtained geometry of the three-strut octahedral cell tensegrity structure, a top view, b perspective view

Table 3 Single integral feasible self-stress state of the three-strut octahedral cell tensegrity structure

Member group Member qh

1 1–4 1.0
2 5–12 0.5
3 13–14 −1.5
4 15 −1.0
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Fig. 5 A three-dimensional six-strut tensegrity structure

as shown in Table 3, which results in nS̄ = 2. In this case, to obtain a single integral feasible self-stress state
(nS̄ = 1), a linear relation between member groups 1 and 2 is additionally imposed as q1 = 2q2. The calculated
coefficient vector of three independent self-stress states is:

c = {−0.2683, 0.4225, −0.7185}T . (50)

The single integral feasible self-stress state (normalized with respect to the force density coefficient of member
group 1) is listed in Table 3.

4.2.2 Six-strut tensegrity

A three-dimensional six-strut tensegrity (Fig. 5) has 6 struts and 24 cables. Similarly, the obtained configuration
of the structure is plotted in Fig. 6. The design error is ε = 2.614×10−15 achieved after two iterations at the first
stage. The structure obtained has two states of self-stress (s = 2) and two infinitesimal mechanisms (m = 2)
after constraining its six rigid body motions, indicating it is statically and kinematically indeterminate [42].

There are two independent self-stress states q1 − q2 in the null space of the equilibrium matrix A. From
the obtained configuration’s symmetry (Fig. 6), the members can be appropriately divided into four groups
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Fig. 6 The obtained geometry of the three-dimensional six-strut tensegrity structure, a top view, b perspective view

Table 4 Single integral feasible self-stress state of the 3-D six-strut tensegrity structure

Member group Member qh

1 1–8 1.0000
2 9–24 1.6180
3 25–28 −1.6180
4 29–30 −2.2361
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Fig. 7 An expanded octahedron tensegrity structure

(h = 4) as listed in Table 4. The calculated coefficient vector of two independent self-stress states is:

c = {0.7810, 0.5024}T . (51)

The single integral feasible self-stress state (normalized with respect to the force density coefficient of member
group 1) is shown in Table 4. Equation (29) in Tran and Lee [27] is satisfied: the rank of the geometry matrix
G is six (rG = 6); the required rank deficiency nD of the force density matrix D is four (n − rD = 4); and
D is positive semi-definite. Hence, the structure is certainly super stable regardless of materials and prestress
levels. It is clear that the introduction of a single integral feasible prestress stiffens infinitesimal mechanisms
to make the structure stable.

4.2.3 Expanded octahedron

The expanded octahedron consisting of 6 struts and 36 cables as shown in Fig. 7 is originated from the classic
expandable octahedron [26,29]. It has a similar connectivity as the classic expandable octahedron, but with 6
additional cables pulling 6 pairs of nodes closer together. Similarly, the obtained configuration of the struc-
ture is plotted in Fig. 8. The design error (Fig. 9) is ε = 3.806 × 10−15 achieved after eighteen iterations
at the first stage. The structure obtained has six states of self-stress (s = 6) and no infinitesimal mechanism
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Fig. 8 The obtained geometry of the three-dimensional expanded octahedron tensegrity structure, a top view, b perspective view
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Fig. 9 The convergence of the proposed iterative algorithm for the expanded octahedron

Table 5 Single integral feasible self-stress state of the expanded octahedron tensegrity structure

Member group Member qh

1 1–24 1.0000
2 25–30 0.4143
3 31–36 −1.5857

(m = 0) after constraining its six rigid body motions, indicating it is statically indeterminate and kinematically
determinate [42].

There are six independent self-stress states q1 − q6 in the null space of the equilibrium matrix A. From
the obtained configuration’s symmetry (Fig. 8), the members can be appropriately divided into three groups
(h = 3) as listed in Table 5. The calculated coefficient vector of six independent self-stress states is:

c = {−0.2828, −0.2506, −0.3373, 0.3490, −0.7074, −0.1923}T . (52)

The single integral feasible self-stress state (normalized with respect to the force density coefficient of member
group 1) is shown in Table 5. The force density matrix D is positive semi-definite, which leads to a super stable
structure regardless of materials and prestress levels [10,34–36].
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5 Concluding remarks

The numerical form-finding procedure for tensegrity structures with multiple states of self-stress has been
proposed. The topology and the initial force density vector assigned based on the types of members are the
required information. The components of this vector consist of unitary entries +1 and −1 for members in
tension and compression, respectively. At the first stage, the eigenvalue decomposition of the force density
matrix and the singular value decomposition of the equilibrium matrix are iteratively executed to find the range
of feasible sets of the nodal coordinates and the force densities which satisfy the required rank deficiencies
of the force density and equilibrium matrices for the case of multiple states of self-stress, respectively. Since
the obtained geometry at the first stage has multiple self-stress states, its symmetry properties are employed
to derive the linear constraints on the force densities in the second stage for the determination of a single inte-
gral feasible force density vector. Furthermore, linear relations between some specific force densities directly
assigned by designers can also be included in the formulation for the purpose of obtaining the single integral
feasible force density vector. It is interesting to note that the existence of multiple states of self-stress allows
the optimization of self-stress design for the tensegrities. An explanation on the null space of the force density
matrix that generates the configurations of the tensegrities is rigorously given. A very good performance of
the proposed method has been shown in the numerical examples for two- and three-dimensional tensegrity
structures. As a natural extension of this research, form-finding with multiple states of self-stress subject to
more complicated constraints awaits further attention.
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